Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28300078
PubMed Central
PMC5356070
DOI
10.1038/ncomms14752
PII: ncomms14752
Knihovny.cz E-zdroje
- MeSH
- biomasa * MeSH
- buněčné dělení genetika MeSH
- časové faktory MeSH
- geneticky modifikované rostliny MeSH
- kukuřice setá genetika růst a vývoj metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- listy rostlin genetika růst a vývoj metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny genetika MeSH
- semena rostlinná genetika metabolismus MeSH
- semenáček růst a vývoj metabolismus MeSH
- stanovení celkové genové exprese MeSH
- systém (enzymů) cytochromů P-450 genetika MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CYP78A1 protein, Zea mays MeSH Prohlížeč
- kyseliny indoloctové MeSH
- rostlinné proteiny MeSH
- systém (enzymů) cytochromů P-450 MeSH
Maize is the highest yielding cereal crop grown worldwide for grain or silage. Here, we show that modulating the expression of the maize PLASTOCHRON1 (ZmPLA1) gene, encoding a cytochrome P450 (CYP78A1), results in increased organ growth, seedling vigour, stover biomass and seed yield. The engineered trait is robust as it improves yield in an inbred as well as in a panel of hybrids, at several locations and over multiple seasons in the field. Transcriptome studies, hormone measurements and the expression of the auxin responsive DR5rev:mRFPer marker suggest that PLA1 may function through an increase in auxin. Detailed analysis of growth over time demonstrates that PLA1 stimulates the duration of leaf elongation by maintaining dividing cells in a proliferative, undifferentiated state for a longer period of time. The prolonged duration of growth also compensates for growth rate reduction caused by abiotic stresses.
Department of Biology Brigham Young University Provo 84602 Utah USA
Department of Genetics Development and Cell Biology Iowa State University Ames 50011 Iowa USA
Department of Plant Biotechnology and Bioinformatics Ghent University 9052 Gent Belgium
Department of Plant Systems Biology VIB 9052 Gent Belgium
Institute for Agricultural and Fisheries Research 9820 Merelbeke Belgium
Zobrazit více v PubMed
Liu L. et al.. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet. 11, e1005670 (2015). PubMed PMC
Hall A. J. & Richards R. A. Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crop. Res. 143, 18–33 (2013).
Guo M. et al.. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J. Exp. Bot. 65, 249–260 (2014). PubMed PMC
Nuccio M. L. et al.. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat. Biotechnol. 33, 862–869 (2015). PubMed
Powell A. E. & Lenhard M. Control of organ size in plants. Curr. Biol. 22, R360–R367 (2012). PubMed
Gonzalez N., Vanhaeren H. & Inzé D. Leaf size control: complex coordination of cell division and expansion. Trends Plant Sci. 17, 332–340 (2012). PubMed
Eloy N. B. et al.. SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization. Proc. Natl Acad. Sci. USA 109, 13853–13858 (2012). PubMed PMC
Marowa P., Ding A. & Kong Y. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep. 35, 949–965 (2016). PubMed PMC
Gonzalez N. et al.. A repressor protein complex regulates leaf growth in Arabidopsis. Plant Cell 27, 2273–2287 (2015). PubMed PMC
Santner A., Calderon-Villalobos L. I. A. & Estelle M. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 5, 301–307 (2009). PubMed
Kawade K., Horiguchi G. & Tsukaya H. Non-cell-autonomously coordinated organ size regulation in leaf development. Development 137, 4221–4227 (2010). PubMed
Nelissen H. et al.. Kinematic analysis of cell division in leaves of mono- and dicotyledonous species: a basis for understanding growth and developing refined molecular sampling strategies. Methods Mol. Biol. 959, 247–264 (2013). PubMed
Nelissen H. et al.. A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division. Curr. Biol. 22, 1183–1187 (2012). PubMed
Nelissen H. et al.. Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf. Plant Cell 27, 1605–1619 (2015). PubMed PMC
Kir G. et al.. RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol. 169, 826–839 (2015). PubMed PMC
Anastasiou E. et al.. Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev. Cell 13, 843–856 (2007). PubMed
Wang J.-W., Schwab R., Czech B., Mica E. & Weigel D. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20, 1231–1243 (2008). PubMed PMC
Adamski N. M., Anastasiou E., Eriksson S., O'Neill C. M. & Lenhard M. Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proc. Natl Acad. Sci. USA 106, 20115–20120 (2009). PubMed PMC
Eriksson S., Stransfeld L., Adamski N. M., Breuninger H. & Lenhard M. KLUH/CYP78A5-dependent growth signaling coordinates floral organ growth in Arabidopsis. Curr. Biol. 20, 527–532 (2010). PubMed
Ma M. et al.. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. Plant J. 83, 312–325 (2015). PubMed
