Terrestrial reproduction as an adaptation to steep terrain in African toads
Language English Country England, Great Britain Media print
Document type Journal Article
PubMed
28356450
PubMed Central
PMC5378084
DOI
10.1098/rspb.2016.2598
PII: rspb.2016.2598
Knihovny.cz E-resources
- Keywords
- Bufonidae, amphibian, evolution, reproductive mode, terrestrial life history, viviparity,
- MeSH
- Biological Evolution MeSH
- Phylogeny MeSH
- Bufonidae physiology MeSH
- Reproduction * MeSH
- Environment * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
How evolutionary novelties evolve is a major question in evolutionary biology. It is widely accepted that changes in environmental conditions shift the position of selective optima, and advancements in phylogenetic comparative approaches allow the rigorous testing of such correlated transitions. A longstanding question in vertebrate biology has been the evolution of terrestrial life histories in amphibians and here, by investigating African bufonids, we test whether terrestrial modes of reproduction have evolved as adaptations to particular abiotic habitat parameters. We reconstruct and date the most complete species-level molecular phylogeny and estimate ancestral states for reproductive modes. By correlating continuous habitat measurements from remote sensing data and locality records with life-history transitions, we discover that terrestrial modes of reproduction, including viviparity evolved multiple times in this group, most often directly from fully aquatic modes. Terrestrial modes of reproduction are strongly correlated with steep terrain and low availability of accumulated water sources. Evolutionary transitions to terrestrial modes of reproduction occurred synchronously with or after transitions in habitat, and we, therefore, interpret terrestrial breeding as an adaptation to these abiotic conditions, rather than an exaptation that facilitated the colonization of montane habitats.
Department of Environmental Science University of Basel Klingelbergstrasse 27 4056 Basel Switzerland
Department of Life Sciences Natural History Museum London SW7 5BD UK
Department of Life Sciences University of Roehampton London SW15 4JD UK
Dříteč 65 53305 Czech Republic
WSL Swiss Federal Institute for Forest Snow and Landscape Research Birmensdorf Switzerland
See more in PubMed
Schluter D. 2000. The ecology of adaptive radiation. Oxford, UK: OUP.
Felsenstein J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 25, 471–492. PubMed PMC
Butler MA, King AA. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164, 683–695. (10.1086/426002) PubMed DOI
Pagel M, Meade A. 2013. BayesTraits, version 2. Berkshire, UK: University of Reading, see http://www.evolution.rdg.ac.uk
FitzJohn RG, Maddison WP, Otto SP. 2009. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58, 595–611. (10.1093/sysbio/syp067) PubMed DOI
Harvey PH, Pagel MD. 1991. The comparative method in evolutionary biology. Oxford, UK: Oxford University Press.
Mahler DL, Ingram T, Revell LJ, Losos JB. 2013. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–295. (10.1126/science.1232392) PubMed DOI
Gould SJ, Vrba ES. 1982. Exaptation—a missing term in the science of form. Paleobiology 8, 4–15. (10.1017/S0094837300004310) DOI
Wells KD. 2007. The ecology and behavior of amphibians. Chicago, IL: University of Chicago Press.
Bossuyt F, Milinkovitch MC. 2000. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc. Natl Acad. Sci. USA 97, 6585–6590. (10.1073/pnas.97.12.6585) PubMed DOI PMC
Gomez-Mestre I, Pyron RA, Wiens JJ. 2012. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700. (10.1111/j.1558-5646.2012.01715.x) PubMed DOI
Bogart JP. 1981. How many times has terrestrial breeding evolved in anuran amphibians? Monit. Zool. Ital. Suppl. 15, 29–40.
Goin OB, Goin CJ. 1962. Amphibian eggs and montane environment. Evolution 16, 364 (10.2307/2406285) DOI
Poynton JC. 1964. Relationships between habitat and terrestrial breeding in amphibians. Evolution 18, 131 (10.2307/2406429) DOI
Müller H, Liedtke HC, Menegon M, Beck J, Ballesteros-Mejia L, Nagel P, Loader SP. 2013. Forests as promoters of terrestrial life-history strategies in East African amphibians. Biol. Lett. 9, 20121146 (10.1098/rspb.1994.0006) PubMed DOI PMC
Campbell JA, Duellman WE. 2000. New species of stream-breeding hylid frogs from the northern versant of the highlands of Oaxaca, Mexico. Sci. Pap. Nat. Hist. Mus. Univ. Kansas 16, 1–28.
