From Anomalies to Essential Scientific Revolution? Intrinsic Brain Activity in the Light of Kuhn's Philosophy of Science

. 2017 ; 11 () : 7. [epub] 20170228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28293181

The first step toward a modern understanding of fMRI resting brain activity was made by Bharat Biswal in 1995. This surprising, and at first rejected, discovery is now associated with many resting state networks, notably the famous default mode network (DMN). Resting state activity and DMN significantly reassessed our traditional beliefs and conventions about the functioning of the brain. For the majority of the twentieth century, neuroscientists assumed that the brain is mainly the "reactive engine" to the environment operating mostly through stimulation. This "reactive convention" was very influential and convenient for the goals of twentieth century neuroscience-non-invasive functional localization based on stimulation. Largely unchallenged, "reactive convention" determined the direction of scientific research for a long time and became the "reactive paradigm" of the twentieth century. Resting state activity brought knowledge that was quite different of the "reactive paradigm." Current research of the DMN, probably the best known resting state network, leads to entirely new observations and conclusions, which were not achievable from the perspective of the "reactive paradigm." This shift from reactive activity to resting state activity of the brain is accompanied by an important question: "Can resting state activity be considered a scientific revolution and the new paradigm of neuroscience, or is it only significant for one branch of neuroscience, such as fMRI?"

Zobrazit více v PubMed

Addis D. R., Wong A. T., Schacter D. L. (2007). Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45, 1363–1377. 10.1016/j.neuropsychologia.2006.10.016 PubMed DOI PMC

Altman J. (1962). Are new neurons formed in the brains of adult mammals? Science 135, 1127–1128 10.1126/science.135.3509.1127 PubMed DOI

Altman J. (1963). Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat. Rec. 145, 573–591. 10.1002/ar.1091450409 PubMed DOI

Altman J., Das G. D. (1967). Postnatal neurogenesis in the guinea pig. Nature 214, 1098–1101. 10.1038/2141098a0 PubMed DOI

Andrews-Hanna J. R., Reidler J. S., Huang C., Buckner R. L. (2010). Evidence for the default network's role in spontaneous cognition. J. Neurophysiol. 1, 322–335. 10.1152/jn.00830.2009 PubMed DOI PMC

Berger H. (1929). Über das Elektrenkephalogramm des Menschen. [On the electroencephalogram of humans]. Arch. Psychiatr. Nervenkr. 87, 527–570. 10.1007/BF01797193 DOI

Biswal B. (2012). Resting state fMRI: a personal history. Neuroimage 62, 938–944. 10.1016/j.neuroimage.2012.01.090 PubMed DOI

Biswal B., Yetkin F. Z., Haughton V. M., Hyde J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541. 10.1002/mrm.1910340409 PubMed DOI

Brown G. T. (1911). The intrinsic factors in the act of progression in the mammal. Proc. R. Soc. Lond. B Biol. Sci. 572, 308–319. 10.1098/rspb.1911.0077 DOI

Brown G. T. (1914). On the nature of the fundamental activity of nervous centres. J. Physiol. 1, 18–46. 10.1113/jphysiol.1914.sp001646 PubMed DOI PMC

Broyd S. J., Demanuele C., Debener S., Helps S. K., James C. J., Sonuga-Barke E. J. (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci. Biobehav. Rev. 33, 279–296. 10.1016/j.neubiorev.2008.09.002 PubMed DOI

Buckner R. L. (2012). The serendipitous discovery of the brain's default network. Neuroimage 62, 1137–1145. 10.1016/j.neuroimage.2011.10.035 PubMed DOI

Buckner R. L., Andrews-Hanna J. R., Schacter D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38. 10.1196/annals.1440.011 PubMed DOI

Buckner R. L., Petersen S. E., Ojemann J. G., Miezin F. M., Squire L. R., Raichle M. E. (1995). Functional anatomical studies of explicit and implicit memory retrieval tasks. J. Neurosci. 15, 12–29. PubMed PMC

