Intrinsic Rivalry. Can White Bears Help Us With the Other Side of Consciousness?

. 2019 ; 10 () : 1087. [epub] 20190510

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31133953

Studies of consciousness have traditionally been based mainly upon the perceptual domains of consciousness. However, there is another side of consciousness, represented by various types of intrinsic conscious experiences. Even though intrinsic experiences can represent up to 50% of our conscious experiences, they are still largely neglected in conscious studies. We assume there are two reasons for this. First, the field of intrinsic conscious experiences is methodologically far more problematic than any other. Second, specific paradigms for capturing the correlates of intrinsic conscious experiences are almost nonexistent. Nevertheless, we expect the intrinsic side of consciousness to soon take its place in conscious studies, but first new experimental paradigms will have to be devised, which would be of a similar design to the paradigms used in studies of perceptual consciousness. In this hypothesis and theory article, we propose such a hypothetical paradigm, presenting the exploratory data of our proof-of-concept study, discussing its use, and addressing its shortcomings and their possible remediation.

Zobrazit více v PubMed

Addis D. R., Wong A. T., Schacter D. L. (2007). Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45, 1363–1377. 10.1016/j.neuropsychologia.2006.10.016, PMID: PubMed DOI PMC

Andrews-Hanna J. R., Reidler J. S., Huang C., Buckner R. L. (2010). Evidence for the default network’s role in spontaneous cognition. J. Neurophysiol. 104, 322–335. 10.1152/jn.00830.2009, PMID: PubMed DOI PMC

Aru J., Bachmann T. (2015). Still wanted—the mechanisms of consciousness! Front. Psychol. 6:5. 10.3389/fpsyg.2015.00005, PMID: PubMed DOI PMC

Aru J., Bachmann T., Singer W., Melloni L. (2012). Distilling the neural correlates of consciousness. Neurosci. Biobehav. Rev. 36, 737–746. 10.1016/j.neubiorev.2011.12.003, PMID: PubMed DOI

Babiloni C., Vecchio F., Bultrini A., Romani G. L., Rossini P. M. (2006). Pre-and poststimulus alpha rhythms are related to conscious visual perception: a high-resolution EEG study. Cereb. Cortex 16, 1690–1700. 10.1093/cercor/bhj104, PMID: PubMed DOI

Bachmann T., Francis G. (2013). Visual masking: Studying perception, attention, and consciousness. (San Diego, CA; Oxford: Elsevier; Academic Press; ).

Balz J., Keil J., Romero Y. R., Mekle R., Schubert F., Aydin S., et al. . (2016). GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusion. NeuroImage 125, 724–730. 10.1016/j.neuroimage.2015.10.087, PMID: PubMed DOI

Biswal B. (2012). Resting state fMRI: a personal history. NeuroImage 62, 938–944. 10.1016/j.neuroimage.2012.01.090, PMID: PubMed DOI

Biswal B., Zerrin Yetkin F., Haughton V. M., Hyde J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn. Reson. Med. 34, 537–541. 10.1002/mrm.1910340409, PMID: PubMed DOI

Bogen J. E. (1995). On the neurophysiology of consciousness: 1. An overview. Conscious. Cogn. 4, 52–62. 10.1006/ccog.1995.1003, PMID: PubMed DOI

Bonneh Y. S., Cooperman A., Sagi D. (2001). Motion-induced blindness in normal observers. Nature 411, 798–801. 10.1038/35081073, PMID: PubMed DOI

Brancucci A., Babiloni C., Rossini P. M., Romani G. L. (2005). Right hemisphere specialization for intensity discrimination of musical and speech sounds. Neuropsychologia 43, 1916–1923. 10.1016/j.neuropsychologia.2005.03.005, PMID: PubMed DOI

Brancucci A., Franciotti R., D’Anselmo A., della Penna S., Tommasi L. (2011). The sound of consciousness: neural underpinnings of auditory perception. J. Neurosci. 31, 16611–16618. 10.1523/JNEUROSCI.3949-11.2011, PMID: PubMed DOI PMC

Brancucci A., Tommasi L. (2011). “Binaural rivalry”: dichotic listening as a tool for the investigation of the neural correlate of consciousness. Brain Cogn. 76, 218–224. 10.1016/j.bandc.2011.02.007, PMID: PubMed DOI