Wang X. et al.. Evolution and association analysis of GmCYP78A10 gene with seed size/weight and pod number in soybean. Mol. Biol. Rep. 42, 489–496 (2015). PubMed
Miyoshi K. et al.. PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proc. Natl Acad. Sci. USA 101, 875–880 (2004). PubMed PMC
Stransfeld L., Eriksson S., Adamski N. M., Breuninger H. & Lenhard M. KLUH/CYP78A5 promotes organ growth without affecting the size of the early primordium. Plant Signal. Behav. 5, 982–984 (2010). PubMed PMC
Kazama T., Ichihashi Y., Murata S. & Tsukaya H. The mechanism of cell cycle arrest front progression explained by a KLUH/CYP78A5-dependent mobile growth factor in developing leaves of Arabidopsis thaliana. Plant Cell Physiol. 51, 1046–1054 (2010). PubMed
Voorend W. et al.. LEAF-E: a tool to analyze grass leaf growth using function fitting. Plant Methods 10, 37 (2014). PubMed PMC
Rymen B. et al.. Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiol. 143, 1429–1438 (2007). PubMed PMC
Krishnakumar V. et al.. A maize database resource that captures tissue-specific and subcellular-localized gene expression, via fluorescent tags and confocal imaging. (Maize Cell Genomics Database). Plant Cell Physiol. 56, e12 (2015). PubMed
Nelissen H., Gonzalez N. & Inzé D. Leaf growth in dicots and monocots: so different yet so alike. Curr. Opin. Plant Biol. 33, 72–76 (2016). PubMed
Avramova V. et al.. Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiol. 169, 1382–1396 (2015). PubMed PMC
Baute J. et al.. Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population. Genome Biol. 16, 168 (2015). PubMed PMC
Baute J. et al.. Combined large-scale phenotyping and transcriptomics in maize reveals a robust growth regulatory network. Plant Physiol. 170, 1848–1867 (2016). PubMed PMC
Hu Y., Xie Q. & Chua N.-H. The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15, 1951–1961 (2003). PubMed PMC
Maeda H. & Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 63, 73–105 (2012). PubMed
O'Connor D. L. et al.. A division in PIN-mediated auxin patterning during organ initiation in grasses. PLoS Comput. Biol. 10, e1003447 (2014). PubMed PMC
Blomme J., Inzé D. & Gonzalez N. The cell-cycle interactome: a source of growth regulators? J. Exp. Bot. 65, 2715–2730 (2014). PubMed
Dewitte W. & Murray J. A. H. The plant cell cycle. Annu. Rev. Plant Biol. 54, 235–264 (2003). PubMed
De Veylder L. et al.. Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor. EMBO J. 21, 1360–1368 (2002). PubMed PMC
Dutt M., Dhekney S. A., Soriano L., Kandel R. & Grosser J. W. Temporal and spatial control of gene expression in horticultural crops. Hortic. Res. 1, 14047 (2014). PubMed PMC
Chakrabarti M. et al.. A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc. Natl Acad. Sci. USA 110, 17125–17130 (2013). PubMed PMC
Wu L. et al.. Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height. J. Integr. Plant Biol. 56, 1053–1063 (2014). PubMed
Edgar R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). PubMed PMC
Darriba D., Taboada G. L., Doallo R. & Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165 (2011). PubMed PMC
Huelsenbeck J. P. & Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001). PubMed
Ronquist F. & Huelsenbeck J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003). PubMed
Christensen A. H. & Quail P. H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5, 213–218 (1996). PubMed
Karimi M., Inzé D., Van Lijsebettens M. & Hilson P. Gateway vectors for transformation of cereals. Trends Plant Sci. 18, 1–4 (2013). PubMed
Coussens G. et al.. Brachypodium distachyon promoters as efficient building blocks for transgenic research in maize. J. Exp. Bot. 63, 4263–4273 (2012). PubMed
Schneider C. A., Rasband W. S. & Eliceiri K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). PubMed PMC
Wu T. D. & Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010). PubMed PMC
Anders S., Pyl P. T. & Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015). PubMed PMC
Robinson M. D., McCarthy D. J. & Smyth G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). PubMed PMC
R Core Team. R: A language and environment for statistical computing Foundation for Statistical Computing, http://www.R-project.org/ (2015).
Robinson M. D. & Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010). PubMed PMC
McCarthy D. J., Chen Y. & Smyth G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012). PubMed PMC
Benjamini Y. & Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B—Stat. Methodol. 57, 289–300 (1995).
Novák O. et al.. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 72, 523–536 (2012). PubMed
Novák O., Pěnčík A., Blahoušek O. & Ljung K. Quantitative auxin metabolite profiling using stable isotope dilution UHPLC-MS/MS. Curr. Protoc. Plant Biol. 1, 419–430 (2016). PubMed
Gallavotti A., Yang Y., Schmidt R. J. & Jackson D. The relationship between auxin transport and maize branching. Plant Physiol. 147, 1913–1923 (2008). PubMed PMC