Hanken J. 1992. Life history and morphological evolution. J. Evol. Biol. 5, 549–557. (10.1046/j.1420-9101.1992.5040549.x) DOI
Bahir MM, Meegaskumbura M, Manamendra-Arachchi K, Schneider CJ, Pethiyagoda R. 2005. Reproduction and terrestrial direct development in Sri Lankan shrub frogs (Ranidae: Rhacophorinae: Philautus). Raffles B. Zool. 12, 339–350.
Sandberger-Loua L, Doumbia J, Rödel M-O. 2016. Conserving the unique to save the diverse—identifying key environmental determinants for the persistence of the viviparous Nimba toad in a West African World Heritage Site. Biol. Cons. 198, 15–21. (10.1016/j.biocon.2016.03.033) DOI
Duellman WE, Lynch JD. 1969. Descriptions of Atelopus tadpoles and their relevance to atelopodid classification. Herpetologica 25, 231–240.
Portik DM, Blackburn DC. 2016. The evolution of reproductive diversity in Afrobatrachia: a phylogenetic comparative analysis of an extensive radiation of African frogs. Evolution 70, 2017–2032. (10.1111/evo.12997) PubMed DOI PMC
Lutz B. 1948. Ontogenetic evolution in frogs. Evolution 2, 29–39. (10.2307/2405613) PubMed DOI
Crump ML. 2015. Anuran reproductive modes: evolving perspectives. J. Herpetol. 49, 1–16. (10.1670/14-097) DOI
Müller H, Loader SP, Ngalason W, Howell KM, Gower DJ. 2007. Reproduction in brevicipitid frogs (Amphibia: Anura: Brevicipitidae)—evidence from Probreviceps m. macrodactylus. Copeia 2007, 726–733. (10.1643/0045-8511(2007)2007%5B726:RIBFAA%5D2.0.CO;2) DOI
Meegaskumbura M, Senevirathne G, Biju SD, Garg S, Meegaskumbura S, Pethiyagoda R, Hanken J, Schneider CJ. 2015. Patterns of reproductive-mode evolution in Old World tree frogs (Anura, Rhacophoridae). Zool. Scr. 44, 509–522. (10.1111/zsc.12121) DOI
Liedtke HC, Müller H, Hafner J, Nagel P, Loader SP. 2014. Interspecific patterns for egg and clutch sizes of African Bufonidae (Amphibia: Anura). Zool. Anz. 253, 309–315. (10.1016/j.jcz.2014.02.003) DOI
Liedtke HC, et al. 2016. No ecological opportunity signal on a continental scale? Diversification and life-history evolution of African true toads (Anura: Bufonidae). Evolution 70, 1717–1733. (10.1111/evo.12985) PubMed DOI
Tandy M, Keith R. 1972. Bufo of Africa. In Evolution in the genus Bufo (ed. Blair WF.), pp. 119–170. Austin, TX: University of Texas Press.
Liedtke HC, Müller H, Hafner J, Penner J, Gower D, Mazuch T, Rödel M, Loader S. 2017. Data from: Terrestrial reproduction as an adaptation to steep terrain in African toads. Dryad Digital Repository. (10.5061/dryad.k9n2h) PubMed DOI PMC
Frost DR. 2016. Amphibian Species of the World: an Online Reference. Version 6.0. Electronic Database accessible at http://researchamnhorg/herpetology/amphibia/indexhtml. American Museum of Natural History, New York, USA. (last accessed 10 March 2015).
Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. (10.1093/molbev/mss075) PubMed DOI PMC
Tieleman BI, Williams JB, Bloomer P. 2003. Adaptation of metabolism and evaporative water loss along an aridity gradient. Proc. R. Soc. Lond. B 270, 207–214. (10.1098/rspb.2002.2205) PubMed DOI PMC
Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d‘appel variable de l'hydrologie du bassin versant. Hydrolog. Sci. B. 24, 43–69. (10.1080/02626667909491834) DOI
Gonwouo NL, Ndeh AD, Tapondjou WP, Noonan BP. 2013. Amphibia, Bufonidae, Didynamipus sjostedti Andersson, 1903: new records and a review of geographic distribution. Check List 9, 780–782. (10.15560/9.4.780) DOI
Grandison AGC. 1981. Morphology and phylogenetic position of the West African Didynamipus sjoestedti Andersson, 1903 (Anura Bufonidae). Monit. Zool. Ital. 15, 187–215.
