• This record comes from PubMed

Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p46 kDa/Myo1C antibodies for early diagnosis of multiple sclerosis patients

. 2017 Apr 30 ; 37 (2) : . [epub] 20170428

Language English Country Great Britain, England Media electronic-print

Document type Journal Article, Research Support, Non-U.S. Gov't

The aim of the present study is to develop new magnetic polymer microspheres with functional groups available for easy protein and antibody binding. Monodisperse macroporous poly(2-hydroxyethyl methacrylate) (PHEMA-COOH) microspheres ~4 µm in diameter and containing ∼1 mmol COOH/g were synthesized by multistep swelling polymerization of 2-hydroxyethyl methacrylate (HEMA), ethylene dimethacrylate (EDMA), and 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA), which was followed by MCMEMA hydrolysis. The microspheres were rendered magnetic by precipitation of iron oxide inside the pores, which made them easily separable in a magnetic field. Properties of the resulting magnetic poly(2-hydroxyethyl methacrylate) (mgt.PHEMA) particles with COOH functionality were examined by scanning and transmission electron microscopy (SEM and TEM), static volumetric adsorption of helium and nitrogen, mercury porosimetry, Fourier transform infrared (FTIR) and atomic absorption spectroscopy (AAS), and elemental analysis. Mgt.PHEMA microspheres were coupled with p46/Myo1C protein purified from blood serum of multiple sclerosis (MS) patients, which enabled easy isolation of monospecific anti-p46/Myo1C immunoglobulin G (IgG) antibodies from crude antibody preparations of mouse blood serum. High efficiency of this approach was confirmed by SDS/PAGE, Western blot, and dot blot analyses. The newly developed mgt.PHEMA microspheres conjugated with a potential disease biomarker, p46/Myo1C protein, are thus a promising tool for affinity purification of antibodies, which can improve diagnosis and treatment of MS patients.

See more in PubMed

Setchell C.H. (1985) Magnetic separations in biotechnology: a review. J. Chem. Technol. Biotechnol. 35, 175–182

Taguchi T., Arakaki A., Takeyama H., Haraguchi S., Yoshino M., Kaneko M. et al. (2007) Detection of Cryptosporidium parvum oocysts using a microfluidic device equipped with the SUS micromesh and FITC-labeled antibody. Biotechnol. Bioeng. 96, 272–280 PubMed

Tartaj P., Morales M.D., Veintemillas-Verdaguer S., González-Carreño T. and Serna C.J. (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D-Appl. Phys. 36, R182–R197

Mallakpour S. and Madani M. (2015) A review of current coupling agents for modification of metal oxide nanoparticles. Prog. Org. Coat. 86, 194–207

Bautista M.C., Bomati-Miguel O., del Puerto Morales M., Serna C.J. and Veintemillas-Verdaguer S. (2005) Surface characterization of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J. Magn. Magn. Mater. 293, 20–27

Basti H., Tahar L.B., Smiri L.S., Herbst F., Nowak S., Mangeney C. et al. (2016) Surface modification of γ-Fe2O3 nanoparticles by grafting from poly-(hydroxyethylmethacrylate) and poly-(methacrylic acid): qualitative and quantitative analysis of the polymeric coating. Colloid Surf. A 490, 222–231

Wang W.-C., Neoh K.-G. and Kang E.-T. (2006) Surface functionalization of Fe3O4 magnetic nanoparticles via RAFT-mediated graft polymerization. Macromol. Rapid Commun. 27, 1665–1669

Wan S.R., Huang J.S., Yan H.S. and Liu K.L. (2006) Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J. Mater. Chem. 16, 298–303

Ngaboni-Okassa L., Marchais H., Douziech-Eyrolles L., Cohen-Jonathan S., Soucé M., Dubois P. et al. (2005) Development and characterization of sub-micron poly(D,L-lactide-co-glycolide) particles loaded with magnetite/maghemite nanoparticles. Int. J. Pharm. 302, 187–196 PubMed

Deng Y., Wang L., Yang W., Fu S. and Elaïssari A. (2003) Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. J. Magn. Magn. Mater. 257, 69–78

Ramirez L.P. and Landfester K. (2003) Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol. Chem. Phys. 204, 22–31

Jin H., Lin J.M., Wang X., Xin T.B., Liang S.X., Li Z.J. et al. (2009) Magnetic particle-based chemiluminescence enzyme immunoassay for free thyroxine in human serum. J. Pharm. Biomed. Anal. 50, 891–896 PubMed

Zhang R.Q., Nakajima H., Soh N., Nakano K., Masadome T., Nagata K. et al. (2007) Sequential injection chemiluminescence immunoassay for nonionic surfactants by using magnetic microbeads. Anal. Chim. Acta 600, 105–113 PubMed

