Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing

. 2015 May 09 ; 16 (1) : 370. [epub] 20150509

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25956247
Odkazy

PubMed 25956247
PubMed Central PMC4424896
DOI 10.1186/s12864-015-1597-y
PII: 10.1186/s12864-015-1597-y
Knihovny.cz E-zdroje

BACKGROUND: Genomic selection (GS) in forestry can substantially reduce the length of breeding cycle and increase gain per unit time through early selection and greater selection intensity, particularly for traits of low heritability and late expression. Affordable next-generation sequencing technologies made it possible to genotype large numbers of trees at a reasonable cost. RESULTS: Genotyping-by-sequencing was used to genotype 1,126 Interior spruce trees representing 25 open-pollinated families planted over three sites in British Columbia, Canada. Four imputation algorithms were compared (mean value (MI), singular value decomposition (SVD), expectation maximization (EM), and a newly derived, family-based k-nearest neighbor (kNN-Fam)). Trees were phenotyped for several yield and wood attributes. Single- and multi-site GS prediction models were developed using the Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) and the Generalized Ridge Regression (GRR) to test different assumption about trait architecture. Finally, using PCA, multi-trait GS prediction models were developed. The EM and kNN-Fam imputation methods were superior for 30 and 60% missing data, respectively. The RR-BLUP GS prediction model produced better accuracies than the GRR indicating that the genetic architecture for these traits is complex. GS prediction accuracies for multi-site were high and better than those of single-sites while multi-site predictability produced the lowest accuracies reflecting type-b genetic correlations and deemed unreliable. The incorporation of genomic information in quantitative genetics analyses produced more realistic heritability estimates as half-sib pedigree tended to inflate the additive genetic variance and subsequently both heritability and gain estimates. Principle component scores as representatives of multi-trait GS prediction models produced surprising results where negatively correlated traits could be concurrently selected for using PCA2 and PCA3. CONCLUSIONS: The application of GS to open-pollinated family testing, the simplest form of tree improvement evaluation methods, was proven to be effective. Prediction accuracies obtained for all traits greatly support the integration of GS in tree breeding. While the within-site GS prediction accuracies were high, the results clearly indicate that single-site GS models ability to predict other sites are unreliable supporting the utilization of multi-site approach. Principle component scores provided an opportunity for the concurrent selection of traits with different phenotypic optima.

Zobrazit více v PubMed

Grattapaglia D. Breeding Forest Trees by Genomic Selection:Current Progress and theWay Forward. In: Tuberosa R, Graner A, Frison E, editors. Genomics Plant Genet Resour. Dordrecht: Springer Netherlands; 2014. pp. 651–682.

El-Kassaby YA, Isik F, Whetten RW. Modern Advances in Tree Breeding. In: Fenning T, editor. Challenges Oppor World’s For 21st Century. Dordrecht: Springer Science+Business Media; 2014. pp. 441–459.

Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics. 1990;124:743–756. PubMed PMC

Paterson AH, Tanksley SD, Sorrells ME. DNA markers in plant improvement. Adv Agron. 1991;46:39–90. doi: 10.1016/S0065-2113(08)60578-7. DOI

Neale DB, Williams CG. Restriction-Fragment-Length-Polymorphism mapping in conifers and applications to forest genetics and tree improvement. Can J Res. 1991;21:545–554. doi: 10.1139/x91-076. DOI

Williams CG, Neale DB. Conifer wood quality and marker-aided selection—a case-study. Can J Res. 1992;22:1009–1017. doi: 10.1139/x92-135. DOI

Strauss SH, Lande R, Namkoong G. Limitations of molecular-marker-aided selection in forest tree breeding. Can J Res. 1992;22:1050–1061. doi: 10.1139/x92-140. DOI

Fisher RA. The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb. 1918;52:399–433. doi: 10.1017/S0080456800012163. DOI

Stuber CW, Polacco M, Senior ML. Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci. 1999;39:1571–1583. doi: 10.2135/cropsci1999.3961571x. DOI

Dekkers JCM. Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J Anim Sci. 2004;82:313–328. PubMed

Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–1829. PubMed PMC

Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet. 2009;10:381–391. doi: 10.1038/nrg2575. PubMed DOI

Resende MFR, Muñoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, Resende MDV, Kirst M. Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol. 2012;193:617–624. doi: 10.1111/j.1469-8137.2011.03895.x. PubMed DOI

Resende MFR, Muñoz P, Resende MD, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin T a, Peter GF, Kirst M. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.) Genetics. 2012;190:1503–1510. doi: 10.1534/genetics.111.137026. PubMed DOI PMC

Zapata-Valenzuela J, Isik F, Maltecca C, Wegrzyn J, Neale D, McKeand S, Whetten R. SNP markers trace familial linkages in a cloned population of Pinus taeda-prospects for genomic selection. Tree Genet Genomes. 2012;8:1307–1318. doi: 10.1007/s11295-012-0516-5. DOI

Beaulieu J, Doerksen T, Clément S, Mackay J, Bousquet J. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity (Edinb). 2014;113:343-352. PubMed PMC

VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91:4414–4423. doi: 10.3168/jds.2007-0980. PubMed DOI

Misztal I, Legarra A, Aguilar I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J Dairy Sci. 2009;92:4648–4655. doi: 10.3168/jds.2009-2064. PubMed DOI

El-Kassaby YA, Lstibůrek M. Breeding without breeding. Genet Res (Camb) 2009;91:111–120. doi: 10.1017/S001667230900007X. PubMed DOI

El-Kassaby YA, Cappa EP, Liewlaksaneeyanawin C, Klápště J, Lstibůrek M. Breeding without breeding: is a complete pedigree necessary for efficient breeding? PLoS One. 2011;6 doi: 10.1371/journal.pone.0025737. PubMed DOI PMC

Isik F. Genomic selection in forest tree breeding: the concept and an outlook to the future. New For. 2014;45:379–401. doi: 10.1007/s11056-014-9422-z. DOI

Elshire RJ, Glaubitz JC, Sun Q, Poland J a, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6 doi: 10.1371/journal.pone.0019379. PubMed DOI PMC

Chen C, Mitchell SE, Elshire RJ, Buckler ES, El-Kassaby YA. Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform. Tree Genet Genomes. 2013;9:1537–1544. doi: 10.1007/s11295-013-0657-1. DOI

Sutton BCS, Flanagan DJ, Gawley R, Newton CH, Lester DT, El-Kassaby YA. Inheritance of chloroplast and mitochondrial DNA in Picea and composition of hybrids from introgression zones. Theor Appl Genet. 1991;82:242–248. doi: 10.1007/BF00226220. PubMed DOI

Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. 2013;29:1492-1497. PubMed PMC

Porth I, White R, Jaquish B, Alfaro R, Ritland C, Ritland K. Genetical Genomics Identifies the Genetic Architecture for Growth and Weevil Resistance in Spruce. PLoS One. 2012;7:e44397. PubMed PMC

Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet. 2013;9 doi: 10.1371/journal.pgen.1003215. PubMed DOI PMC

Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001;17:520–525. doi: 10.1093/bioinformatics/17.6.520. PubMed DOI

Wang W, Wei Z, Lam T-W, Wang J. Next generation sequencing has lower sequence coverage and poorer CNP-detection capability in the regulatory regions. Sci Rep. 2011;1:55. PubMed PMC

Pan J, Wang B, Pei Z-Y, Zhao W, Gao J, Mao J-F, et al. Optimization of genotyping-by-sequencing strategy for population genomic analysis in conifers. Mol Ecol Resour. 2014. PubMed

Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B(Methodological) 1977;39:1–38.

Solberg TR, Sonesson AK, Woolliams JA, Meuwissen THE Genomic selection using different marker types and densities. J Anim Sci. 2008;86:2447–2454. doi: 10.2527/jas.2007-0010. PubMed DOI

Namkoong G. Inbreeding effects on estimation of genetic additive variance. For Sci. 1966;12:8–13.

Squillace AE. Average genetic correlations among offspring from open-pollinated forest trees. Silvae Genet. 1974;23:149–156.

Askew GR, El-Kassaby YA. Estimation of relationship coefficients among progeny derived from wind-pollinated orchard seeds. Theor Appl Genet. 1994;88:267–272. doi: 10.1007/BF00225908. PubMed DOI

Grattapaglia D, Resende MDV. Genomic selection in forest tree breeding. Tree Genet Genomes. 2011;7:241–255. doi: 10.1007/s11295-010-0328-4. DOI

Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink JL. Genomic selection in plant breeding. Knowledge and prospects. Adv Agron. 2011;110:77–123. doi: 10.1016/B978-0-12-385531-2.00002-5. DOI

Shen X, Alam M, Fikse F, Rönnegård L. A novel generalized ridge regression method for quantitative genetics. Genetics. 2013;193:1255–1268. doi: 10.1534/genetics.112.146720. PubMed DOI PMC

Hofheinz N, Frisch M. Heteroscedastic ridge regression approaches for genome-wide prediction with a focus on computational efficiency and accurate effect estimation. G3 Genes| Genomes| Genet. 2014;4:539–546. doi: 10.1534/g3.113.010025. PubMed DOI PMC

Lorenzana RE, Bernardo R. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet. 2009;120:151–161. doi: 10.1007/s00122-009-1166-3. PubMed DOI

Luan T, Woolliams J a, Lien S, Kent M, Svendsen M, Meuwissen THE The accuracy of Genomic Selection in Norwegian red cattle assessed by cross-validation. Genetics. 2009;183:1119–1126. doi: 10.1534/genetics.109.107391. PubMed DOI PMC

VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS. Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci. 2009;92:16–24. doi: 10.3168/jds.2008-1514. PubMed DOI

Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia A a, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria D a, Pappas GJ, Kilian A, Grattapaglia D. Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 2012;194:116–128. doi: 10.1111/j.1469-8137.2011.04038.x. PubMed DOI

Burdon RD. Genetic correlation as a concept for studying genotype-environment interaction in forest tree breeding. Silvae Genet. 1977;26:168–175.

