The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii

. 2017 Jan 01 ; 68 (3) : 739-751.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28204505

Although the significance of apoplasmic barriers in roots with regards to the uptake of toxic elements is generally known, the contribution of apoplasmic bypasses (ABs) to cadmium (Cd) hyperaccumulation is little understood. Here, we employed a combination of stable isotopic tracer techniques, an ABs tracer, hydraulic measurements, suberin lamellae staining, metabolic inhibitors, and antitranspirants to investigate and quantify the impact of the ABs on translocation of Cd to the xylem in roots of a hyperaccumulating (H) ecotype and a non-hyperaccumulating (NH) ecotype of Sedum alfredii. In the H ecotype, the Cd content in the xylem sap was proportional to hydrostatic pressure, which was attributed to pressure-driven flow via the ABs. The contribution of the ABs to Cd transportation to the xylem was dependent on the Cd concentration applied to the H ecotype (up to 37% at the highest concentration used). Cd-treated H ecotype roots showed significantly higher hydraulic conductance compared with the NH ecotype (76 vs 52 × 10–8 m s–1MPa–1), which is in accordance with less extensive suberization due to reduced expression of suberin-related genes. The main entry sites of apoplasmically transported Cd were localized in the root apexes and lateral roots of the H ecotype, where suberin lamellae were not well developed. These findings highlight the significance of the apoplasmic bypass in Cd hyperaccumulation in hyperaccumulating ecotypes of S. alfredii.

Zobrazit více v PubMed

Aroca R, Porcel R, Ruiz-Lozano JM. 2011. Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany 63, 43–57. PubMed

Barrieu F, Chaumont F, Chrispeels MJ. 1998. High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize. Plant Physiology 117, 1153–1163. PubMed PMC

Baxter I, Hosmani PS, Rus A, et al. 2009. Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genetics 5, e1000492. PubMed PMC

Berkelaar E, Hale BA. 2000. The relationship between root morphology and cadmium accumulation in seedlings of two durum wheat cultivars. Canadian Journal of Botany 78, 381–387.

Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N. 2007. A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiology 144, 1052–1065. PubMed PMC

Enstone DE, Peterson CA. 1992. The apoplastic permeability of root apices. Canadian Journal of Botany 70, 1502–1512.

Enstone DE, Peterson CA, Ma FS. 2002. Root endodermis and exodermis: structure, function, and response to the environment. Journal of Plant Growth Regulation 21, 335–351.

Faiyue B, Al-Azzawi MJ, Flowers TJ. 2010. The role of lateral roots in bypass flow in rice (Oryza sativa L.). Plant, Cell & Environment 33, 702–716. PubMed

Farrell RE, McArthur DFE, Van Rees KCJ. 2005. Net Cd2+ flux at the root surface of durum wheat (Triticum turgidum L. var. durum) cultivars in relation to cultivar differences in Cd accumulation. Canadian Journal of Plant Science 85, 103–107.

Franke R, Schreiber L. 2007. Suberin—a biopolyester forming apoplastic plant interfaces. Current Opinion in Plant Biology 10, 252–259. PubMed

Gambetta GA, Fei J, Rost TL, Knipfer T, Matthews MA, Shackel KA, Walker MA, McElrone AJ. 2013. Water uptake along the length of grapevine fine roots: developmental anatomy, tissue-specific aquaporin expression, and pathways of water transport. Plant Physiology 163, 1254–1265. PubMed PMC

Gao J, Sun L, Yang X, Liu JX. 2013. Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS ONE 8, e64643. PubMed PMC

Gloser V, Zwieniecki MA, Orians CM, Holbrook NM.2007. Dynamic changes in root hydraulic properties in response to nitrate availability. Journal of Experimental Botany 58, 2409–2415. PubMed

Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV. 1998. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiology 116, 1413–1420. PubMed PMC

He J, Li H, Ma C, Zhang Y, Polle A, Rennenberg H, Cheng X, Luo ZB. 2015. Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. The New Phytologist 205, 240–254. PubMed

He J, Qin J, Long L, et al. 2011. Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiologia Plantarum 143, 50–63. PubMed

He JY, Ren YF, Wang FJ, Pan XB, Zhu C, Jiang DA. 2009. Characterization of cadmium uptake and translocation in a cadmium-sensitive mutant of rice (Oryza sativa L. ssp. japonica). Archives of Environmental Contamination and Toxicology 57, 299–306. PubMed

Himmerlbauer ML, Loiskandl W, Kastanek F. 2004. Estimating length, average diameter and surface area of roots using two different Image analyses systems. Plant and Soil 260, 111–120.