Zhang Q.Y., Chen H., Lin Z. and Lin J.-M. (2012) Comparison of chemiluminescence enzyme immunoassay based on magnetic microparticles with traditional colorimetric ELISA for the detection of serum α-fetoprotein. J. Pharm. Anal. 2, 130–135 PubMed PMC

Fang F.F., Kim J.H. and Choi H.J. (2009) Synthesis of core-shell structured PS/Fe3O4 microbeads and their magnetorheology. Polymer 50, 2290–2293

Arica M.Y., Yavuz H., Patir S. and Denizli A. (2000) Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres: Characterization and application to a continuous flow reactor. J. Mol. Catal. B-Enzym. 11, 127–138

Kuan W.-C., Horák D., Plichta Z. and Lee W.-C. (2014) Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups. Mater. Sci. Eng. C 34, 193–200 PubMed

Taitt C.R., Shriver-Lake L.C., Anderson G.P. and Ligler F.S. (2011) Surface modification and biomolecule immobilization on polymer spheres for biosensing applications. Methods Mol. Biol. 726, 77–94 PubMed

Horák D. (1992) The use of poly(2-hydroxyethyl methacrylate) in medicine. Chem. Listy 86, 681–691

Horák D., Červinka M. and Půža V. (1997) Hydrogels in endovascular embolization VI. Toxicity tests of poly(2-hydroxyethyl methacrylate) particles on cell cultures. Biomaterials 18, 1355–1359 PubMed

Yavuz H., Ozden K., Kin E.P. and Denizli A. (2009) Concanavalin A binding on PHEMA beads and their interactions with myeloma cells. J. Macromol. Sci. Part A-Pure Appl. Chem. 46, 163–169

Chouhan R. and Bajpai A.K. (2010) Release dynamics of ciprofloxacin from swellable nanocarriers of poly(2-hydroxyethyl methacrylate): An in vitro study. Nanomed.-Nanotechnol. Biol. Med. 6, 453–462 PubMed

Adkins J.N., Varnum S.M., Auberry K.J., Moore R.J., Angell N.H., Smith R.D. et al. (2002) Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics 1, 947–955 PubMed

Schrader M. and Schulz-Knappe P. (2001) Peptidomics technologies for human body fluids. Trends Biotechnol. 19, S55–S60 PubMed

Wrotnowski C. (1998) The future of plasma proteins. Genet. Eng. News 18, 14–18

Myronovkij S., Negrych N., Nehrych T., Redowicz M.J., Souchelnytskyi S., Stoika R. et al. (2016) Identification of a 48 kDa form of unconventional myosin 1c in blood serum of patients with autoimmune diseases. Biochem. Biophys. Rep. 5, 175–179 PubMed PMC

Horák D., Plichta Z., Starykovych M., Myronovskij S., Kit Y., Chopyak V. et al. (2015) Calf thymus histone-conjugated magnetic poly(2-oxoethyl methacrylate) microspheres for affinity isolation of anti-histone IgGs from the blood serum of patients with systemic lupus erythematosus. RSC Adv. 5, 63050–63055

Kubinová Š., Horák D. and Syková E. (2009) Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering. Biomaterials 30, 4601–4609 PubMed

Overberger C.G., Oshaughnessy M.T. and Shalit H. (1949) The preparation of some aliphatic azo nitriles and their decomposition in solution. J. Am. Chem. Soc. 71, 2661–2666

Ugelstad J., Ellingsen T., Berge A. and Helgee B. (1983) Magnetic polymer particles and process for the preparation thereof. Eur. Pat. WO 83/03920

Horák D., Kučerová J., Korecká L., Jankovičová B., Palarčík J., Mikulášek P. et al. (2012) New monodisperse magnetic polymer microspheres biofunctionalized for enzyme catalysis and bioaffinity separations. Macromol. Biosci. 12, 647–655 PubMed

Horák D., Hlídková H., Hiraoui M., Taverna M., Proks V., Mázl Chánová E. et al. (2014) Monodisperse carboxyl-functionalized poly(ethylene glycol)-coated magnetic poly(glycidyl methacrylate) microspheres: Application to the immunocapture of β-amyloid peptides. Macromol. Biosci. 14, 1590–1599 PubMed

Marhol M. (1976) Ion Exchangers in Chemistry and Radiochemistry, pp. 75, Academia, Prague

Porosimeter Pascal 140 and Pascal 440, Instruction Manual, ThermoFinnigan, Rodano (1996), pp. 8.