Coenen A., Zayachkivska O. (2013). Adolf Beck: a pioneer in electroencephalography in between Richard Caton and Hans Berger. Adv. Cogn. Psychol. 4, 216–221. 10.5709/acp-0148-3 PubMed DOI PMC

Delamillieure P., Doucet G., Mazoyer B., Turbelin M. R., Delcroix N., Mellet E., et al. (2010). The resting state questionnaire: an introspective questionnaire for evaluation of inner experience during the conscious resting state. Brain Res. Bull. 6, 565–573. 10.1016/j.brainresbull.2009.11.014 PubMed DOI

Delgado-García J. M. (2015). Cajal and the conceptual weakness of neural sciences. Front. Neuroanat. 9:128. 10.3389/fnana.2015.00128 PubMed DOI PMC

Diaz B. A., Van Der Sluis S., Benjamins J. S., Stoffers D., Hardstone R., Mansvelder H. D., et al. . (2014). The ARSQ 2.0 reveals age and personality effects on mind-wandering experiences. Front. Psychol. 5:271. 10.3389/fpsyg.2014.00271 PubMed DOI PMC

Diaz B. A., Van Der Sluis S., Moens S., Benjamins J. S., Migliorati F., Stoffers D., et al. . (2013). The amsterdam resting-state questionnaire reveals multiple phenotypes of resting-state cognition. Front. Hum. Neurosci. 7:446. 10.3389/fnhum.2013.00446 PubMed DOI PMC

Eriksson P. S., Perfilieva E., Björk-Eriksson T., Alborn A.-M., Nordborg C., Peterson D. A., et al. . (1998). Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317. 10.1038/3305 PubMed DOI

Fair D. A., Cohen A. L., Dosenbach N. U., Church J. A., Miezin F. M., Barch D. M., et al. . (2008). The maturing architecture of the brain's default network. Proc. Natl. Acad. Sci. U.S.A. 105, 4028–4032. 10.1073/pnas.0800376105 PubMed DOI PMC

Finger S. (2001). Origins of Neuroscience. New York, NY: Oxford University Press.

Fransson P., Marrelec G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage 42, 1178–1184. 10.1016/j.neuroimage.2008.05.059 PubMed DOI

Fransson P., Skiöld B., Horsch S., Nordell A., Blennow M., Lagercrantz H., et al. . (2007). Resting-state networks in the infant brain. Proc. Natl. Acad. Sci. U.S.A. 104, 15531–15536. 10.1073/pnas.0704380104 PubMed DOI PMC

Gilmore A. W., Nelson S. M., McDermott K. B. (2015). A parietal memory network revealed by multiple MRI methods. Trends Cogn. Sci. 19, 534–543. 10.1016/j.tics.2015.07.004 PubMed DOI

Goldman S. A., Nottebohm F. (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl. Acad. Sci. U.S.A. 80, 2390–2394. 10.1073/pnas.80.8.2390 PubMed DOI PMC

Gorgolewski K. J., Lurie D., Urchs S., Kipping J. A., Craddock R. C., Milham M. P., et al. . (2014). A correspondence between individual differences in the brain's intrinsic functional architecture and the content and form of self-generated thoughts. PLoS ONE 5:e97176. 10.1371/journal.pone.0097176 PubMed DOI PMC

Gould E., Beylin A., Tanapat P., Reeves A., Shors T. J. (1999b). Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci. 2, 260–265. 10.1038/6365 PubMed DOI

Gould E., Reeves A. J., Fallah M., Tanapat P., Gross C. G., Fuchs E. (1999a). Hippocampal neurogenesis in adult Old World primates. Proc. Natl. Acad. Sci. U.S.A. 96, 5263–5267. 10.1073/pnas.96.9.5263 PubMed DOI PMC

Gould E., Reeves A. J., Graziano M. S., Gross C. G. (1999c). Neurogenesis in the neocortex of adult primates. Science 286, 548–552. 10.1126/science.286.5439.548 PubMed DOI