Gartshore ME. 1984. The status of the montane herpetofauna of the Cameroon highlands. In Conservation of Cameroon mountane forests (ed. Stuart SN.), pp. 204–263. London, UK: International Council of Bird Preservation.
Channing A, Stanley W. 2002. A new tree toad from the Ukaguru Mountains, Tanzania. Afr. J. Herpetol. 51, 121–128. (10.1080/21564574.2002.9635467) DOI
Boistel R, Amiet JL. 2001. Une nouvelle espèce de Wolterstorffina (Amphibia, Anura, Bufonidae) de l'étage afro-subalpin du Mont Okou (Cameroun). Alytes 18, 127–140.
Stuart SN, Hoffmann M, Chanson JS, Cox NA, Berridge RJ, Ramani P, Young BE (eds) 2008. Threatened amphibians of the world. Barcelona, Spain: Lynx Edicions.
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131. (10.1093/bioinformatics/btm538) PubMed DOI
Huelsenbeck JP, Nielsen R, Bollback JP. 2003. Stochastic mapping of morphological characters. Syst. Biol. 52, 131–158. (10.1080/10635150390192780) PubMed DOI
Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223. (10.1111/j.2041-210X.2011.00169.x) DOI
Bollback JP. 2006. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7, 88 (10.1186/1471-2105-7-88) PubMed DOI PMC
Oksanen J, Blanchet FG, Kindt R, LeGendre P, Minchin PR, O'Hara RB, Simpson GL, Oksanen MJ, Suggests M. 2013. Vegan: community ecology package. R package version 2.0-8.
Hadfield JD. 2010. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22. (10.18637/jss.v033.i02) PubMed DOI
Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290. (10.1093/bioinformatics/btg412) PubMed DOI
Plummer M, Best N, Cowles K, Vines K. 2006. CODA: Convergence diagnosis and output analysis for MCMC. R News 6, 7–11.
Ackerly D. 2009. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Natl Acad. Sci. USA 106, 19 699–19 706. (10.1073/pnas.0901635106) PubMed DOI PMC
Schluter D, Price T, Mooers AO, Ludwig D. 1997. Likelihood of ancestor states in adaptive radiation. Evolution 51, 1699–1711. (10.2307/2410994) PubMed DOI
Pramuk JB, Robertson T, Sites JW, Noonan BP. 2008. Around the world in 10 million years: biogeography of the nearly cosmopolitan true toads (Anura: Bufonidae). Glob. Ecol. Biogeogr. 17, 72–83.
Van Bocxlaer I, Loader SP, Roelants K, Biju SD, Menegon M, Bossuyt F. 2010. Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science 327, 679–682. (10.1126/science.1181707) PubMed DOI
Portik DM, Papenfuss TJ. 2015. Historical biogeography resolves the origins of endemic Arabian toad lineages (Anura: Bufonidae): evidence for ancient vicariance and dispersal events with the Horn of Africa and South Asia. BMC Evol. Biol. 15, 152 (10.1186/s12862-015-0417-y) PubMed DOI PMC
Schiøtz A. 1963. Amphibians of Nigeria. Vidensk. Meddr dansk naturh. Foren. 129, 1–92
Channing A, Rödel M-O, Channing J. 2012. Tadpoles of Africa. Frankfurt am Main, Germany: Edition Chimaira.
Mertens R. 1939. Über das Höhenvorkommen der Froschlurche am Großen Kamerun-berge. Abh. Ber. Mus. Naturkde. Vorgesch. naturwiss. Ver. Magdeburg 7, 121–128.
Grandison AGC. 1978. The occurrence of Nectophrynoides (Anura Bufonidae) in Ethiopia. A new concept of the genus with a description of a new species. Monit. Zool. Ital. Suppl. XI, 119–172.
