Connecting myelin-related and synaptic dysfunction in schizophrenia with SNP-rich gene expression hubs
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28382934
PubMed Central
PMC5382542
DOI
10.1038/srep45494
PII: srep45494
Knihovny.cz E-resources
- MeSH
- Extracellular Matrix Proteins genetics metabolism MeSH
- Genetic Loci MeSH
- Gene Regulatory Networks genetics MeSH
- Nuclear Proteins MeSH
- Polymorphism, Single Nucleotide * MeSH
- Humans MeSH
- DNA Methylation MeSH
- Brain metabolism MeSH
- Myelin Proteins genetics metabolism MeSH
- Promoter Regions, Genetic MeSH
- Schizophrenia genetics pathology MeSH
- Synapses metabolism MeSH
- Synaptogyrins genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DGCR6 protein, human MeSH Browser
- Extracellular Matrix Proteins MeSH
- Nuclear Proteins MeSH
- MOBP protein, human MeSH Browser
- Myelin Proteins MeSH
- Synaptogyrins MeSH
- SYNGR1 protein, human MeSH Browser
Combining genome-wide mapping of SNP-rich regions in schizophrenics and gene expression data in all brain compartments across the human life span revealed that genes with promoters most frequently mutated in schizophrenia are expression hubs interacting with far more genes than the rest of the genome. We summed up the differentially methylated "expression neighbors" of genes that fall into one of 108 distinct schizophrenia-associated loci with high number of SNPs. Surprisingly, the number of expression neighbors of the genes in these loci were 35 times higher for the positively correlating genes (32 times higher for the negatively correlating ones) than for the rest of the ~16000 genes. While the genes in the 108 loci have little known impact in schizophrenia, we identified many more known schizophrenia-related important genes with a high degree of connectedness (e.g. MOBP, SYNGR1 and DGCR6), validating our approach. Both the most connected positive and negative hubs affected synapse-related genes the most, supporting the synaptic origin of schizophrenia. At least half of the top genes in both the correlating and anti-correlating categories are cancer-related, including oncogenes (RRAS and ALDOA), providing further insight into the observed inverse relationship between the two diseases.
See more in PubMed
Barabasi A. L. & Oltvai Z. N. Network biology: understanding the cell’s functional organization. Nat Rev Genet 5, 101–113, doi: 10.1038/nrg1272 (2004). PubMed DOI
Goh K. I. et al.. The human disease network. Proceedings of the National Academy of Sciences of the United States of America 104, 8685–8690, doi: 10.1073/pnas.0701361104 (2007). PubMed DOI PMC
Terzian A. C., Andreoli S. B., Razzouk D., Chaves A. C. & Mari Jde J. Fertility and fecundity of an outpatient sample with schizophrenia. Rev Bras Psiquiatr 28, 305–307 (2006). PubMed
Kenny E. M. et al.. Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. Mol Psychiatry 19, 872–879, doi: 10.1038/mp.2013.127 (2014). PubMed DOI
Maynard T. M., Sikich L., Lieberman J. A. & LaMantia A. S. Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr Bull 27, 457–476 (2001). PubMed
Takata A., Ionita-Laza I., Gogos J. A., Xu B. & Karayiorgou M. De Novo Synonymous Mutations in Regulatory Elements Contribute to the Genetic Etiology of Autism and Schizophrenia. Neuron 89, 940–947, doi: 10.1016/j.neuron.2016.02.024 (2016). PubMed DOI PMC
Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427, doi: 10.1038/nature13595 (2014). PubMed DOI PMC
Hawrylycz M. J. et al.. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399, doi: 10.1038/nature11405 (2012). PubMed DOI PMC
Miller J. A. et al.. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206, doi: 10.1038/nature13185 (2014). PubMed DOI PMC
Wockner L. F. et al.. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl Psychiatry 4, e339, doi: 10.1038/tp.2013.111 (2014). PubMed DOI PMC
Wu Y., Yao Y. G. & Luo X. J. SZDB: A Database for Schizophrenia Genetic Research. Schizophr Bull, doi: 10.1093/schbul/sbw102 (2016). PubMed DOI PMC
Rappaport N. et al.. MalaCards: A Comprehensive Automatically-Mined Database of Human Diseases. Curr Protoc Bioinformatics 47, 1 24 21–19, doi: 10.1002/0471250953.bi0124s47 (2014). PubMed DOI
Safran M. et al.. GeneCards Version 3: the human gene integrator. Database: the journal of biological databases and curation 2010, baq020, doi: 10.1093/database/baq020 (2010). PubMed DOI PMC
