Multienvironment genomic variance decomposition analysis of open-pollinated Interior spruce (Picea glauca x engelmannii)
Status PubMed-not-MEDLINE Language English Country Netherlands Media print-electronic
Document type Journal Article
PubMed
29491726
PubMed Central
PMC5814545
DOI
10.1007/s11032-018-0784-3
PII: 784
Knihovny.cz E-resources
- Keywords
- Genetic variance decomposition, Interior spruce, Multienvironment, Open-pollinated families, Pedigree- and marker-based relationships,
- Publication type
- Journal Article MeSH
The advantages of open-pollinated (OP) family testing over controlled crossing (i.e., structured pedigree) are the potential to screen and rank a large number of parents and offspring with minimal cost and efforts; however, the method produces inflated genetic parameters as the actual sibling relatedness within OP families rarely meets the half-sib relatedness assumption. Here, we demonstrate the unsurpassed utility of OP testing after shifting the analytical mode from pedigree- (ABLUP) to genomic-based (GBLUP) relationship using phenotypic tree height (HT) and wood density (WD) and genotypic (30k SNPs) data for 1126 38-year-old Interior spruce (Picea glauca (Moench) Voss x P. engelmannii Parry ex Engelm.) trees, representing 25 OP families, growing on three sites in Interior British Columbia, Canada. The use of the genomic realized relationship permitted genetic variance decomposition to additive, dominance, and epistatic genetic variances, and their interactions with the environment, producing more accurate narrow-sense heritability and breeding value estimates as compared to the pedigree-based counterpart. The impact of retaining (random folding) vs. removing (family folding) genetic similarity between the training and validation populations on the predictive accuracy of genomic selection was illustrated and highlighted the former caveats and latter advantages. Moreover, GBLUP models allowed breeding value prediction for individuals from families that were not included in the developed models, which was not possible with the ABLUP. Response to selection differences between the ABLUP and GBLUP models indicated the presence of systematic genetic gain overestimation of 35 and 63% for HT and WD, respectively, mainly caused by the inflated estimates of additive genetic variance and individuals' breeding values given by the ABLUP models. Extending the OP genomic-based models from single to multisite made the analysis applicable to existing OP testing programs.
Pharmacognosy Department Faculty of Pharmacy Alexandria University Alexandria Egypt
Present Address Scion 49 Sala Street Whakarewarewa Rotorua 3046 New Zealand
See more in PubMed
Allard RW. Principles of plant breeding. 2. New York: Wiley; 1999.
Askew GR, El-Kassaby YA. Estimation of relationship coefficients among progeny derived from wind-pollinated orchard seeds. Theor Appl Genet. 1994;88(2):267–272. doi: 10.1007/BF00225908. PubMed DOI
Azevedo CF, Redende MDV, e Silva FF, Viana JMS, Valente MSF, Resende MFR, Jr, Muñoz P. Ridge, Lasso and Bayesian additive-dominance genomic models. BMC Genet. 2015;16(1):105. doi: 10.1186/s12863-015-0264-2. PubMed DOI PMC
Beaulieu J, Doerksen T, Clément S, Mackay J, Bousquet J. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity. 2014;113(4):343–352. doi: 10.1038/hdy.2014.36. PubMed DOI PMC
Beaulieu J, Doerksen T, Mackay J, Rainville A, Bousquet J. Genomic selection accuracies within and between environments and small breeding groups in white spruce. BMC Genomics. 2014;15(1):1048. doi: 10.1186/1471-2164-15-1048. PubMed DOI PMC
Bentley DR. Whole-genome re-sequencing. Curr Opin Genet Dev. 2006;16(6):545–552. doi: 10.1016/j.gde.2006.10.009. PubMed DOI
Bouvet J-M, Makouanzi G, Cros D, Vigneron P. Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: prediction accuracy implications. Heredity. 2016;116(2):146–157. doi: 10.1038/hdy.2015.78. PubMed DOI PMC
Bradshaw JHD, Foster G. Marker-aided selection and propagation system in trees: advantages of cloning for studying quantitative inheritance. Can J For Res. 1992;22(7):1044–1049. doi: 10.1139/x92-139. DOI
Burdon RD, Shelbourne CJA. Breeding populations for recurrent selection: conflicts and possible solutions. N Z J For Sci. 1971;1:174–193.