Krämer U. 2010. Metal hyperaccumulation in plants. Annual Review of Plant Biology 61, 517–534. PubMed

Krishnamurthy P, Jyothi-Prakash PA, Qin L, He J, Lin Q, Loh CS, Kumar PP. 2014. Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis. Plant, Cell & Environment 37, 1656–1671. PubMed

Krishnamurthy P, Ranathunge K, Franke R, Prakash HS, Schreiber L, Mathew MK. 2009. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta 230, 119–134. PubMed

Krishnamurthy P, Ranathunge K, Nayak S, Schreiber L, Mathew MK. 2011. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). Journal of Experimental Botany 62, 4215–4228. PubMed PMC

Laporte MA, Denaix L, Sylvie D, Nguyen C. 2014. Longitudinal variation in cadmium influx in sunflower (Helianthus annuus L.) roots as depending on the growth substrate, root age and root order. Plant and Soil 381, 235–247.

Li LZ, Liu XJ, Peijnenburg WJGM, Zhao JM, Chen XB, Yu JB, Wu HF. 2012. Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxicology and Environmental Safety 75, 1–7. PubMed

Li TQ, Tao Q, Shohag MJI, Yang XE, Sparks DL, Liang YC. 2015. Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii. Plant and Soil 389, 387–399.

Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GA. 2001. Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytologist 149, 53–60. PubMed

Lu L, Tian SK, Yang XE, Wang XC, Brown P, Li TQ, He ZL. 2008. Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. Journal of Experimental Botany 59, 3203–3213. PubMed PMC

Lu L, Tian S, Zhang M, Zhang J, Yang X, Jiang H. 2010. The role of Ca pathway in Cd uptake and translocation by the hyperaccumulator Sedum alfredii. Journal of Hazardous Materials 183, 22–28. PubMed

Lux A, Martinka M, Vaculík M, White PJ. 2011. Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany 62, 21–37. PubMed

Lux A, Morita S, Abe J, Ito K. 2005. An improved method for clearing and staining free-hand sections and whole-mount samples. Annals of Botany 96, 989–996. PubMed PMC

Lux A, Sottníková A, Opatrná J, Greger M. 2004. Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiologia Plantarum 120, 537–545. PubMed

Ma JF, Goto S, Tamai K, Ichii M. 2001. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology 127, 1773–1780. PubMed PMC

Ma Y, He J, Ma C, Luo J, Li H, Liu T, Polle A, Peng C, Luo ZB. 2014. Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus×canescens. Plant, Cell & Environment 37, 627–642. PubMed

Martinka M, Dolan L, Pernas M, Abe J, Lux A. 2012. Endodermal cell–cell contact is required for the spatial control of Casparian band development in Arabidopsis thaliana. Annals of Botany 110, 361–371. PubMed PMC

McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A. 2014. Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13, 1400–1412. PubMed PMC

McGrath SP, Zhao FJ. 2003. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology 14, 277–282. PubMed

Miyamoto N, Steudle E, Hirasawa T, Lafitte R. 2001. Hydraulic conductivity of rice roots. Journal of Experimental Botany 52, 1835–1846. PubMed

North GB, Nobel PS. 1996. Radial hydraulic conductivity of individual root tissues of Opuntia ficus-indica (L.) Miller as soil moisture varies. Annals of Botany 77, 133–142.

Papoyan A, Kochian LV. 2004. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiology 136, 3814–3823. PubMed PMC

Peterson CA, Emanuel ME, Humphreys GB. 1981. Pathway of movement of apoplastic fluorescent dye tracers through the endodermis at the site of secondary root formation in corn (Zea mays) and broad bean (Vicia faba). Canadian Journal of Botany 59, 618– 625.

Peterson CA, Moon GJ. 1993. The effect of lateral root outgrowth on the structure and permeability of the onion root exodermis. Botanica Acta 106, 411–418.

Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29, e45. PubMed PMC

Piñeros MA, Shaff JE, Kochian LV. 1998. Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiology 116, 1393–1401. PubMed PMC

Ranathunge K, Schreiber L. 2011. Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. Journal of Experimental Botany 62, 1961–1974. PubMed PMC

Ranathunge K, Steudle E, Lafitte R. 2005. a. Blockage of apoplastic bypass—flow of water in rice roots by insoluble salt precipitates analogous to a Pfeffer cell. Plant, Cell & Environment 28, 121–133.

Ranathunge K, Steudle E, Lafitte R. 2005. b. A new precipitation technique provides evidence for the permeability of Casparian bands to ions in young roots of corn (Zea mays L.) and rice (Oryza sativa L.). Plant, Cell & Environment 28, 1450–1462.

Redjala T, Zelko I, Sterckeman T, Legue V, Lux A. 2011. Relationship between root structure and root cadmium uptake in maize. Environmental and Experimental Botany 71, 241–248.

Reinhardt DH, Rost TL. 1995. Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environment and Experiment Botany 35, 563–574.

Schreiber L. 2010. Transport barriers made of cutin, suberin and associated waxes. Trends in Plant Science 15, 546–553. PubMed

Schreiber L, Franke R, Hartmann KD, Ranathunge K, Steudle E. 2005. The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix). Journal of Experimental Botany 56, 1427–1436. PubMed

Schreiber L, Hartmann K, Skrabs M, Zeier J. 1999. Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. Journal of Experimental Botany 50, 1267–1280.

Soukup A, Armstrong W, Schreiber L, Franke R, Votrubová O. 2007. Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. The New Phytologist 173, 264–278. PubMed

Soukup A, Votrubova O, Cizkova H. 2002. Development of anatomical structure of roots of Phragmites australis. New Phytologist 153, 277–287.

Sun H, Li L, Lou Y, Zhao H, Gao Z. 2016. Genome-wide identification and characterization of aquaporin gene family in moso bamboo (Phyllostachys edulis). Molecular Biology Reports 43, 437–450. PubMed

Tao Q, Hou DD, Yang XE, Li TQ. 2016. Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of Cd. Plant and Soil 398, 139–152.

Thomas R, Fang XX, Ranathunge K, Anderson TR, Peterson CA, Bernards MA. 2007. Soybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae. Plant Physiology 144, 299–311. PubMed PMC

Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C. 2003. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425, 393–397. PubMed

Ueno D, Milner MJ, Yamaji N, et al. 2011. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. The Plant Journal 66, 852–862. PubMed

Vaculík M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, Lux A, Hauser MT. 2012. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environmental Pollution 163, 117–126. PubMed PMC

Waduwara CI, Walcott SE, Peterson CA. 2008. Suberin lamellae of the onion root endodermis: their pattern of development and continuity. Canadian Journal of Botany 86, 623–632.

Wagner GJ. 1993. Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy 51, 173–212.

White PJ. 2001. The pathways of calcium movement to the xylem. Journal of Experimental Botany 52, 891–899. PubMed

White PJ, Broadley MR. 2003. Calcium in plants. Annals of Botany 92, 487–511. PubMed PMC

White PJ, Brown PH. 2010. Plant nutrition for sustainable development and global health. Annals of Botany 105, 1073–1080. PubMed PMC

White PJ, Whiting SN, Baker AJM, Broadley MR. 2002. Does zinc move apoplasmically to the xylem in roots of Thlaspi caerulescens? New Phytologist 153, 201–207.

Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. 2004. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil 259, 181–189.

Ying YC, Wang YQ, Liu YG, Zeng GM, Hu XJ, Hu X, Zhou L, Guo YM, Li J. 2015. Cadmium accumulation and apoplastic and symplastic transport in Boehmerianivea (L.) Gaudich on cadmium-contaminated soil with the addition of EDTA or NTA. Royal Society of Chemistry 5, 47584–47591.

Zelko I, Lux A. 2004. Effect of cadmium on Karwinskia humboldtiana roots. Biologia 59, 205–209.

Zhao FJ, Jiang RF, Dunham SJ, McGrath SP. 2006. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. The New Phytologist 172, 646–654. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...