Binns D. et al.. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 25, 3045–3046, doi: 10.1093/bioinformatics/btp536 (2009). PubMed DOI PMC
Davidkova G., McCullumsmith R. E. & Meador-Woodruff J. H. Expression of ARHGEF11 mRNA in schizophrenic thalamus. Ann N Y Acad Sci 1003, 375–377 (2003). PubMed
van Kammen D. P. et al.. CSF diazepam binding inhibitor and schizophrenia: clinical and biochemical relationships. Biol Psychiatry 34, 515–522 (1993). PubMed
Yamamoto Y. et al.. Cloning and expression of myelin-associated oligodendrocytic basic protein. A novel basic protein constituting the central nervous system myelin. J Biol Chem 269, 31725–31730 (1994). PubMed
Montague P., McCallion A. S., Davies R. W. & Griffiths I. R. Myelin-associated oligodendrocytic basic protein: a family of abundant CNS myelin proteins in search of a function. Dev Neurosci 28, 479–487, doi: 10.1159/000095110 (2006). PubMed DOI
Zheng R. et al.. Neuropeptide-stimulated cell migration in prostate cancer cells is mediated by RhoA kinase signaling and inhibited by neutral endopeptidase. Oncogene 25, 5942–5952, doi: 10.1038/sj.onc.1209586 (2006). PubMed DOI
Bourguignon L. Y., Singleton P. A., Zhu H. & Diedrich F. Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes Grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression. J Biol Chem 278, 29420–29434, doi: 10.1074/jbc.M301885200 (2003). PubMed DOI
Ettinger S. L. et al.. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res 64, 2212–2221 (2004). PubMed
Yang Y. et al.. Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp Cell Res 282, 132–137 (2003). PubMed
Ji S. et al.. ALDOA functions as an oncogene in the highly metastatic pancreatic cancer. Cancer Lett 374, 127–135, doi: 10.1016/j.canlet.2016.01.054 (2016). PubMed DOI
Baranwal S. et al.. Molecular characterization of the tumor-suppressive function of nischarin in breast cancer. J Natl Cancer Inst 103, 1513–1528, doi: 10.1093/jnci/djr350 (2011). PubMed DOI PMC
Weisbrod A. B. et al.. Altered PTEN, ATRX, CHGA, CHGB, and TP53 expression are associated with aggressive VHL-associated pancreatic neuroendocrine tumors. Horm Cancer 4, 165–175, doi: 10.1007/s12672-013-0134-1 (2013). PubMed DOI PMC
Ishikawa N. et al.. Characterization of SEZ6L2 cell-surface protein as a novel prognostic marker for lung cancer. Cancer Sci 97, 737–745, doi: 10.1111/j.1349-7006.2006.00258.x (2006). PubMed DOI PMC
Amler L. C. et al.. Identification and characterization of novel genes located at the t(1;15)(p36.2;q24) translocation breakpoint in the neuroblastoma cell line NGP. Genomics 64, 195–202, doi: 10.1006/geno.1999.6097 (2000). PubMed DOI
de Groot J. F., Piao Y., Lu L., Fuller G. N. & Yung W. K. Knockdown of GluR1 expression by RNA interference inhibits glioma proliferation. J Neurooncol 88, 121–133, doi: 10.1007/s11060-008-9552-2 (2008). PubMed DOI
Levin A. M. et al.. Chromosome 17q12 variants contribute to risk of early-onset prostate cancer. Cancer Res 68, 6492–6495, doi: 10.1158/0008-5472.CAN-08-0348 (2008). PubMed DOI PMC
Liu Z., Ballinger J. R., Rauth A. M., Bendayan R. & Wu X. Y. Delivery of an anticancer drug and a chemosensitizer to murine breast sarcoma by intratumoral injection of sulfopropyl dextran microspheres. J Pharm Pharmacol 55, 1063–1073, doi: 10.1211/0022357021567 (2003). PubMed DOI
Negishi M., Oinuma I. & Katoh H. Plexins: axon guidance and signal transduction. Cell Mol Life Sci 62, 1363–1371, doi: 10.1007/s00018-005-5018-2 (2005). PubMed DOI PMC
Golfinos J. G. et al.. Expression of the genes encoding myelin basic protein and proteolipid protein in human malignant gliomas. Clin Cancer Res 3, 799–804 (1997). PubMed
Ingermann A. R. et al.. Identification of a novel cell death receptor mediating IGFBP-3-induced anti-tumor effects in breast and prostate cancer. J Biol Chem 285, 30233–30246, doi: 10.1074/jbc.M110.122226 (2010). PubMed DOI PMC
Daigo Y. et al.. Isolation, mapping and mutation analysis of a human cDNA homologous to the doc-1 gene of the Chinese hamster, a candidate tumor suppressor for oral cancer. Genes Chromosomes Cancer 20, 204–207 (1997). PubMed