Britz J., Pitts M. A., Michel C. M. (2011). Right parietal brain activity precedes perceptual alternation during binocular rivalry. Hum. Brain Mapp. 32, 1432–1442. 10.1002/hbm.21117, PMID: PubMed DOI PMC

Buckner R. L., Andrews-Hanna J. R., Schacter D. L. (2008). The brain’s default network. Ann. N. Y. Acad. Sci. 1124, 1–38. 10.1196/annals.1440.011, PMID: PubMed DOI

Buckner R. L., Carroll D. C. (2007). Self-projection and the brain. Trends Cogn. Sci. 11, 49–57. 10.1016/j.tics.2006.11.004, PMID: PubMed DOI

Cabeza R., Ciaramelli E., Moscovitch M. (2012). Cognitive contributions of the ventral parietal cortex: an integrative theoretical account. Trends Cogn. Sci. 16, 338–352. 10.1016/j.tics.2012.04.008, PMID: PubMed DOI PMC

Callard F., Smallwood J., Golchert J., Margulies D. S. (2013). The era of the wandering mind? Twenty-first century research on self-generated mental activity. Front. Psychol. 4:891. 10.3389/fpsyg.2013.00891, PMID: PubMed DOI PMC

Chalmers D. J. (2000). “What is a neural correlate of consciousness” in Neural correlates of consciousness: Empirical and conceptual questions. ed. Metzinger T. (Cambridge, MA: MIT Press; ), 17–40.

Christian B. M., Miles L. K., Parkinson C., Macrae C. N. (2013). Visual perspective and the characteristics of mind wandering. Front. Psychol. 4:699. 10.3389/fpsyg.2013.00699, PMID: PubMed DOI PMC

Christoff K., Irving Z. C., Fox K. C. R., Spreng R. N., Andrews-Hanna J. R. (2016). Mind-wandering as spontaneous thought: a dynamic framework. Nat. Rev. Neurosci. 17, 718–731. 10.1038/nrn.2016.113, PMID: PubMed DOI

Christoff K., Mills C., Andrews-Hanna J. R., Irving Z. C., Thompson E., Fox K. C., et al. . (2018). Mind-wandering as a scientific concept: cutting through the definitional haze. Trends Cogn. Sci. 22, 957–959. 10.1016/j.tics.2018.07.004, PMID: PubMed DOI

Clark D. M., Ball S., Pape D. (1991). An experimental investigation of thought suppression. Behav. Res. Ther. 29, 253–257. 10.1016/0005-7967(91)90115-J, PMID: PubMed DOI

Clark D. M., Winton E., Thynn L. (1993). A further experimental investigation of thought suppression. Behav. Res. Ther. 31, 207–210. 10.1016/0005-7967(93)90074-5, PMID: PubMed DOI

Corbetta M., Kincade J. M., Ollinger J. M., McAvoy M. P., Shulman G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3, 292–297. 10.1038/73009, PMID: PubMed DOI

Corbetta M., Patel G., Shulman G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324. 10.1016/j.neuron.2008.04.017, PMID: PubMed DOI PMC

Corbetta M., Shulman G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. 10.1038/nrn755, PMID: PubMed DOI

Crick F., Koch C. (1990). Towards a neurobiological theory of consciousness. Semin. Neurosci. 2, 263–275.

De Brigard F., Prinz J. (2010). Attention and consciousness. Wiley Interdiscip. Rev. Cogn. Sci. 1, 51–59. 10.1002/wcs.27, PMID: PubMed DOI

Dehaene S., Changeux J.-P. (2011). Experimental and theoretical approaches to conscious processing. Neuron 70, 200–227. 10.1016/j.neuron.2011.03.018, PMID: PubMed DOI

Dehaene S., Charles L., King J.-R., Marti S. (2014). Toward a computational theory of conscious processing. Curr. Opin. Neurobiol. 25, 76–84. 10.1016/j.conb.2013.12.005, PMID: PubMed DOI PMC

Dehaene S., Naccache L. (2001). Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37. 10.1016/S0010-0277(00)00123-2, PMID: PubMed DOI

Del Cul A., Baillet S., Dehaene S. (2007). Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biol. 5:e260. 10.1371/journal.pbio.0050260, PMID: PubMed DOI PMC

