Trade-off between carotenoid-based sexual ornamentation and sperm resistance to oxidative challenge
Language English Country England, Great Britain Media print
Document type Journal Article
PubMed
28123091
PubMed Central
PMC5310042
DOI
10.1098/rspb.2016.2444
PII: rspb.2016.2444
Knihovny.cz E-resources
- Keywords
- ejaculate quality, lutein, phenotype-linked fertility hypothesis, sexual selection, sperm competition theory, zeaxanthin,
- MeSH
- Carotenoids physiology MeSH
- Oxidative Stress * MeSH
- Pigmentation * MeSH
- Spermatozoa physiology MeSH
- Beak MeSH
- Songbirds physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Carotenoids MeSH
It has been hypothesized that carotenoid-based sexual ornamentation signals male fertility and sperm competitive ability as both ornamentation and sperm traits may be co-affected by oxidative stress, resulting in positive covariation (the 'redox-based phenotype-linked fertility hypothesis'; redox-based PLFH). On the other hand, the 'sperm competition theory' (SCT) predicts a trade-off between precopulatory and postcopulatory traits. Here, we manipulate oxidative status (using diquat dibromide) and carotenoid availability in adult zebra finch (Taeniopygia guttata) males in order to test whether carotenoid-based beak ornamentation signals, or is traded off against, sperm resistance to oxidative challenge. Initial beak colouration, but not its change during the experiment, was associated with effect of oxidative challenge on sperm velocity, such that more intense colouration predicted an increase in sperm velocity under control conditions but a decline under oxidative challenge. This suggests a long-term trade-off between ornament expression and sperm resistance to oxidative challenge. Shortening of the sperm midpiece following oxidative challenge further suggests that redox homeostasis may constrain sperm morphometry. Carotenoid supplementation resulted in fewer sperm abnormalities but had no effect on other sperm traits. Overall, our data challenge the redox-based PLFH, partially support the SCT and highlight the importance of carotenoids for normal sperm morphology.
See more in PubMed
Darwin CR. 1871. The descent of man and selection in relation to sex. London, UK: John Murray.
Andersson M. 1994. Sexual selection. Princeton, NJ: Princeton University Press.
Parker G. 1970. Sperm competition and its evolutionary consequences in insects. Biol. Rev. 45, 525–567. (10.1111/j.1469-185X.1970.tb01176.x) DOI
Parker GA. 1998. Sperm competition and the evolution of ejaculates: towards a theory base. In Sperm competition and sexual selection. San Diego, CA: Academic Press.
Matthews IM, Evans JP, Magurran AE. 1997. Male display rate reveals ejaculate characteristics in the Trinidadian guppy Poecilia reticulata. Proc. R. Soc. Lond. B 264, 695–700. (10.1098/rspb.1997.0099) DOI
Evans JP, Zane L, Francescato S, Pilastro A. 2003. Directional postcopulatory sexual selection revealed by artificial insemination. Nature 421, 360–363. (10.1038/nature01367) PubMed DOI
Peters A, Denk AG, Delhey K, Kempenaers B. 2004. Carotenoid-based bill colour as an indicator of immunocompetence and sperm performance in male mallards. J. Evol. Biol. 17, 1111–1120. (10.1111/j.1420-9101.2004.00743.x) PubMed DOI
Hosken DJ, Taylor ML, Hoyle K, Higgins S, Wedell N. 2008. Attractive males have greater success in sperm competition. Curr. Biol. 18, R553–R554. (10.1016/j.cub.2008.04.028) PubMed DOI
Polak M, Simmons LW. 2009. Secondary sexual trait size reveals competitive fertilization success in Drosophila bipectinata Duda. Behav. Ecol. 20, 753–760. (10.1093/beheco/arp056) DOI
Helfenstein F, Losdat S, Møller AP, Blount JD, Richner H. 2010. Sperm of colourful males are better protected against oxidative stress. Ecol. Lett. 13, 213–222. (10.1111/j.1461-0248.2009.01419.x) PubMed DOI