Moschonas A. et al.. CD40 induces antigen transporter and immunoproteasome gene expression in carcinomas via the coordinated action of NF-kappaB and of NF-kappaB-mediated de novo synthesis of IRF-1. Mol Cell Biol 28, 6208–6222, doi: 10.1128/MCB.00611-08 (2008). PubMed DOI PMC
Most P. et al.. Extracellular S100A1 protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2). J Biol Chem 278, 48404–48412, doi: 10.1074/jbc.M308587200 (2003). PubMed DOI
Pfuhl T. et al.. Biochemical characterisation of the proteins encoded by the DiGeorge critical region 6 (DGCR6) genes. Hum Genet 117, 70–80, doi: 10.1007/s00439-005-1267-2 (2005). PubMed DOI
Morihiro Y. et al.. Fatty acid binding protein 7 as a marker of glioma stem cells. Pathol Int 63, 546–553, doi: 10.1111/pin.12109 (2013). PubMed DOI
Ishii H. et al.. Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J Biol Chem 289, 27386–27399, doi: 10.1074/jbc.M114.589432 (2014). PubMed DOI PMC
Su Y. et al.. Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev 19, 327–337, doi: 10.1158/1055-9965.EPI-09-0865 (2010). PubMed DOI PMC
Walsh N. et al.. Aldehyde dehydrogenase 1A1 and gelsolin identified as novel invasion-modulating factors in conditioned medium of pancreatic cancer cells. J Proteomics 71, 561–571, doi: 10.1016/j.jprot.2008.09.002 (2008). PubMed DOI
Gao F. et al.. The role of LGR5 and ALDH1A1 in non-small cell lung cancer: Cancer progression and prognosis. Biochem Biophys Res Commun 462, 91–98, doi: 10.1016/j.bbrc.2015.04.029 (2015). PubMed DOI
Zhou Y. et al.. Clinicopathological significance of ALDH1A1 in lung, colorectal, and breast cancers: a meta-analysis. Biomark Med 9, 777–790, doi: 10.2217/BMM.15.49 (2015). PubMed DOI
Gene Ontology C. Gene Ontology Consortium: going forward. Nucleic acids research 43, D1049–1056, doi: 10.1093/nar/gku1179 (2015). PubMed DOI PMC
Szklarczyk D. et al.. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic acids research 43, D447–452, doi: 10.1093/nar/gku1003 (2015). PubMed DOI PMC
Volk D. W. & Lewis D. A. Early developmental disturbances of cortical inhibitory neurons: contribution to cognitive deficits in schizophrenia. Schizophr Bull 40, 952–957, doi: 10.1093/schbul/sbu111 (2014). PubMed DOI PMC
Mirnics K., Middleton F. A., Lewis D. A. & Levitt P. Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 24, 479–486 (2001). PubMed
Filbin M. T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4, 703–713, doi: 10.1038/nrn1195 (2003). PubMed DOI
Takahashi N., Sakurai T., Davis K. L. & Buxbaum J. D. Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol 93, 13–24, doi: 10.1016/j.pneurobio.2010.09.004 (2011). PubMed DOI PMC
Tkachev D. et al.. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362, 798–805, doi: 10.1016/S0140-6736(03)14289-4 (2003). PubMed DOI
Fields R. D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31, 361–370, doi: 10.1016/j.tins.2008.04.001 (2008). PubMed DOI PMC
Raiker S. J. et al.. Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity. J Neurosci 30, 12432–12445, doi: 10.1523/JNEUROSCI.0895-10.2010 (2010). PubMed DOI PMC
Tabares-Seisdedos R. & Rubenstein J. L. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiatry 14, 563–589, doi: 10.1038/mp.2009.2 (2009). PubMed DOI
Kar G., Gursoy A. & Keskin O. Human cancer protein-protein interaction network: a structural perspective. PLoS computational biology 5, e1000601, doi: 10.1371/journal.pcbi.1000601 (2009). PubMed DOI PMC
Liu Y. et al.. Exploring the pathogenetic association between schizophrenia and type 2 diabetes mellitus diseases based on pathway analysis. BMC Med Genomics 6 Suppl 1, S17, doi: 10.1186/1755-8794-6-S1-S17 (2013). PubMed DOI PMC
Gumerov V. & Hegyi H. MicroRNA-derived network analysis of differentially methylated genes in schizophrenia, implicating GABA receptor B1 [GABBR1] and protein kinase B [AKT1]. Biology direct 10, 59, doi: 10.1186/s13062-015-0089-y (2015). PubMed DOI PMC
Ibanez K., Boullosa C., Tabares-Seisdedos R., Baudot A. & Valencia A. Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic meta-analyses. PLoS Genet 10, e1004173, doi: 10.1371/journal.pgen.1004173 (2014). PubMed DOI PMC
Thurman R. E. et al.. The accessible chromatin landscape of the human genome. Nature 489, 75–82, doi: 10.1038/nature11232 (2012). PubMed DOI PMC
Shannon P. et al.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13, 2498–2504, doi: 10.1101/gr.1239303 (2003). PubMed DOI PMC