Butler D, Cullis BR, Gilmour AR, Gogel BJ (2009) Mixed models for S language environments. www.vsni.co.uk
Chen C, Mitchell SE, Elshire RJ, Buckler ES, El-Kassaby YA. Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform. Tree Genet Genomes. 2013;9(6):1537–1544. doi: 10.1007/s11295-013-0657-1. DOI
Crossa J, de los Campos G, Perez P, Gianola D, Burgueno J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Banziger M, Braun H-J. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics. 2010;186(2):713–724. doi: 10.1534/genetics.110.118521. PubMed DOI PMC
Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, Hickey JM. Genomic predication in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics. 2013;193(2):347–365. doi: 10.1534/genetics.112.147983. PubMed DOI PMC
de Almeida Filho JE, Guimaraes JFR, Silva FF, de Resende MDV, Muñoz P, Kirst M, MFR R., Jr The contribution of dominance to phenotype prediction in a pine breeding and simulated population. Heredity. 2016;117(1):33–41. doi: 10.1038/hdy.2016.23. PubMed DOI PMC
De La Torre AR, Wang T, Jaquish B, Aitken SN. Adaptation and exogenous selection in a Picea glauca x Picea engelmannii hybrid zone: implications for forest management under climate change. New Phytol. 2014;201(2):687–699. doi: 10.1111/nph.12540. PubMed DOI PMC
Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc Ser B. 1977;39:1–38.
Denis M, Bouvet J-M. Efficiency of genomic selection with models including dominance effect in the context of Eucalyptus breeding. Tree Genet Genomes. 2013;9(1):37–51. doi: 10.1007/s11295-012-0528-1. DOI
El-Kassaby YA. Evaluation of the tree-improvement delivery system: factors affecting genetic potential. Tree Physiol. 1995;15(7–8):545–550. doi: 10.1093/treephys/15.7-8.545. PubMed DOI
El-Kassaby YA, Park YS. Genetic variation and correlation in growth, biomass traits, and vegetative phenology of a 3-year-old Douglas-fir common garden at different spacings. Silvae Genet. 1993;42:289–297.
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379. doi: 10.1371/journal.pone.0019379. PubMed DOI PMC
Ertl J, Legarra A, Vitezica ZG, Varona L, Edel C, Emmerling R, Gotz K-U. Genomic analysis of dominance effects on milk production and conformation traits in Fleckvieh cattle. Genet Sel Evol. 2014;46(1):40. doi: 10.1186/1297-9686-46-40. PubMed DOI PMC
Falconer DS, Mackay TFC, Frankham R. Introduction to quantitative genetics. 4. Essex: Pearson Education Ltd; 1996.
Foster GS, Shaw DV. Using clonal replicates to explore genetic-variation in a perennial plant-species. Theor Appl Genet. 1988;76(5):788–794. doi: 10.1007/BF00303527. PubMed DOI
Gamal El-Dien O, Ratcliffe B, Klapste J, Chen C, Porth I, El-Kassaby YA. Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genomics. 2015;16(1):370. doi: 10.1186/s12864-015-1597-y. PubMed DOI PMC
Gamal El-Dien O, Ratcliffe B, Klapste J, Porth I, Chen C, El-Kassaby YA. Implementation of the realized genomic relationship matrix to open-pollinated white spruce family testing for disentangling additive from non-additive genetic effects. Genes Genomes Genet. 2016;6:743–753. PubMed PMC
García-Cortés LA, Legarra A, Toro MA. The coefficient of dominance is not (always) estimable with biallelic markers. J Anim Breed Genet. 2014;131(2):97–104. doi: 10.1111/jbg.12076. PubMed DOI
Habier D, Fernando RL, Dekkers JCM. The impact of genetic relationship information on genome-assisted breeding values. Genetics. 2007;177:2389–2397. PubMed PMC
Habier D, Tetens J, Seefried F-R, Lichtner P, Thaller G. The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet Sel Evol. 2010;42(1):5. doi: 10.1186/1297-9686-42-5. PubMed DOI PMC
Habier D, Fernando RL, Garrick DJ. Genomic BLUP decoded: a look into the black box of genomic prediction. Genetics. 2013;194(3):597–607. doi: 10.1534/genetics.113.152207. PubMed DOI PMC
Hayes BJ, Visscher PM, Goddard ME. Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res. 2009;91(01):47–60. doi: 10.1017/S0016672308009981. PubMed DOI
Hill WG, Weir BS. Variation in actual relationship as a consequence of Mendelian sampling and linkage. Genet Res. 2011;93(01):47–64. doi: 10.1017/S0016672310000480. PubMed DOI PMC
Jannink JL. Identifying quantitative trait locus by genetic background interactions in association studies. Genetics. 2007;176(1):553–561. doi: 10.1534/genetics.106.062992. PubMed DOI PMC
Kiss GK. Preliminary evaluation of genetic variation of weevil resistance in interior spruce in British Columbia. Can J For Res. 1991;21(2):230–234. doi: 10.1139/x91-028. DOI
Klápště J, Lstibůrek M, El-Kassaby YA. Estimates of genetic parameters and breeding values from western larch open-pollinated families using marker-based relationship. Tree Genet Genomes. 2014;10(2):241–249. doi: 10.1007/s11295-013-0673-1. DOI
Kumar S, Molloy C, Muñoz P, Daetwyler H, Chagne D, Volz R. Genome-enabled estimates of additive and nonadditive genetic variances and prediction of apple phenotypes across environments. Gene Genomes Genet. 2015;5:2711–2718. PubMed PMC
Lush JL. Animal breeding plans. Worcestershire: Read Books Ltd; 2013.
Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157(4):1819–1829. PubMed PMC
Motohide N, Satoh M. Including dominance effects in the genomic BLUP method for genomic evaluation. PLoS One. 2014;9:e85792. doi: 10.1371/journal.pone.0085792. PubMed DOI PMC
Muñoz PR, Resende MFR, Gezan SA, Resende MDV, de los Campos G, Kirst M, Huber D, Peter GF. Unraveling additive from nonadditive effects using genomic relationship matrices. Genetics. 2014;198(4):1759–1768. doi: 10.1534/genetics.114.171322. PubMed DOI PMC
Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4(2):133–142. doi: 10.1111/j.2041-210x.2012.00261.x. DOI
Namkoong G. Inbreeding effects on estimation of genetic additive variance. For Sci. 1966;12:8–13.
Namkoong G, Kang HC, Brouard JS (1988) Tree breeding: principles and strategies. Theo Appl Genet Mono 11. 10.1007/978-1-4612-3892-8
Powell JE, Visscher PM, Goddard ME. Reconciling the analysis of IBD and IBS in complex trait studies. Nat Rev Genet. 2010;11(11):800–805. doi: 10.1038/nrg2865. PubMed DOI
R Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015.
Ratcliffe B, Gamal El-Dien O, Klápště J, Porth I, Chen C, Jaquish B, El-Kassaby YA. A comparison of genomic selection models across time in interior spruce (Picea engelmannii × glauca) using unordered SNP imputation methods. Heredity. 2015;115(6):547–555. doi: 10.1038/hdy.2015.57. PubMed DOI PMC
Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiagga AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, Pappas GJ, Jr, Kilian A. Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 2012;194(1):116–128. doi: 10.1111/j.1469-8137.2011.04038.x. PubMed DOI
Santure AW, Stapley J, Ball AD, Birkhead TR, Burke T, Slate J. On the use of large marker panels to estimate inbreeding and relatedness: empirical and simulation studies of a pedigreed zebra finch population typed at 771 SNPs. Mol Ecol. 2010;19(7):1439–1451. doi: 10.1111/j.1365-294X.2010.04554.x. PubMed DOI
Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5(1):16–18. doi: 10.1038/nmeth1156. PubMed DOI
Squillace AE. Average genetic correlations among offspring from open-pollinated forest trees. Silvae Genet. 1974;23:149–156.
Su G, Christensen OF. Ostersen T, Henryon M, Lund MS. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. PLoS One. 2012;7(9):e45293. doi: 10.1371/journal.pone.0045293. PubMed DOI PMC
Sutton BCS, Flanagan DJ, Gawley JR, Newton CH, Lester DT, El-Kassaby YA. Inheritance of chloroplast and mitochondrial DNA in Picea and composition of hybrids from introgression zones. Theor Appl Genet. 1991;82(2):242–248. doi: 10.1007/BF00226220. PubMed DOI
VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91(11):4414–4423. doi: 10.3168/jds.2007-0980. PubMed DOI
Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, Montgomery GW, Martin NG. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2006;2(3):e41. doi: 10.1371/journal.pgen.0020041. PubMed DOI PMC
Vitezica ZG, Varona L, Legarra A. On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics. 2013;195(4):1223–1230. doi: 10.1534/genetics.113.155176. PubMed DOI PMC
Wang C, Prakapenka D, Wang S, Pulugurta S, Runesha HB, Da Y. GVCBLUP: a computer package for genomic prediction and variance component estimation of additive and dominance effects. BMCV Bioinformatics. 2014;15(1):270. doi: 10.1186/1471-2105-15-270. PubMed DOI PMC
Wright S. Coefficients of inbreeding and relationship. Am Nat. 1922;56(645):330–338. doi: 10.1086/279872. DOI
Zapata-Valenzuela J, Whetten RW, Neale D, McKeand S, Isik F. Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine. Genes Genomes Genet. 2013;3:909–916. PubMed PMC