Gregory R. L. (1997). Knowledge in perception and illusion. Phil. Trans. R. Soc. Lond. B Biol. Sci. 352, 1121–1128. 10.1098/rstb.1997.0095 PubMed DOI PMC

Greicius M. D., Flores B. H., Menon V., Glover G. H., Solvason H. B., Kenna H., et al. . (2007). Resting-State functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 62, 429–437. 10.1016/j.biopsych.2006.09.020 PubMed DOI PMC

Greicius M. D., Krasnow B., Reiss A. L., Menon V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100, 253–258. 10.1073/pnas.0135058100 PubMed DOI PMC

Greicius M. D., Srivastava G., Reiss A. L., Menon V. (2004). Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 101, 4637–4642. 10.1073/pnas.0308627101 PubMed DOI PMC

Gusnard D. A., Akbudak E., Shulman G. L., Raichle M. E. (2001). Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98, 4259–4264. 10.1073/pnas.071043098 PubMed DOI PMC

Gusnard D. A., Raichle M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2, 685–694. 10.1038/35094500 PubMed DOI

Hall S. S., Jiang H., Reiss A. L., Greicius M. D. (2013). Identifying large-scale brain networks in fragile X syndrome. JAMA Psychiatry 70, 1215–1223. 10.1001/jamapsychiatry.2013.247 PubMed DOI PMC

Hampson M., Olson I. R., Leung H. C., Skudlarski P., Gore J. C. (2004). Changes in functional connectivity of human MT/V5 with visual motion input. Neuroreport 8, 1315–1319. 10.1097/01.wnr.0000129997.95055.15 PubMed DOI

Hampson M., Peterson B. S., Skudlarski P., Gatenby J. C., Gore J. C. (2002). Detection of functional connectivity using temporal correlations in MR images. Hum. Brain Mapp. 15, 247–262. 10.1002/hbm.10022 PubMed DOI PMC

Hassabis D., Spreng R. N., Rusu A. A., Robbins C. A., Mar R. A., Schacter D. L. (2013). Imagine all the people: how the brain creates and uses personality models to predict behavior. Cereb. Cortex 24, 1979–1987. 10.1093/cercor/bht042 PubMed DOI PMC

Hochberg J. (1994). James Jerome Gibson, 1904-1979: Biographical Memoirs. Vol. 63 Washington, DC: National Academy Press. PubMed

Jafri M. J., Pearlson G. D., Stevens M., Calhoun V. D. (2008). A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39, 1666–1681. 10.1016/j.neuroimage.2007.11.001 PubMed DOI PMC

James W. (1890/1950). Principles of Psychology. New York, NY: Dover.

Jung M., Kosaka H., Saito D. N., Ishitobi M., Morita T., Inohara K., et al. . (2014). Default mode network in young male adults with autism spectrum disorder: relationship with autism spectrum traits. Mol. Autism. 11:35. 10.1186/2040-2392-5-35 PubMed DOI PMC

Kaplan M. S., Hinds J. W. (1977). Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197, 1092–1094. 10.1126/science.887941 PubMed DOI

Kempermann G., Kuhn H. G., Gage F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature 386. 493–495. 10.1038/386493a0 PubMed DOI

Kuhn T. S. (1962). The Structure of Scientific Revolutions. Chicago, IL: University of Chicago Press.

Llinás R. R. (2002). I of the Vortex. Cambridge, MA: The MIT Press.

Llinás R. R. (2003). The contribution of Santiago Ramon y Cajal to functional neuroscience. Nat. Rev. Neurosci. 4, 77–80. 10.1038/nrn1011 PubMed DOI

Loeb J. (1912). The Mechanistic Conception of Life. Chicago, IL: University of Chicago Press.