Dixon M. L., Fox K. C., Christoff K. (2014). A framework for understanding the relationship between externally and internally directed cognition. Neuropsychologia 62, 321–330. 10.1016/j.neuropsychologia.2014.05.024, PMID: PubMed DOI

Doesburg S. M., Green J. J., McDonald J. J., Ward L. M. (2009). Rhythms of consciousness: binocular rivalry reveals large-scale oscillatory network dynamics mediating visual perception. PLoS One 4:e6142. 10.1371/journal.pone.0006142, PMID: PubMed DOI PMC

Downar J., Crawley A. P., Mikulis D. J., Davis K. D. (2000). A multimodal cortical network for the detection of changes in the sensory environment. Nat. Neurosci. 3, 277–283. 10.1038/72991, PMID: PubMed DOI

Dykstra A. R., Cariani P. A., Gutschalk A. (2017). A roadmap for the study of conscious audition and its neural basis. Philos. Trans. R. Soc. B 372:20160103. 10.1098/rstb.2016.0103, PMID: PubMed DOI PMC

Dykstra A. R., Halgren E., Gutschalk A., Eskandar E. N., Cash S. S. (2016). Neural correlates of auditory perceptual awareness and release from informational masking recorded directly from human cortex: a case study. Front. Neurosci. 10:472. 10.3389/fnins.2016.00472, PMID: PubMed DOI PMC

Edelman G. M. (1989). The remembered present: A biological theory of consciousness. (New York, NY: Basic Books; ).

Edelman G. M., Gally J. A. (2013). Reentry: a key mechanism for integration of brain function. Front. Integr. Neurosci. 7:63. 10.3389/fnint.2013.00063, PMID: PubMed DOI PMC

Fox K. C., Christoff K. (2014). “Metacognitive facilitation of spontaneous thought processes: when metacognition helps the wandering mind find its way” in The cognitive neuroscience of metacognition. eds. Flemming S., Frith C. (Berlin, Heidelberg: Springer; ), 293–319.

Gaillard R., Dehaene S., Adam C., Clémenceau S., Hasboun D., Baulac M., et al. . (2009). Converging intracranial markers of conscious access. PLoS Biol. 7:e1000061. 10.1371/journal.pbio.1000061, PMID: PubMed DOI PMC

Gottfried J. A. (2009). Olfaction: when nostrils compete. Curr. Biol. 19, R862–R864. 10.1016/j.cub.2009.08.030, PMID: PubMed DOI PMC

Grandchamp R., Braboszcz C., Delorme A. (2014). Oculometric variations during mind wandering. Front. Psychol. 5:31. 10.3389/fpsyg.2014.00031, PMID: PubMed DOI PMC

Gusnard D. A., Raichle M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2, 685–694. 10.1038/35094500, PMID: PubMed DOI

Harris J. J., Schwarzkopf D. S., Song C., Bahrami B., Rees G. (2011). Contextual illusions reveal the limit of unconscious visual processing. Psychol. Sci. 22, 399–405. 10.1177/0956797611399293, PMID: PubMed DOI PMC

Hasenkamp W., Wilson-Mendenhall C. D., Duncan E., Barsalou L. W. (2012). Mind wandering and attention during focused meditation: a fine-grained temporal analysis of fluctuating cognitive states. NeuroImage 59, 750–760. 10.1016/j.neuroimage.2011.07.008, PMID: PubMed DOI

Havlík M. (2017). From anomalies to essential scientific revolution? Intrinsic brain activity in the light of Kuhn’s philosophy of science. Front. Syst. Neurosci. 11:7. 10.3389/fnsys.2017.00007, PMID: PubMed DOI PMC

Haynes J.-D., Rees G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat. Neurosci. 8, 686–691. 10.1038/nn1445, PMID: PubMed DOI

Haynes J.-D., Rees G. (2006). Neuroimaging: decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 7, 523–534. 10.1038/nrn1931, PMID: PubMed DOI

Huette S., Mathis A., Graesser A. (2016). “Blink durations reflect mind wandering during reading” in Proceedings of the 38th Annual Meeting of the Cognitive Science Society, 253–258.