Rigby S.P., Barwick D., Fletcher R.S. and Riley S.N. (2003) Interpreting mercury porosimetry data for catalyst supports using semi-empirical alternatives to the Washburn equation. Appl. Catal. A 238, 303–318

Horák D., Kroupová J., Šlouf M. and Dvořák P. (2004) Poly(2-hydroxyethyl methacrylate)-based slabs as a mouse embryonic stem cell support. Biomaterials 25, 5249–5260 PubMed

Štamberg J. and Ševčík S. (1966) Chemical transformations of polymers III. Selective hydrolysis of a copolymer of diethylene glycol methacrylate and diethylene glycol dimethacrylate. Collect. Czech. Chem. Commun. 31, 1009–1016

Kit Y., Bilyy R., Stoika R., Mitina N. and Zaichenko A. (2010) Immunogenicity and adjuvant properties of novel biocompatible nanoparticles. In Biocompatible Nanomaterials: Synthesis, Characterization and Applications (Kumar S.A., Thiagarajan S. and Wang S.-F., eds), pp. 209–223, Nova Sci. Publ., Hauppauge, New York

Horák D., Svobodová Z., Autebert J., Coudert B., Plichta Z., Královec K. et al. (2013) Albumin-coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: Application to the capture of epithelial cancer cells. J. Biomed. Mater. Res. Part A 101, 23–32 PubMed

Horák D., Švec F., Ilavský M., Bleha M., Baldrián J. and Kálal J. (1981) Reactive polymers XXXVI. The effect of polymerization conditions on the porosity and mechanical properties of macroporous suspension copolymers from glycidyl methacrylate-ethylene dimethacrylate. Angew. Makromol. Chem. 95, 117–127

Rouquerol J., Avnir D., Fairbridge C.W., Everett D.H., Haynes J.M., Pernicone N. et al. (1994) Recommendations for the characterization of porous solids. Pure Appl. Chem. 66, 1739–1758

Colthup N.B., Daly L.H. and Wiberley S.E. (1990) Introduction to Infrared and Raman Spectroscopy, 3rd edn, Academic Press, San Diego

Silverstein R.M., Bassler G.C. and Morrill T.C. (1991) Spectrometric Identification of Organic Compounds, 5th edn, Wiley, New York

Sidhu P.S. (1988) Transformation of trace element-substituted maghemite to hematite. Clay Clay Min 36, 31–38

Mou X., Li Y., Zhang B., Yao L., Wei X., Su D.S. et al. (2012) Crystal-phase- and morphology-controlled synthesis of Fe2O3 nanomaterials. Eur. J. Inorg. Chem. 2012, 2684–2690

Chen D. and Xu R. (1998) Hydrothermal synthesis and characterization of nanocrystalline γ-Fe2O3 particles. J. Solid State Chem. 137, 185–190

Mollenhauer B., Esselmann H., Roeber S., Schulz-Schaeffer W.J., Trenkwalder C., Bibl M. et al. (2011) Different CSF β-amyloid processing in Alzheimer's and Creutzfeldt-Jakob disease. J. Neural Transm. 118, 691–697 PubMed

GBD 2013 Mortality and Causes of Death Collaborators (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117–171 PubMed PMC

Miller A.E. (2011) Multiple sclerosis: where will we be in 2020. Mt. Sinai J. Med. 78, 268–279 PubMed

D’Ambrosio A., Pontecorvo S., Colasanti T., Zamboni S., Francia A. and Margutti P. (2015) Peripheral blood biomarkers in multiple sclerosis. Autoimmun. Rev. 14, 1097–1110 PubMed

Akgöl S., Özkara S., Uzun L., Yılmaz F. and Denizli A. (2007) Pseudospecific magnetic affinity beads for immunoglobulin-g depletion from human serum. J. Appl. Polym. Sci. 106, 2405–2412

Özkara S., Akgöl S., Çanak Y. and Denizli A. (2004) A novel magnetic adsorbent for immunoglobulin-G purification in a magnetically stabilized fluidized bed. Biotechnol. Prog. 20, 1169–1175 PubMed

Denizli A., Rad A.Y. and Pişkin E. (1995) Protein A immobilized polyhydroxyethylmethacrylate beads for affinity sorption of human immunoglobulin G. J. Chromatogr. B 668, 13–19 PubMed

Rittich B., Španová A. and Horák D. (2009) Functionalized magnetic microspheres with hydrophilic properties for molecular diagnostic applications. Food Res. Int. 42, 493–498

Deyl Z. and Mikšík I. (2000) Advanced separation methods for collagen parent α-chains, their polymers and fragments. J. Chromatogr. B 739, 3–31 PubMed

Štulík K., Pacáková V., Suchánková J. and Claessens H.A. (1997) Stationary phases for peptide analysis by high performance liquid chromatography: A review. Anal. Chim. Acta 352, 1–19

Liu X., Guan Y., Shen R. and Liu H. (2005) Immobilization of lipase onto micron-size magnetic beads. J. Chromatogr. B 822, 91–97 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...