Lu H., Zou Q., Gu H., Raichle M. E., Stein E. A., Yang Y. (2012). Rat brains also have a default mode network. Proc. Natl. Acad. Sci. U.S.A. 109, 3979–3984. 10.1073/pnas.1200506109 PubMed DOI PMC

Mantini D., Gerits A., Nelissen K., Durand J. B., Joly O., Simone L., et al. . (2011). Default mode of brain function in monkeys. J. Neurosci. 31, 12954–12962. 10.1523/JNEUROSCI.2318-11.2011 PubMed DOI PMC

Mars R. B., Neubert F. X., Noonan M. P., Sallet J., Toni I., Rushworth M. F. (2012). On the relationship between the “default mode network” and the “social brain”. Front. Hum. Neurosci. 6:189. 10.3389/fnhum.2012.00189 PubMed DOI PMC

Mason M. F., Norton M. I., Van Horn J. D., Wegner D. M., Grafton S. T., Macrae C. N. (2007). Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395. 10.1126/science.1131295 PubMed DOI PMC

Menon V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506. 10.1016/j.tics.2011.08.003 PubMed DOI

Menon V., Uddin L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667. 10.1007/s00429-010-0262-0 PubMed DOI PMC

Metin B., Krebs R. M., Wiersema J. R., Verguts T., Gasthuys R., van der Meere J. J., et al. . (2015). Dysfunctional modulation of default mode network activity in attention-deficit/hyperactivity disorder. J. Abnorm. Psychol. 124, 208–214. 10.1037/abn0000013 PubMed DOI

Monk C. S., Peltier S. J., Wiggins J. L., Weng S. J., Carrasco M., Risi S., et al. . (2009). Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage 15, 764–772. 10.1016/j.neuroimage.2009.04.069 PubMed DOI PMC

Morcom A. M., Fletcher P. C. (2007). Does the brain have a baseline? Why we should be resisting a rest. Neuroimage 4, 1073–1082. 10.1016/j.neuroimage.2006.09.013 PubMed DOI

Nekovarova T., Fajnerova I., Horacek J., Spaniel F. (2014). Bridging disparate symptoms of schizophrenia: a triple network dysfunction theory. Front. Behav. Neurosci. 30:171. 10.3389/fnbeh.2014.00171 PubMed DOI PMC

Persson J., Lind J., Larsson A., Ingvar M., Sleegers K., Van Broeckhoven C., et al. . (2008). Altered deactivation in individuals at genetic risk for Alzheimer's disease. Neuropsychologia 48, 1679–1687. 10.1016/j.neuropsychologia.2008.01.026 PubMed DOI

Østby Y., Walhovd K. B., Tamnes C. K., Grydeland H., Westlye L. T., Fjell A. M. (2012). Mental time travel and default-mode network functional connectivity in the developing brain. Proc. Natl. Acad. Sci. U.S.A. 42, 16800–16804. 10.1073/pnas.1210627109 PubMed DOI PMC

Raichle M. E. (2009). A brief history of human brain mapping. Trends Neurosci. 32, 118–126. 10.1016/j.tins.2008.11.001 PubMed DOI

Raichle M. E. (2010). Two views of brain function. Trends Cogn. Sci. 14, 180–190. 10.1016/j.tics.2010.01.008 PubMed DOI

Raichle M. E. (2015). The brain's default mode network. Annu. Rev. Neurosci. 38, 433–437. 10.1146/annurev-neuro-071013-014030 PubMed DOI

Raichle M. E., MacLeod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98, 676–682. 10.1073/pnas.98.2.676 PubMed DOI PMC

Raichle M. E., Mintun M. A. (2006). Brain work and brain imaging. Annu. Rev. Neurosci. 29, 449–476. 10.1146/annurev.neuro.29.051605.112819 PubMed DOI

Raichle M. E., Snyder A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. Neuroimage 37, 1083–1090. 10.1016/j.neuroimage.2007.02.041 PubMed DOI

Rakic P. (1985). Limits of neurogenesis in primates. Science 227, 1054–1056. 10.1126/science.3975601 PubMed DOI