Hurlburt R. T., Akhter S. A. (2006). The descriptive experience sampling method. Phenomenol. Cogn. Sci. 5, 271–301. 10.1007/s11097-006-9024-0 PubMed DOI PMC

Igelström K. M., Graziano M. S. (2017). The inferior parietal lobule and temporoparietal junction: a network perspective. Neuropsychologia 105, 70–83. 10.1016/j.neuropsychologia.2017.01.001, PMID: PubMed DOI

Jamison K. W., Roy A. V., He S., Engel S. A., He B. (2015). SSVEP signatures of binocular rivalry during simultaneous EEG and fMRI. J. Neurosci. Methods 243, 53–62. 10.1016/j.jneumeth.2015.01.024, PMID: PubMed DOI PMC

Killingsworth M. A., Gilbert D. T. (2010). A wandering mind is an unhappy mind. Science 330:932. 10.1126/science.1192439, PMID: PubMed DOI

King J.-R., Gramfort A., Schurger A., Naccache L., Dehaene S. (2014). Two distinct dynamic modes subtend the detection of unexpected sounds. PLoS One 9:e85791. 10.1371/journal.pone.0085791, PMID: PubMed DOI PMC

Kirschfeld K. (1999). Afterimages: a tool for defining the neural correlate of visual consciousness. Conscious. Cogn. 8, 462–483. 10.1006/ccog.1999.0388, PMID: PubMed DOI

Kleinschmidt A., Büchel C., Zeki S., Frackowiak R. S. (1998). Human brain activity during spontaneously reversing perception of ambiguous figures. Proc. R. Soc. Lond. B Biol. Sci. 265, 2427–2433. 10.1098/rspb.1998.0594, PMID: PubMed DOI PMC

Klink P. C., van Wezel R. J., van Ee R. (2013). “The future of binocular rivalry research” in The constitution of visual consciousness: Lessons from binocular rivalry. Vol. 90, 305–332.

Knapen T., Brascamp J., Pearson J., van Ee R., Blake R. (2011). The role of frontal and parietal brain areas in bistable perception. J. Neurosci. 31, 10293–10301. 10.1523/JNEUROSCI.1727-11.2011, PMID: PubMed DOI PMC

Koch C. (2004). The quest for consciousness: A neurobiological approach. (CO: Roberts and Company Englewood; ).

Koch C., Massimini M., Boly M., Tononi G. (2016). Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321. 10.1038/nrn.2016.22, PMID: PubMed DOI

Lamme V. A. (2006). Towards a true neural stance on consciousness. Trends Cogn. Sci. 10, 494–501. 10.1016/j.tics.2006.09.001, PMID: PubMed DOI

Lamme V. A. (2010). How neuroscience will change our view on consciousness. Cogn. Neurosci. 1, 204–220. 10.1080/17588921003731586, PMID: PubMed DOI

Lamy D., Salti M., Bar-Haim Y. (2009). Neural correlates of subjective awareness and unconscious processing: an ERP study. J. Cogn. Neurosci. 21, 1435–1446. 10.1162/jocn.2009.21064, PMID: PubMed DOI

Lau H., Rosenthal D. (2011). Empirical support for higher-order theories of conscious awareness. Trends Cogn. Sci. 15, 365–373. 10.1016/j.tics.2011.05.009, PMID: PubMed DOI

Lavy E. H., Van den Hout M. A. (1990). Thought suppression induces intrusions. Behav. Cogn. Psychother. 18, 251–258.

Levelt W. J. (1967). Note on the distribution of dominance times in binocular rivalry. Br. J. Psychol. 58, 143–145. 10.1111/j.2044-8295.1967.tb01068.x, PMID: PubMed DOI

Mars R. B., Neubert F.-X., Noonan M. P., Sallet J., Toni I., Rushworth M. F. (2012). On the relationship between the “default mode network” and the “social brain”. Front. Hum. Neurosci. 6:189. 10.2196/jmir.1938, PMID: PubMed DOI PMC

Marshall J. C., Halligan P. W. (1988). Blindsight and insight in visuo-spatial neglect. Nature 336:766. 10.1038/336766a0, PMID: PubMed DOI

Meador K. J., Ray P. G., Echauz J. R., Loring D. W., Vachtsevanos G. J. (2002). Gamma coherence and conscious perception. Neurology 59, 847–854. 10.1212/WNL.59.6.847, PMID: PubMed DOI

Mehta N., Mashour G. A. (2013). General and specific consciousness: a first-order representationalist approach. Front. Psychol. 4:407. 10.3389/fpsyg.2013.00407, PMID: PubMed DOI PMC

Melloni L., Singer W. (2010). “Distinct characteristics of conscious experience are met by large scale neuronal synchronization” in New Horizons in the Neuroscience of Consciousness. Advances in Consciousness Research. Vol. 79, eds. Perry E., Collerton D., LeBeau F., Ashton H. (Amsterdam, The Netherlands: John Benjamins Publishing Company; ), 17–28.

