Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p46 kDa/Myo1C antibodies for early diagnosis of multiple sclerosis patients
Language English Country Great Britain, England Media electronic-print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28351895
PubMed Central
PMC5484020
DOI
10.1042/bsr20160526
PII: BSR20160526
Knihovny.cz E-resources
- Keywords
- affinity purification, anti-p46 kDa/Myo1C, magnetic microspheres, multiple sclerosis,
- MeSH
- Immobilized Proteins chemistry immunology MeSH
- Immunoglobulin G immunology isolation & purification MeSH
- Humans MeSH
- Magnetics methods MeSH
- Magnets chemistry MeSH
- Microspheres MeSH
- Myosin Type I chemistry immunology MeSH
- Mice MeSH
- Polyhydroxyethyl Methacrylate chemistry MeSH
- Protein Isoforms chemistry immunology MeSH
- Multiple Sclerosis diagnosis immunology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Immobilized Proteins MeSH
- Immunoglobulin G MeSH
- MYO1C protein, human MeSH Browser
- Myosin Type I MeSH
- Polyhydroxyethyl Methacrylate MeSH
- Protein Isoforms MeSH
The aim of the present study is to develop new magnetic polymer microspheres with functional groups available for easy protein and antibody binding. Monodisperse macroporous poly(2-hydroxyethyl methacrylate) (PHEMA-COOH) microspheres ~4 µm in diameter and containing ∼1 mmol COOH/g were synthesized by multistep swelling polymerization of 2-hydroxyethyl methacrylate (HEMA), ethylene dimethacrylate (EDMA), and 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA), which was followed by MCMEMA hydrolysis. The microspheres were rendered magnetic by precipitation of iron oxide inside the pores, which made them easily separable in a magnetic field. Properties of the resulting magnetic poly(2-hydroxyethyl methacrylate) (mgt.PHEMA) particles with COOH functionality were examined by scanning and transmission electron microscopy (SEM and TEM), static volumetric adsorption of helium and nitrogen, mercury porosimetry, Fourier transform infrared (FTIR) and atomic absorption spectroscopy (AAS), and elemental analysis. Mgt.PHEMA microspheres were coupled with p46/Myo1C protein purified from blood serum of multiple sclerosis (MS) patients, which enabled easy isolation of monospecific anti-p46/Myo1C immunoglobulin G (IgG) antibodies from crude antibody preparations of mouse blood serum. High efficiency of this approach was confirmed by SDS/PAGE, Western blot, and dot blot analyses. The newly developed mgt.PHEMA microspheres conjugated with a potential disease biomarker, p46/Myo1C protein, are thus a promising tool for affinity purification of antibodies, which can improve diagnosis and treatment of MS patients.
Institute of Cell Biology NAS of Ukraine Drahomanov Str 14 16 Lviv 79005 Ukraine
Institute of Macromolecular Chemistry AS CR Heyrovsky Sq 2 162 06 Prague 6 Czech Republic
See more in PubMed
Setchell C.H. (1985) Magnetic separations in biotechnology: a review. J. Chem. Technol. Biotechnol. 35, 175–182
Taguchi T., Arakaki A., Takeyama H., Haraguchi S., Yoshino M., Kaneko M. et al. (2007) Detection of Cryptosporidium parvum oocysts using a microfluidic device equipped with the SUS micromesh and FITC-labeled antibody. Biotechnol. Bioeng. 96, 272–280 PubMed
Tartaj P., Morales M.D., Veintemillas-Verdaguer S., González-Carreño T. and Serna C.J. (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D-Appl. Phys. 36, R182–R197
Mallakpour S. and Madani M. (2015) A review of current coupling agents for modification of metal oxide nanoparticles. Prog. Org. Coat. 86, 194–207
Bautista M.C., Bomati-Miguel O., del Puerto Morales M., Serna C.J. and Veintemillas-Verdaguer S. (2005) Surface characterization of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J. Magn. Magn. Mater. 293, 20–27
Basti H., Tahar L.B., Smiri L.S., Herbst F., Nowak S., Mangeney C. et al. (2016) Surface modification of γ-Fe2O3 nanoparticles by grafting from poly-(hydroxyethylmethacrylate) and poly-(methacrylic acid): qualitative and quantitative analysis of the polymeric coating. Colloid Surf. A 490, 222–231
Wang W.-C., Neoh K.-G. and Kang E.-T. (2006) Surface functionalization of Fe3O4 magnetic nanoparticles via RAFT-mediated graft polymerization. Macromol. Rapid Commun. 27, 1665–1669
Wan S.R., Huang J.S., Yan H.S. and Liu K.L. (2006) Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J. Mater. Chem. 16, 298–303
Ngaboni-Okassa L., Marchais H., Douziech-Eyrolles L., Cohen-Jonathan S., Soucé M., Dubois P. et al. (2005) Development and characterization of sub-micron poly(D,L-lactide-co-glycolide) particles loaded with magnetite/maghemite nanoparticles. Int. J. Pharm. 302, 187–196 PubMed