Liljedal S, Folstad I, Skarstein F. 1999. Secondary sex traits, parasites, immunity and ejaculate quality in the Arctic charr. Proc. R. Soc. Lond. B 266, 1893–1898. (10.1098/rspb.1999.0863) DOI
Danielsson I. 2001. Antagonistic pre- and post-copulatory sexual selection on male body size in a water strider (Gerris lacustris). Proc. R. Soc. Lond. B 268, 77–81. (10.1098/rspb.2000.1332) PubMed DOI PMC
Simmons LW, Emlen DJ. 2006. Evolutionary trade-off between weapons and testes. Proc. Natl Acad. Sci. USA 103, 16 346–16 351. (10.1073/pnas.0603474103) PubMed DOI PMC
Demary KC, Lewis SM. 2007. Male courtship attractiveness and paternity success in Photinus greeni fireflies. Evolution 61, 431–439. (10.1111/j.1558-5646.2007.00033.x) PubMed DOI
Evans JP. 2010. Quantitative genetic evidence that males trade attractiveness for ejaculate quality in guppies. Proc. R. Soc. B 277, 3195–3201. (10.1098/rspb.2010.0826) PubMed DOI PMC
Buzatto BA, Roberts JD, Simmons LW. 2015. Sperm competition and the evolution of precopulatory weapons: increasing male density promotes sperm competition and reduces selection on arm strength in a chorusing frog. Evolution 69, 2613–2624. (10.1111/evo.12766) PubMed DOI
Birkhead TR, Fletcher F. 1995. Male phenotype and ejaculate quality in the zebra finch Taeniopygia guttata. Proc. R. Soc. Lond. B 262, 329–334. (10.1098/rspb.1995.0213) PubMed DOI
Devigili A, Kelley JL, Pilastro A, Evans JP. 2013. Expression of pre- and postcopulatory traits under different dietary conditions in guppies. Behav. Ecol. 24, 740–749. (10.1093/beheco/ars204) DOI
Mautz BS, Møller AP, Jennions MD. 2013. Do male secondary sexual characters signal ejaculate quality? A meta-analysis. Biol. Rev. 88, 669–682. (10.1111/brv.12022) PubMed DOI
Sheldon BC. 1994. Male phenotype, fertility, and the pursuit of extra-pair copulations by female birds. Proc. R. Soc. Lond. B 257, 25–30. (10.1098/rspb.1994.0089) DOI
von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H. 1999. Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. Lond. B 266, 1–12. (10.1098/rspb.1999.0597) PubMed DOI PMC
Tremellen K. 2008. Oxidative stress and male infertility: a clinical perspective. Hum. Reprod. Update 14, 243–258. (10.1093/humupd/dmn004) PubMed DOI
Blount JD, Møller AP, Houston DC. 2001. Antioxidants, showy males and sperm quality. Ecol. Lett. 4, 393–396. (10.1046/j.1461-0248.2001.00255.x) DOI
Costantini D, Møller AP. 2009. Does immune response cause oxidative stress in birds? A meta-analysis. Comp. Biochem. Physiol. Mol. Integr. Physiol. 153, 339–344. (10.1016/j.cbpa.2009.03.010) PubMed DOI
Costantini D, Marasco V, Møller AP. 2011. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 181, 447–456. (10.1007/s00360-011-0566-2) PubMed DOI
Gonzalez-Marin C, Gosalvez J, Roy R. 2012. Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Int. J. Mol. Sci. 13, 14 026–14 052. (10.3390/ijms131114026) PubMed DOI PMC
Henkel RR. 2011. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J. Androl. 13, 43–52. (10.1038/aja.2010.76) PubMed DOI PMC
Catoni C, Peters A, Schaefer HM. 2008. Life history trade-offs are influenced by the diversity, availability and interactions of dietary antioxidants. Anim. Behav. 76, 1107–1119. (10.1016/j.anbehav.2008.05.027) DOI
Costantini D, Møller AP. 2008. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22, 367–370. (10.1111/j.1365-2435.2007.01366.x) DOI
Simons MJP, Cohen AA, Verhulst S. 2012. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds—a meta-analysis. PLoS ONE 7, e43088 (10.1371/journal.pone.0043088) PubMed DOI PMC
Rowe M, Tourville EA, McGraw KJ. 2012. Carotenoids in bird testes: links to body carotenoid supplies, plumage coloration, body mass and testes mass in house finches (Carpodacus mexicanus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 163, 285–291. (10.1016/j.cbpb.2012.06.005) PubMed DOI