Rombouts S. A. R. B., Barkhof F., Goekoop R., Stam C. J., Scheltens P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Hum. Brain Mapp. 26, 231–239. 10.1002/hbm.20160 PubMed DOI PMC

Rosen B. R., Savoy R. L. (2012). fMRI at 20: has it changed the world? Neuroimage 62, 1316–1324. 10.1016/j.neuroimage.2012.03.004 PubMed DOI

Sambataro F., Wolf N. D., Giusti P., Vasic N., Wolf R. C. H. (2013). Default mode networks in depression: a pathway to impaired affective cognition? Clin. Neuropsychiatry 10, 212–216. Available online at: https://www.researchgate.net/publication/286003853_Default_mode_network_in_depression_A_pathway_to_impaired_affective_cognition

Sherrington C. H. (1906). The Integrative Action of the Nervous System. New Haven, CT: Yale University Press.

Shimony J. S., Zhang D., Johnston J. M., Fox M. D., Roy A., Leuthardt E. C. (2009). Resting-state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI. Acad. Radiol. 5, 578–583. 10.1016/j.acra.2009.02.001 PubMed DOI PMC

Shulman G. L., Fiez J. A., Corbetta M., Buckner R. L., Miezin F. M., Raichle M. E., et al. . (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–663. 10.1162/jocn.1997.9.5.648 PubMed DOI

Smallwood J., Brown K., Baird B., Schooler J. W. (2012). Cooperation between the default mode network and the frontal-parietal network in the production of an internal train of thought. Brain Res. 60–70. 10.1016/j.brainres.2011.03.072 PubMed DOI

Tessitore A., Esposito F., Vitale C., Santangelo G., Amboni M., Russo A., et al. . (2012). Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 4, 2226–2232. 10.1212/WNL.0b013e31827689d6 PubMed DOI

Utevsky A. V., Smith D. V. (2014). Precuneus is a functional core of the default-mode network. J. Neurosci. 34, 932–940. 10.1523/JNEUROSCI.4227-13.2014 PubMed DOI PMC

van den Heuvel M. P., Mandl R. C., Kahn R. S., Hulshoff Pol H. E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum. Brain Mapp. 10, 3127–3141. 10.1002/hbm.20737 PubMed DOI PMC

Vanhaudenhuyse A., Noirhomme Q., Tshibanda L. J., Bruno M. A., Boveroux P., Schnakers C., et al. . (2010). Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133, 161–171. 10.1093/brain/awp313 PubMed DOI PMC

van Praag H., Kempermann G., Gage F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2, 266–270. 10.1038/6368 PubMed DOI

Wang H., Zeng L. L., Chen Y., Yin H., Tan Q., Hu D. (2015). Evidence of a dissociation pattern in default mode subnetwork functional connectivity in schizophrenia. Sci. Rep. 5:14655. 10.1038/srep14655 PubMed DOI PMC

Wang L., Zang Y., He Y., Liang M., Zhang X., Tian L., et al. . (2006). Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI. Neuroimage 31, 469–504. 10.1016/j.neuroimage.2005.12.033 PubMed DOI

Weng S. J., Wiggins J. L., Peltier S. J., Carrasco M., Risi S., Lord C., et al. . (2010). Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Res. 8, 202–214. 10.1016/j.brainres.2009.11.057 PubMed DOI PMC

Xiong J., Parson L. M., Pu Y., Gao J. H., Fox P. T. (1998). Covarying activity during rest reveals improved connectivity maps. Neuroimage 7, S771.

Xiong J., Parsons L. M., Gao J. H., Fox P. T. (1999). Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum. Brain Mapp. 8, 151–156. 10.1002/(SICI)1097-0193(1999)8:2/3<151::AID-HBM13>3.0.CO;2-5 PubMed DOI PMC

Zhou Y., Liang M., Tian L., Wang K., Hao Y., Liu H., et al. . (2007). Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr. Res. 97, 194–205. 10.1016/j.schres.2007.05.029 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...