Menon V. (2015). “Salience network” in Brain mapping: An encyclopedic reference. ed. Toga A. W. (Waltham, MA: Academic Press; ), 597–611.

Monti M. M. (2011). Statistical analysis of fMRI time-series: a critical review of the GLM approach. Front. Hum. Neurosci. 5:28. 10.3389/fnhum.2011.00028, PMID: PubMed DOI PMC

Mori K., Manabe H., Narikiyo K., Onisawa N. (2013). Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex. Front. Psychol. 4:743. 10.1002/ccr3.7, PMID: PubMed DOI PMC

Murata T., Hamada T., Kakita Y., Yanagida T. (2004). Meaning of gamma distribution in perceptual rivalry. Technical Report on Attention and Cognition, 29.

Nekovarova T., Fajnerova I., Horacek J., Spaniel F. (2014). Bridging disparate symptoms of schizophrenia: a triple network dysfunction theory. Front. Behav. Neurosci. 8:171. 10.3389/fnbeh.2014.00171, PMID: PubMed DOI PMC

Newman J., Baars B. J. (1993). A neural attentional model for access to consciousness: a global workspace perspective. Concepts Neurosci. 4, 255–290.

Norman K. A., Polyn S. M., Detre G. J., Haxby J. V. (2006). Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430. 10.1016/j.tics.2006.07.005, PMID: PubMed DOI

O’Craven K. M., Kanwisher N. (2000). Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cogn. Neurosci. 12, 1013–1023. 10.1162/08989290051137549, PMID: PubMed DOI

O’Shea R. P., Parker A., La Rooy D., Alais D. (2009). Monocular rivalry exhibits three hallmarks of binocular rivalry: evidence for common processes. Vis. Res. 49, 671–681. 10.1016/j.visres.2009.01.020, PMID: PubMed DOI

Occhionero M., Cicogna P. (2016). Phenomenal consciousness in dreams and in mind wandering. Philos. Psychol. 29, 958–966. 10.1080/09515089.2016.1213800 DOI

Østby Y., Walhovd K. B., Tamnes C. K., Grydeland H. A., Westlye L. T., Fjell A. M. (2012). Mental time travel and default-mode network functional connectivity in the developing brain. Proc. Natl. Acad. Sci. 109, 16800–16804. 10.1073/pnas.1210627109, PMID: PubMed DOI PMC

Overgaard M., Fazekas P. (2016). Can no-report paradigms extract true correlates of consciousness? Trends Cogn. Sci. 20, 241–242. 10.1016/j.tics.2016.01.004, PMID: PubMed DOI

Penny W. D., Friston K. J., Ashburner J. T., Kiebel S. J., Nichols T. E. (ed) (2011). Statistical parametric mapping: the analysis of functional brain images. (Amsterdam; Boston: Elsevier; Academic Press; ). PMID:

Prinz J. (2005). “A neurofunctional theory of consciousness” in Cognition and the brain: Philosophy and neuroscience movement. eds. Brook A., Akins K. (Cambridge, UK: Cambridge University Press; ), 381–396.

Prinz J. (2012). The conscious brain. (New York, NY: Oxford University Press; ).