Wake MH. 1980. The reproductive biology of Nectophrynoides malcolmi (Amphibia: Bufonidae), with comments on the evolution of reproductive modes in the genus Nectophrynoides. Copeia 1980, 193–209. (10.2307/1443998) DOI
Blackburn DG. 2006. Squamate reptiles as model organisms for the evolution of viviparity. Herpetol. Monogr. 20, 131–146. (10.1655/0733-1347(2007)20%5B131:SRAMOF%5D2.0.CO;2) DOI
Pereira EB, Collevatti RG, de Carvalho Kokubum MN, de Oliveira Miranda NE, Maciel NM. 2015. Ancestral reconstruction of reproductive traits shows no tendency toward terrestriality in leptodactyline frogs. BMC Evol. Biol. 15, 1–12. (10.1186/s12862-015-0365-6) PubMed DOI PMC
Kerney RR, Blackburn DC, Müller H, Hanken J. 2011. Do larval traits re-evolve? Evidence from the embryogenesis of a direct-developing salamander, Plethodon cinereus. Evolution 66, 252–262. (10.1111/j.1558-5646.2011.01426.x) PubMed DOI
San Mauro D, Gower DJ, Müller H, Loader SP, Zardoya R, Nussbaum RA, Wilkinson M. 2014. Life-history evolution and mitogenomic phylogeny of caecilian amphibians. Mol. Phylogenet. Evol. 73, 177–189. (10.1016/j.ympev.2014.01.009) PubMed DOI
Surget-Groba Y, Heulin B, Guillaume CP, Puky M, Semenov D, Orlav V, Kupriyanova L, Ghira I, SMAJDA B. 2006. Multiple origins of viviparity, or reversal from viviparity to oviparity? The European common lizard (Zootoca vivipara, Lacertidae) and the evolution of parity. Biol. J. Linn. Soc. 87, 1–11. (10.1111/j.1095-8312.2006.00552.x) DOI
Lynch VJ, Wagner GP. 2010. Did egg-laying boas break Dollo's Law? Phylogenetic evidence for reversal to oviparity in sand boas (Eryx: Boidae). Evolution 64, 207–216. (10.2307/27743503) PubMed DOI
Tinkle DW, Gibbons JW. 1977. The distribution and evolution of viviparity in reptiles. Misc. publ. Mus. Zool., Univ. Mich. 154, 1–55.
Sepulchre P, Ramstein G, Fluteau F, Schuster M, Tiercelin J-J, Brunet M. 2006. Tectonic uplift and Eastern Africa aridification. Science 313, 1419–1423. (10.1126/science.1129158) PubMed DOI
Sandberger-Loua L, Müller H, Rödel M-O. 2017. A review of the reproductive biology of the only known matrotrophic viviparous anuran, the West African Nimba toad, Nimbaphrynoides occidentalis. Zoosyst. Evol. 93, 105–133. (10.3897/zse.93.10489) DOI
McCraine JR, Wake MH, Orellana LV. 2013. Anura Craugastor laticeps. Possible ovoviviparity. Herpetol. Rev. 44, 653–654.
Kusrini MD, Rowley JJL, Khairunnisa LR, Shea GM, Altig R. 2015. The reproductive biology and larvae of the first tadpole-bearing frog, Limnonectes larvaepartus. PLoS ONE 10, e116154-9. (10.1371/journal.pone.0116154) PubMed DOI PMC
Iskandar DT, Evans BJ, McGuire JA. 2014. A novel reproductive mode in frogs: a new species of fanged frog with internal fertilization and birth of tadpoles. PLoS ONE 9, e115884 (10.1371/journal.pone.0115884.s001) PubMed DOI PMC
Haddad C, Prado CPA. 2005. Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil. BioScience 55, 207–217. (10.1641/0006-3568(2005)055%5B0207:RMIFAT%5D2.0.CO;2) DOI
García-París M, Alcobendas M, Buckley D, Wake DB. 2003. Dispersal of viviparity across contact zones in Iberian populations of fire salamanders (Salamandra) inferred from discordance of genetic and morphological traits. Evolution 57, 129–143. (10.1111/j.0014-3820.2003.tb00221.x) PubMed DOI
Terrestrial reproduction as an adaptation to steep terrain in African toads