Deng Y., Wang L., Yang W., Fu S. and Elaïssari A. (2003) Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. J. Magn. Magn. Mater. 257, 69–78
Ramirez L.P. and Landfester K. (2003) Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol. Chem. Phys. 204, 22–31
Jin H., Lin J.M., Wang X., Xin T.B., Liang S.X., Li Z.J. et al. (2009) Magnetic particle-based chemiluminescence enzyme immunoassay for free thyroxine in human serum. J. Pharm. Biomed. Anal. 50, 891–896 PubMed
Zhang R.Q., Nakajima H., Soh N., Nakano K., Masadome T., Nagata K. et al. (2007) Sequential injection chemiluminescence immunoassay for nonionic surfactants by using magnetic microbeads. Anal. Chim. Acta 600, 105–113 PubMed
Zhang Q.Y., Chen H., Lin Z. and Lin J.-M. (2012) Comparison of chemiluminescence enzyme immunoassay based on magnetic microparticles with traditional colorimetric ELISA for the detection of serum α-fetoprotein. J. Pharm. Anal. 2, 130–135 PubMed PMC
Fang F.F., Kim J.H. and Choi H.J. (2009) Synthesis of core-shell structured PS/Fe3O4 microbeads and their magnetorheology. Polymer 50, 2290–2293
Arica M.Y., Yavuz H., Patir S. and Denizli A. (2000) Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres: Characterization and application to a continuous flow reactor. J. Mol. Catal. B-Enzym. 11, 127–138
Kuan W.-C., Horák D., Plichta Z. and Lee W.-C. (2014) Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups. Mater. Sci. Eng. C 34, 193–200 PubMed
Taitt C.R., Shriver-Lake L.C., Anderson G.P. and Ligler F.S. (2011) Surface modification and biomolecule immobilization on polymer spheres for biosensing applications. Methods Mol. Biol. 726, 77–94 PubMed
Horák D. (1992) The use of poly(2-hydroxyethyl methacrylate) in medicine. Chem. Listy 86, 681–691
Horák D., Červinka M. and Půža V. (1997) Hydrogels in endovascular embolization VI. Toxicity tests of poly(2-hydroxyethyl methacrylate) particles on cell cultures. Biomaterials 18, 1355–1359 PubMed
Yavuz H., Ozden K., Kin E.P. and Denizli A. (2009) Concanavalin A binding on PHEMA beads and their interactions with myeloma cells. J. Macromol. Sci. Part A-Pure Appl. Chem. 46, 163–169
Chouhan R. and Bajpai A.K. (2010) Release dynamics of ciprofloxacin from swellable nanocarriers of poly(2-hydroxyethyl methacrylate): An in vitro study. Nanomed.-Nanotechnol. Biol. Med. 6, 453–462 PubMed
Adkins J.N., Varnum S.M., Auberry K.J., Moore R.J., Angell N.H., Smith R.D. et al. (2002) Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics 1, 947–955 PubMed
Schrader M. and Schulz-Knappe P. (2001) Peptidomics technologies for human body fluids. Trends Biotechnol. 19, S55–S60 PubMed
Wrotnowski C. (1998) The future of plasma proteins. Genet. Eng. News 18, 14–18
Myronovkij S., Negrych N., Nehrych T., Redowicz M.J., Souchelnytskyi S., Stoika R. et al. (2016) Identification of a 48 kDa form of unconventional myosin 1c in blood serum of patients with autoimmune diseases. Biochem. Biophys. Rep. 5, 175–179 PubMed PMC
Horák D., Plichta Z., Starykovych M., Myronovskij S., Kit Y., Chopyak V. et al. (2015) Calf thymus histone-conjugated magnetic poly(2-oxoethyl methacrylate) microspheres for affinity isolation of anti-histone IgGs from the blood serum of patients with systemic lupus erythematosus. RSC Adv. 5, 63050–63055
Kubinová Š., Horák D. and Syková E. (2009) Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering. Biomaterials 30, 4601–4609 PubMed
Overberger C.G., Oshaughnessy M.T. and Shalit H. (1949) The preparation of some aliphatic azo nitriles and their decomposition in solution. J. Am. Chem. Soc. 71, 2661–2666
Ugelstad J., Ellingsen T., Berge A. and Helgee B. (1983) Magnetic polymer particles and process for the preparation thereof. Eur. Pat. WO 83/03920
Horák D., Kučerová J., Korecká L., Jankovičová B., Palarčík J., Mikulášek P. et al. (2012) New monodisperse magnetic polymer microspheres biofunctionalized for enzyme catalysis and bioaffinity separations. Macromol. Biosci. 12, 647–655 PubMed
Horák D., Hlídková H., Hiraoui M., Taverna M., Proks V., Mázl Chánová E. et al. (2014) Monodisperse carboxyl-functionalized poly(ethylene glycol)-coated magnetic poly(glycidyl methacrylate) microspheres: Application to the immunocapture of β-amyloid peptides. Macromol. Biosci. 14, 1590–1599 PubMed
Marhol M. (1976) Ion Exchangers in Chemistry and Radiochemistry, pp. 75, Academia, Prague
Porosimeter Pascal 140 and Pascal 440, Instruction Manual, ThermoFinnigan, Rodano (1996), pp. 8.