Raichle M. E., MacLeod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. 98, 676–682. 10.1073/pnas.98.2.676, PMID: PubMed DOI PMC

Raichle M. E., Snyder A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. NeuroImage 37, 1083–1090. 10.1016/j.neuroimage.2007.02.041, PMID: PubMed DOI

Raymond J. E., Shapiro K. L., Arnell K. M. (1992). Temporary suppression of visual processing in an RSVP task: an attentional blink? J. Exp. Psychol. Hum. Percept. Perform. 18, 849–860. 10.1037/0096-1523.18.3.849, PMID: PubMed DOI

Reichle E. D., Reineberg A. E., Schooler J. W. (2010). Eye movements during mindless reading. Psychol. Sci. 21, 1300–1310. 10.1177/0956797610378686, PMID: PubMed DOI

Roy A. V., Jamison K. W., He S., Engel S. A., He B. (2017). Deactivation in the posterior mid-cingulate cortex reflects perceptual transitions during binocular rivalry: evidence from simultaneous EEG-fMRI. NeuroImage 152, 1–11. 10.1016/j.neuroimage.2017.02.041, PMID: PubMed DOI PMC

Salti M., Bar-Haim Y., Lamy D. (2012). The P3 component of the ERP reflects conscious perception, not confidence. Conscious. Cogn. 21, 961–968. 10.1016/j.concog.2012.01.012, PMID: PubMed DOI

Schmack K., Schnack A., Priller J., Sterzer P. (2015). Perceptual instability in schizophrenia: probing predictive coding accounts of delusions with ambiguous stimuli. Schizophr. Res. Cogn. 2, 72–77. 10.1016/j.scog.2015.03.005, PMID: PubMed DOI PMC

Seeley W. W., Menon V., Schatzberg A. F., Keller J., Glover G. H., Kenna H., et al. . (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356. 10.1523/JNEUROSCI.5587-06.2007, PMID: PubMed DOI PMC

Seli P., Kane M. J., Smallwood J., Schacter D. L., Maillet D., Schooler J. W., et al. . (2018). Mind-wandering as a natural kind: a family-resemblances view. Trends Cogn. Sci. 22, 479–490. 10.1016/j.tics.2018.03.010, PMID: PubMed DOI PMC

Shenhav A., Cohen J. D., Botvinick M. M. (2016). Dorsal anterior cingulate cortex and the value of control. Nat. Neurosci. 19, 1286–1291. 10.1038/nn.4384, PMID: PubMed DOI

Shulman G. L., Fiez J. A., Corbetta M., Buckner R. L., Miezin F. M., Raichle M. E., et al. . (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–663. 10.1162/jocn.1997.9.5.648, PMID: PubMed DOI

Simons D. J., Chabris C. F. (1999). Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception 28, 1059–1074. PubMed

Simons D. J., Rensink R. A. (2005). Change blindness: past, present, and future. Trends Cogn. Sci. 9, 16–20. 10.1016/j.tics.2004.11.006, PMID: PubMed DOI

Smallwood J., Brown K. S., Tipper C., Giesbrecht B., Franklin M. S., Mrazek M. D., et al. . (2011). Pupillometric evidence for the decoupling of attention from perceptual input during offline thought. PLoS One 6:e18298. 10.1371/journal.pone.0018298, PMID: PubMed DOI PMC

Smallwood J., Schooler J. W. (2015). The science of mind wandering: empirically navigating the stream of consciousness. Annu. Rev. Psychol. 66, 487–518. 10.1146/annurev-psych-010814-015331, PMID: PubMed DOI

Smilek D., Carriere J. S., Cheyne J. A. (2010). Out of mind, out of sight: eye blinking as indicator and embodiment of mind wandering. Psychol. Sci. 21, 786–789. 10.1177/0956797610368063, PMID: PubMed DOI

Song X., Wang X. (2012). Mind wandering in Chinese daily lives–an experience sampling study. PLoS One 7:e44423. 10.1371/journal.pone.0044423, PMID: PubMed DOI PMC

Sormaz M., Murphy C., Wang H. T., Hymers M., Karapanagiotidis T., Poerio G., et al. . (2018). Default mode network can support the level of detail in experience during active task states. Proc. Natl. Acad. Sci. 115, 9318–9323. 10.1073/pnas.1721259115, PMID: PubMed DOI PMC

Spreng R. N., Stevens W. D., Chamberlain J. P., Gilmore A. W., Schacter D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage 53, 303–317. 10.1016/j.neuroimage.2010.06.016, PMID: PubMed DOI PMC

Steinmann S., Leicht G., Ertl M., Andreou C., Polomac N., Westerhausen R., et al. . (2014). Conscious auditory perception related to long-range synchrony of gamma oscillations. NeuroImage 100, 435–443. 10.1016/j.neuroimage.2014.06.012, PMID: PubMed DOI