Butler MW, Karanfilian B, Homsher M, McGraw KJ. 2013. Carotenoid supplementation during adulthood, but not development, decreases testis size in mallards. Comp. Biochem. Physiol. Mol. Integr. Physiol. 166, 465–469. (10.1016/j.cbpa.2013.07.024) PubMed DOI
Vinkler M, Albrecht T. 2010. Carotenoid maintenance handicap and the physiology of carotenoid-based signalisation of health. Naturwissenschaften 97, 19–28. (10.1007/s00114-009-0595-9) PubMed DOI
Van Noordwijk AJ, Dejong G. 1986. Acquisition and allocation of resources: their influence on variation in life-history tactics. Am. Nat. 128, 137–142. (10.1086/284547) DOI
Gustafsson L, Qvarnstrom A, Sheldon BC. 1995. Trade-offs between life-history traits and a secondary sexual character. Nature 375, 311–313. (10.1038/375311a0) DOI
Kolluru GR, Grether GF. 2005. The effects of resource availability on alternative mating tactics in guppies (Poecilia reticulata). Behav. Ecol. 16, 294–300. (10.1093/beheco/arh161) DOI
Cornwallis CK, Birkhead TR. 2007. Changes in sperm quality and numbers in response to experimental manipulation of male social status and female attractiveness. Am. Nat. 170, 758–770. (10.1086/521955) PubMed DOI
Immler S, Pryke SR, Birkhead TR, Griffith SC. 2010. Pronounced within-individual plasticity in sperm morphometry across social environments. Evolution 64, 1634–1643. (10.1111/j.1558-5646.2009.00924.x) PubMed DOI
Losdat S, Richner H, Blount JD, Helfenstein F. 2011. Immune activation reduces sperm quality in the great tit. PLoS ONE 6, e22221 (10.1371/journal.pone.0022221) PubMed DOI PMC
Breckels RD, Neff BD. 2013. The effects of elevated temperature on the sexual traits, immunology and survivorship of a tropical ectotherm. J. Exp. Biol. 216, 2658–2664. (10.1242/jeb.084962) PubMed DOI
Reinhardt K, Dobler R, Abbott J. 2015. An ecology of sperm: sperm diversification by natural selection. Annu. Rev. Ecol. Evol. Syst. 46, 435–459. (10.1146/annurev-ecolsys-120213-091611) DOI
Galván I, Alonso-Alvarez C. 2009. The expression of melanin-based plumage is separately modulated by exogenous oxidative stress and a melanocortin. Proc. R. Soc. B 276, 3089–3097. (10.1098/rspb.2009.0774) PubMed DOI PMC
Hõrak P, Cohen AA. 2010. How to measure oxidative stress in an ecological context: methodological and statistical issues. Funct. Ecol. 24, 960–970. (10.1111/j.1365-2435.2010.01755.x) DOI
Alonso-Alvarez C, Galván I. 2011. Free radical exposure creates paler carotenoid-based ornaments: a possible interaction in the expression of black and red traits. PLoS ONE 6, e19403 (10.1371/journal.pone.0019403) PubMed DOI PMC
Tomášek O, Gabrielová B, Kačer P, Maršík P, Svobodová J, Syslová K, Vinkler M, Albrecht T. 2016. Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling. Sci. Rep. 6, 23546 (10.1038/srep23546) PubMed DOI PMC
Drechsel DA, Patel M. 2008. Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson's disease. Free Radic. Biol. Med. 44, 1873–1886. (10.1016/j.freeradbiomed.2008.02.008) PubMed DOI PMC
Birkhead TR, Martinez JG, Burke T, Froman DP. 1999. Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc. R. Soc. Lond. B 266, 1759–1764. (10.1098/rspb.1999.0843) PubMed DOI PMC
Pizzari T, Worley K, Burke T, Froman DP. 2008. Sperm competition dynamics: ejaculate fertilising efficiency changes differentially with time. BMC Evol. Biol. 8, 332 (10.1186/1471-2148-8-332) PubMed DOI PMC
Simmons LW, Fitzpatrick JL. 2012. Sperm wars and the evolution of male fertility. Reproduction 144, 519–534. (10.1530/REP-12-0285) PubMed DOI
Lüpold S, Calhim S, Immler S, Birkhead TR. 2009. Sperm morphology and sperm velocity in passerine birds. Proc. R. Soc. B 276, 1175–1181. (10.1098/rspb.2008.1645) PubMed DOI PMC
