Rhizobia: a potential biocontrol agent for soilborne fungal pathogens
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28285373
DOI
10.1007/s12223-017-0513-z
PII: 10.1007/s12223-017-0513-z
Knihovny.cz E-zdroje
- MeSH
- antibióza * MeSH
- fixace dusíku * MeSH
- houby růst a vývoj MeSH
- kořeny rostlin mikrobiologie MeSH
- nemoci rostlin prevence a kontrola MeSH
- půdní mikrobiologie * MeSH
- Rhizobium růst a vývoj metabolismus MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Rhizobia are a group of organisms that are well known for their ability to colonize root surfaces and form symbiotic associations with legume plants. They not only play a major role in biological nitrogen fixation but also improve plant growth and reduce disease incidence in various crops. Rhizobia are known to control the growth of many soilborne plant pathogenic fungi belonging to different genera like Fusarium, Rhizoctonia, Sclerotium, and Macrophomina. Antagonistic activity of rhizobia is mainly attributed to production of antibiotics, hydrocyanic acid (HCN), mycolytic enzymes, and siderophore under iron limiting conditions. Rhizobia are also reported to induce systemic resistance and enhance expression of plant defense-related genes, which effectively immunize the plants against pathogens. Seed bacterization with appropriate rhizobial strain leads to elicitation and accumulation of phenolic compounds, isoflavonoid phytoalexins, and activation of enzymes like L-phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), peroxidase (POX), polyphenol oxidase (PPO), and others involved in phenylpropanoid and isoflavonoid pathways. Development of Rhizobium inoculants with dual attributes of nitrogen fixation and antagonism against phytopathogens can contribute to increased plant growth and productivity. This compilation aims to bring together the available information on the biocontrol facet of rhizobia and identify research gaps and effective strategies for future research in this area.
Zobrazit více v PubMed
Plant Physiol. 1987 Oct;85(2):335-42 PubMed
J Proteomics Bioinform. 2015;8:98-107 PubMed
Curr Microbiol. 2006 May;52(5):383-9 PubMed
ScientificWorldJournal. 2012;2012:491206 PubMed
Plant Physiol Biochem. 2007 Jun-Jul;45(6-7):470-9 PubMed
Bioresour Technol. 2007 Dec;98(18):3535-46 PubMed
J Bacteriol. 2001 Nov;183(21):6454-65 PubMed
Plant Physiol. 2001 Oct;127(2):390-7 PubMed
Nature. 2001 Jun 21;411(6840):948-50 PubMed
Appl Environ Microbiol. 2000 Aug;66(8):3515-8 PubMed
J Bacteriol. 1990 Jun;172(6):3298-303 PubMed
PLoS One. 2012;7(3):e33977 PubMed
Appl Environ Microbiol. 1998 Dec;64(12):5020-2 PubMed
Microbiol Res. 2016 Jul-Aug;188-189:97-105 PubMed
Trends Microbiol. 1995 Feb;3(2):58-64 PubMed
Plant Cell Rep. 1991 Sep;10(6-7):371-4 PubMed
Int Microbiol. 2002 Jun;5(2):81-6 PubMed
Mycopathologia. 1998;141(3):159-66 PubMed
Can J Microbiol. 1984 Mar;30(3):285-9 PubMed
Arch Biochem Biophys. 1986 Jul;248(1):175-82 PubMed
3 Biotech. 2015 Aug;5(4):355-377 PubMed
Appl Environ Microbiol. 2007 Jan;73(1):327-30 PubMed
Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):537-47 PubMed
Indian J Exp Biol. 2003 Oct;41(10):1160-4 PubMed