Rigby S.P., Barwick D., Fletcher R.S. and Riley S.N. (2003) Interpreting mercury porosimetry data for catalyst supports using semi-empirical alternatives to the Washburn equation. Appl. Catal. A 238, 303–318
Horák D., Kroupová J., Šlouf M. and Dvořák P. (2004) Poly(2-hydroxyethyl methacrylate)-based slabs as a mouse embryonic stem cell support. Biomaterials 25, 5249–5260 PubMed
Štamberg J. and Ševčík S. (1966) Chemical transformations of polymers III. Selective hydrolysis of a copolymer of diethylene glycol methacrylate and diethylene glycol dimethacrylate. Collect. Czech. Chem. Commun. 31, 1009–1016
Kit Y., Bilyy R., Stoika R., Mitina N. and Zaichenko A. (2010) Immunogenicity and adjuvant properties of novel biocompatible nanoparticles. In Biocompatible Nanomaterials: Synthesis, Characterization and Applications (Kumar S.A., Thiagarajan S. and Wang S.-F., eds), pp. 209–223, Nova Sci. Publ., Hauppauge, New York
Horák D., Svobodová Z., Autebert J., Coudert B., Plichta Z., Královec K. et al. (2013) Albumin-coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: Application to the capture of epithelial cancer cells. J. Biomed. Mater. Res. Part A 101, 23–32 PubMed
Horák D., Švec F., Ilavský M., Bleha M., Baldrián J. and Kálal J. (1981) Reactive polymers XXXVI. The effect of polymerization conditions on the porosity and mechanical properties of macroporous suspension copolymers from glycidyl methacrylate-ethylene dimethacrylate. Angew. Makromol. Chem. 95, 117–127
Rouquerol J., Avnir D., Fairbridge C.W., Everett D.H., Haynes J.M., Pernicone N. et al. (1994) Recommendations for the characterization of porous solids. Pure Appl. Chem. 66, 1739–1758
Colthup N.B., Daly L.H. and Wiberley S.E. (1990) Introduction to Infrared and Raman Spectroscopy, 3rd edn, Academic Press, San Diego
Silverstein R.M., Bassler G.C. and Morrill T.C. (1991) Spectrometric Identification of Organic Compounds, 5th edn, Wiley, New York
Sidhu P.S. (1988) Transformation of trace element-substituted maghemite to hematite. Clay Clay Min 36, 31–38
Mou X., Li Y., Zhang B., Yao L., Wei X., Su D.S. et al. (2012) Crystal-phase- and morphology-controlled synthesis of Fe2O3 nanomaterials. Eur. J. Inorg. Chem. 2012, 2684–2690
Chen D. and Xu R. (1998) Hydrothermal synthesis and characterization of nanocrystalline γ-Fe2O3 particles. J. Solid State Chem. 137, 185–190
Mollenhauer B., Esselmann H., Roeber S., Schulz-Schaeffer W.J., Trenkwalder C., Bibl M. et al. (2011) Different CSF β-amyloid processing in Alzheimer's and Creutzfeldt-Jakob disease. J. Neural Transm. 118, 691–697 PubMed
GBD 2013 Mortality and Causes of Death Collaborators (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117–171 PubMed PMC
Miller A.E. (2011) Multiple sclerosis: where will we be in 2020. Mt. Sinai J. Med. 78, 268–279 PubMed
D’Ambrosio A., Pontecorvo S., Colasanti T., Zamboni S., Francia A. and Margutti P. (2015) Peripheral blood biomarkers in multiple sclerosis. Autoimmun. Rev. 14, 1097–1110 PubMed
Akgöl S., Özkara S., Uzun L., Yılmaz F. and Denizli A. (2007) Pseudospecific magnetic affinity beads for immunoglobulin-g depletion from human serum. J. Appl. Polym. Sci. 106, 2405–2412
Özkara S., Akgöl S., Çanak Y. and Denizli A. (2004) A novel magnetic adsorbent for immunoglobulin-G purification in a magnetically stabilized fluidized bed. Biotechnol. Prog. 20, 1169–1175 PubMed
Denizli A., Rad A.Y. and Pişkin E. (1995) Protein A immobilized polyhydroxyethylmethacrylate beads for affinity sorption of human immunoglobulin G. J. Chromatogr. B 668, 13–19 PubMed
Rittich B., Španová A. and Horák D. (2009) Functionalized magnetic microspheres with hydrophilic properties for molecular diagnostic applications. Food Res. Int. 42, 493–498
Deyl Z. and Mikšík I. (2000) Advanced separation methods for collagen parent α-chains, their polymers and fragments. J. Chromatogr. B 739, 3–31 PubMed
Štulík K., Pacáková V., Suchánková J. and Claessens H.A. (1997) Stationary phases for peptide analysis by high performance liquid chromatography: A review. Anal. Chim. Acta 352, 1–19
Liu X., Guan Y., Shen R. and Liu H. (2005) Immobilization of lipase onto micron-size magnetic beads. J. Chromatogr. B 822, 91–97 PubMed