Mossman J, Slate J, Humphries S, Birkhead TR. 2009. Sperm morphology and velocity are genetically codetermined in the zebra finch. Evolution 63, 2730–2737. (10.1111/j.1558-5646.2009.00753.x) PubMed DOI
Bennison C, Hemmings N, Slate J, Birkhead TR. 2015. Long sperm fertilize more eggs in a bird. Proc. R. Soc. B 282, 20141897 (10.1098/rspb.2014.1897) PubMed DOI PMC
Firman RC, Simmons LW. 2010. Sperm midpiece length predicts sperm swimming velocity in house mice. Biol. Lett. 6, 513–516. (10.1098/rsbl.2009.1027) PubMed DOI PMC
Hasson O, Stone L. 2009. Male infertility, female fertility and extrapair copulations. Biol. Rev. 84, 225–244. (10.1111/j.1469-185X.2008.00068.x) PubMed DOI
Assies J, Mocking RJT, Lok A, Ruhé HG, Pouwer F, Schene AH. 2014. Effects of oxidative stress on fatty acid- and one-carbon-metabolism in psychiatric and cardiovascular disease comorbidity. Acta Psychiatr. Scand. 130, 163–180. (10.1111/acps.12265) PubMed DOI PMC
Aitken RJ, Jones KT, Robertson SA. 2012. Reactive oxygen species and sperm function—in sickness and in health. J. Androl. 33, 1096–1106. (10.2164/jandrol.112.016535) PubMed DOI
Jones GM, Vale JA. 2000. Mechanisms of toxicity, clinical features, and management of diquat poisoning: a review. J. Toxicol. Clin. Toxicol. 38, 123–128. (10.1081/CLT-100100926) PubMed DOI
Alonso-Alvarez C, Bertrand S, Devevey G, Gaillard M, Prost J, Faivre B, Sorci G. 2004. An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity. Am. Nat. 164, 651–659. (10.1086/424971) PubMed DOI
Hill GE, Inouye CY, Montgomerie R. 2002. Dietary carotenoids predict plumage coloration in wild house finches. Proc. R. Soc. Lond. B 269, 1119–1124. (10.1098/rspb.2002.1980) PubMed DOI PMC
Maia R, Eliason CM, Bitton P-P, Doucet SM, Shawkey MD. 2013. pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecol. Evol. 4, 906–913. (10.1111/2041-210X.12069) DOI
Vorobyev M, Osorio D. 1998. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. Lond. B 265, 351–358. (10.1098/rspb.1998.0302) PubMed DOI PMC
Vorobyev M, Osorio D, Bennett ATD, Marshall NJ, Cuthill IC. 1998. Tetrachromacy, oil droplets and bird plumage colours. J. Comp. Physiol. Neuroethol. Sens. Neural Behav. Physiol. 183, 621–633. (10.1007/s003590050286) PubMed DOI
Bowmaker JK, Heath LA, Wilkie SE, Hunt DM. 1997. Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res. 37, 2183–2194. (10.1016/S0042-6989(97)00026-6) PubMed DOI
Hart NS, Vorobyev M. 2005. Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. J. Comp. Physiol. Neuroethol. Sens. Neural Behav. Physiol. 191, 381–392. (10.1007/s00359-004-0595-3) PubMed DOI
Opatova P, Ihle M, Albrechtova J, Tomasek O, Kempenaers B, Forstmeier W, Albrecht T. 2016. Inbreeding depression of sperm traits in the zebra finch Taeniopygia guttata. Ecol. Evol. 6, 295–304. (10.1002/ece3.1868) PubMed DOI PMC
Schielzeth H. 2010. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113. (10.1111/j.2041-210X.2010.00012.x) DOI
Bennison C, Hemmings N, Brookes L, Slate J, Birkhead T. 2016. Sperm morphology, adenosine triphosphate (ATP) concentration and swimming velocity: unexpected relationships in a passerine bird. Proc. R. Soc. B 283, 20161558 (10.1098/rspb.2016.1558) PubMed DOI PMC
Nettle D, Bateson M. 2015. Adaptive developmental plasticity: what is it, how can we recognize it and when can it evolve? Proc. R. Soc. B 282, 20151005 (10.1098/rspb.2015.1005) PubMed DOI PMC
DeKogel CH, Prijs HJ. 1996. Effects of brood size manipulations on sexual attractiveness of offspring in the zebra finch. Anim. Behav. 51, 699–708. (10.1006/anbe.1996.0073) DOI
Ohlsson T, Smith HG, Raberg L, Hasselquist D. 2002. Pheasant sexual ornaments reflect nutritional conditions during early growth. Proc. R. Soc. Lond. B 269, 21–27. (10.1098/rspb.2001.1848) PubMed DOI PMC