Stern E. R., Fitzgerald K. D., Welsh R. C., Abelson J. L., Taylor S. F. (2012). Resting-state functional connectivity between fronto-parietal and default mode networks in obsessive-compulsive disorder. PLoS One 7:e36356. 10.1371/journal.pone.0036356, PMID: PubMed DOI PMC

Stevenson R. J., Mahmut M. K. (2013). Detecting olfactory rivalry. Conscious. Cogn. 22, 504–516. 10.1016/j.concog.2013.02.009, PMID: PubMed DOI

Summerfield C., Jack A. I., Burgess A. P. (2002). Induced gamma activity is associated with conscious awareness of pattern masked nouns. Int. J. Psychophysiol. 44, 93–100. 10.1016/S0167-8760(02)00003-X, PMID: PubMed DOI

Tong F., Nakayama K., Vaughan J. T., Kanwisher N. (1998). Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759. 10.1016/S0896-6273(00)80592-9, PMID: PubMed DOI

Tononi G. (2008). Consciousness as integrated information: a provisional manifesto. Biol. Bull. 215, 216–242. 10.2307/25470707, PMID: PubMed DOI

Trautwein F.-M., Singer T., Kanske P. (2016). Stimulus-driven reorienting impairs executive control of attention: evidence for a common bottleneck in anterior insula. Cereb. Cortex 26, 4136–4147. 10.1093/cercor/bhw225, PMID: PubMed DOI PMC

Tsuchiya N., Koch C. (2005). Continuous flash suppression reduces negative afterimages. Nat. Neurosci. 8, 1096–1101. 10.1038/nn1500, PMID: PubMed DOI

Tsuchiya N., Wilke M., Frässle S., Lamme V. A. (2015). No-report paradigms: extracting the true neural correlates of consciousness. Trends Cogn. Sci. 19, 757–770. 10.1016/j.tics.2015.10.002 PubMed DOI

Vallar G., Perani D. (1986). The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man. Neuropsychologia 24, 609–622. PubMed

Vallen P. H. C., Snoeren P. R., de Weert C. M. (1997). Does the gamma distribution refer to an underlying mechanism in binocular rivalry? Perception 26:22.

Van Veen V., Carter C. S. (2002). The timing of action-monitoring processes in the anterior cingulate cortex. J. Cogn. Neurosci. 14, 593–602. 10.1162/08989290260045837, PMID: PubMed DOI

Vidal J. R., Perrone-Bertolotti M., Levy J., De Palma L., Minotti L., Kahane P., et al. . (2014). Neural repetition suppression in ventral occipito-temporal cortex occurs during conscious and unconscious processing of frequent stimuli. NeuroImage 95, 129–135. 10.1016/j.neuroimage.2014.03.049, PMID: PubMed DOI

Wager T. D., Barrett L. F. (2017). From affect to control: functional specialization of the insula in motivation and regulation. BioRxiv [Preprint]. 10.1101/102368, PMID: PubMed DOI

Wegner D. M. (1989). White bears and other unwanted thoughts: Suppression, obsession, and the psychology of mental control. (New York, NY: Penguin Press; ).

Wegner D. M. (2011). Setting free the bears: escape from thought suppression. Am. Psychol. 66, 671–680. 10.1037/a0024985, PMID: PubMed DOI

Wegner D. M., Schneider D. J., Carter S. R., White T. L. (1987). Paradoxical effects of thought suppression. J. Pers. Soc. Psychol. 53, 5–13. 10.1037/0022-3514.53.1.5, PMID: PubMed DOI

Wilcke J. C., O’Shea R. P., Watts R. (2009). Frontoparietal activity and its structural connectivity in binocular rivalry. Brain Res. 1305, 96–107. 10.1016/j.brainres.2009.09.080, PMID: PubMed DOI

Wilke M., Logothetis N. K., Leopold D. A. (2003). Generalized flash suppression of salient visual targets. Neuron 39, 1043–1052. 10.1016/j.neuron.2003.08.003, PMID: PubMed DOI

Zhou W., Chen D. (2009). Binaral rivalry between the nostrils and in the cortex. Curr. Biol. 19, 1561–1565. 10.1016/j.cub.2009.07.052, PMID: PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Towards causal mechanisms of consciousness through focused transcranial brain stimulation

. 2023 ; 2023 (1) : niad008. [epub] 20230421

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...