Annicchiarico P. Genotype X Environment Interaction Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. FAO Plant Production and Protection Paper No. 174. Rome,Italy; 2002:155.

Hazel LN. The genetic basis for constructing selection indices. Genetics. 1943;28:476–490. PubMed PMC

Bouffier L, Raffin A, Rozenberg P, Meredieu C, Kremer A. What are the consequences of growth selection on wood density in the French maritime pine breeding programme? Tree Genet Genomes. 2008;5:11–25. doi: 10.1007/s11295-008-0165-x. DOI

Hayes BJ, Visscher PM, Goddard ME. Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res (Camb) 2009;91:47–60. doi: 10.1017/S0016672308009981. PubMed DOI

Van Grevenhof EM, Van Arendonk J a M, Bijma P. Response to genomic selection: the Bulmer effect and the potential of genomic selection when the number of phenotypic records is limiting. Genet Sel Evol. 2012;44:26. doi: 10.1186/1297-9686-44-26. PubMed DOI PMC

Bastiaansen JWM, Coster A, Calus MPL, van Arendonk J a M, Bovenhuis H. Long-term response to genomic selection: effects of estimation method and reference population structure for different genetic architectures. Genet Sel Evol. 2012;44:3. doi: 10.1186/1297-9686-44-3. PubMed DOI PMC

Burdon RD, Shelbourne CJA. Breeding populations for recurrent selection conflicts and possible solutions. New Zeal J For Sci. 1971;1:174–193.

Jayawickrama KJS, Carson MJ. A breeding strategy for the New Zealand radiata pine breeding cooperative. Silvae Genet. 2000;49:82–90.

Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson A, Rilakovic N, Ritland C, Rosselló J a, Sena J, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–584. doi: 10.1038/nature12211. PubMed DOI

Chaisurisri K, El-Kassaby YA. Genetic diversity in a seed production population vs. natural populations of Sitka Spruce. Biodivers Conserv. 1994;3:512–523. doi: 10.1007/BF00115157. DOI

Stoehr MU, El-Kassaby YA. Levels of genetic diversity at different stages of the domestication cycle of interior spruce in British Columbia. Theor Appl Genet. 1997;94:83–90. doi: 10.1007/s001220050385. PubMed DOI

Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus (Madison) 1990;12:13–15.

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–2635. doi: 10.1093/bioinformatics/btm308. PubMed DOI

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2014.

Perry PO. bcv: Cross-Validation for the SVD (Bi-Cross-Validation). 2009.

Hartigan JA, Wong MA. Algorithm AS 136: A K-means clustering algorithm. J R Stat Soc Ser C (Applied Stat) 1979;28:100–108.

Rutkoski JE, Poland J, Jannink J-L, Sorrells ME. Imputation of unordered markers and the impact on genomic selection accuracy. G3 Genes| Genomes| Genet. 2013;3:427–439. doi: 10.1534/g3.112.005363. PubMed DOI PMC

El-Kassaby YA, Mansfield S, Isik F, Stoehr M. In situ wood quality assessment in Douglas-fir. Tree Genet Genomes. 2011;7:553–561. doi: 10.1007/s11295-010-0355-1. DOI

Auty D, Achim A. The relationship between standing tree acoustic assessment and timber quality in Scots pine and the practical implications for assessing timber quality from naturally regenerated stands. Forestry. 2008;81:475–487. doi: 10.1093/forestry/cpn015. DOI

Gilmour AR, Gogel BJ, Cullis BR, Thompson R. ASReml User. Guide release 3.0. Hemel Hempstead, UK: VSN International Ltd.; 2009.

Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome. 2011;4:250–255. doi: 10.3835/plantgenome2011.08.0024. DOI

Henderson CR. Estimation of variance and covariance components. Biometrics. 1953;9:226–252. doi: 10.2307/3001853. DOI

Gianola D, Okut H, Weigel K a, Rosa GJ. Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. BMC Genet. 2011;12:87. doi: 10.1186/1471-2156-12-87. PubMed DOI PMC

González-Camacho JM, de Los CG, Pérez P, Gianola D, Cairns JE, Mahuku G, Babu R, Crossa J. Genome-enabled prediction of genetic values using radial basis function neural networks. Theor Appl Genet. 2012;125:759–771. doi: 10.1007/s00122-012-1868-9. PubMed DOI PMC

Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, Chen C, de los Campos G, Burgueño J, Windhausen VS, Buckler E, Jannink J-L, Lopez Cruz M a, Babu R. Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 Genes| Genomes| Genet Genomes| Genet. 2013;3:1903–1926. PubMed PMC

Lindgren D, Mullin TJ. Balancing gain and relatedness in selection. Silvae Genet. 1997;46:124–129.

Lindgren D, Gea L, Jefferson P. Loss of genetic diversity monitored by status number. Silvae Genet. 1996;45:52–59.

Caballero A, Toro M. Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genet Res. 2000;75:331–343. doi: 10.1017/S0016672399004449. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...