Naguib M, Nemitz A. 2007. Living with the past: nutritional stress in juvenile males has immediate effects on their plumage ornaments and on adult attractiveness in zebra finches. PLoS ONE 2, e901 (10.1371/journal.pone.0000901) PubMed DOI PMC
Costantini D, Monaghan P, Metcalfe NB. 2014. Prior hormetic priming is costly under environmental mismatch. Biol. Lett. 10, 20131010 (10.1098/rsbl.2013.1010) PubMed DOI PMC
Isaksson C, Andersson S. 2008. Oxidative stress does not influence carotenoid mobilization and plumage pigmentation. Proc. R. Soc. B 275, 309–314. (10.1098/rspb.2007.1474) PubMed DOI PMC
Giraudeau M, Chavez A, Toomey MB, McGraw KJ. 2015. Effects of carotenoid supplementation and oxidative challenges on physiological parameters and carotenoid-based coloration in an urbanization context. Behav. Ecol. Sociobiol. 69, 957–970. (10.1007/s00265-015-1908-y) DOI
Birkhead TR, Fletcher F, Pellatt EJ. 1999. Nestling diet, secondary sexual traits and fitness in the zebra finch. Proc. R. Soc. Lond. B 266, 385–390. (10.1098/rspb.1999.0649) DOI
Birkhead TR, Pellatt EJ, Brekke P, Yeates R, Castillo-Juarez H. 2005. Genetic effects on sperm design in the zebra finch. Nature 434, 383–387. (10.1038/nature03374) PubMed DOI
Hellriegel B, Blanckenhorn WU. 2002. Environmental influences on the gametic investment of yellow dung fly males. Evol. Ecol. 16, 505–522. (10.1023/A:1020875021823) DOI
Lüpold S, Birkhead TR, Westneat DF. 2012. Seasonal variation in ejaculate traits of male red-winged blackbirds (Agelaius phoeniceus). Behav. Ecol. Sociobiol. 66, 1607–1617. (10.1007/s00265-012-1415-3) DOI
Hekimoglu A, Kurcer Z, Aral F, Baba F, Sahna E, Atessahin A. 2009. Lycopene, an antioxidant carotenoid, attenuates testicular injury caused by ischemia/reperfusion in rats. Tohoku J. Exp. Med. 218, 141–147. (10.1620/tjem.218.141) PubMed DOI
Selcuk M, Selcuk Z, Kahraman Z, Ciftci G, Akal E. 2013. Effects of dried tomato pulp used as a feed ingredient in breeder roosters’ diets on blood and semen antioxidant status and on some sperm parameters. Rev. Med. Vet. 164, 435–442.
Zareba P, Colaci DS, Afeiche M, Gaskins AJ, Jorgensen N, Mendiola J, Swan SH, Chavarro JE. 2013. Semen quality in relation to antioxidant intake in a healthy male population. Fertil. Steril. 100, 1572–1579. (10.1016/j.fertnstert.2013.08.032) PubMed DOI PMC
Minguez-Alarcon L, Mendiola J, Lopez-Espin JJ, Sarabia-Cos L, Vivero-Salmeron G, Vioque J, Navarrete-Munoz EM, Torres-Cantero AM. 2012. Dietary intake of antioxidant nutrients is associated with semen quality in young university students. Hum. Reprod. 27, 2807–2814. (10.1093/humrep/des247) PubMed DOI
Benedetti S, Tagliamonte MC, Catalani S, Primiterra M, Canestrari F, De Stefani S, Palini S, Bulletti C. 2012. Differences in blood and semen oxidative status in fertile and infertile men, and their relationship with sperm quality. Reprod. Biomed. Online 25, 300–306. (10.1016/j.rbmo.2012.05.011) PubMed DOI
Xu X, Zhang L, Shao B, Sun X, Ho C-T, Li S. 2013. Safety evaluation of meso-zeaxanthin. Food Control 32, 678–686. (10.1016/j.foodcont.2013.02.007) DOI
Pike TW, Blount JD, Lindstroem J, Metcalfe NB. 2010. Dietary carotenoid availability, sexual signalling and functional fertility in sticklebacks. Biol. Lett. 6, 191–193. (10.1098/rsbl.2009.0815) PubMed DOI PMC
Dowling DK, Simmons LW. 2009. Reactive oxygen species as universal constraints in life-history evolution. Proc. R. Soc. B 276, 1737–1745. (10.1098/rspb.2008.1791) PubMed DOI PMC
Tomášek O, Albrechtová J, Němcová M, Opatová P, Albrecht T. 2017. Data from: Trade-off between carotenoid-based sexual ornamentation and sperm resistance to oxidative challenge. Dryad Digital Repository. (10.5061/dryad.f8f7g) PubMed DOI PMC
Impact of Oxidative Stress on Male Reproduction in Domestic and Wild Animals
Trade-off between carotenoid-based sexual ornamentation and sperm resistance to oxidative challenge
Dryad
10.5061/dryad.f8f7g