• This record comes from PubMed

Connecting myelin-related and synaptic dysfunction in schizophrenia with SNP-rich gene expression hubs

. 2017 Apr 06 ; 7 () : 45494. [epub] 20170406

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Combining genome-wide mapping of SNP-rich regions in schizophrenics and gene expression data in all brain compartments across the human life span revealed that genes with promoters most frequently mutated in schizophrenia are expression hubs interacting with far more genes than the rest of the genome. We summed up the differentially methylated "expression neighbors" of genes that fall into one of 108 distinct schizophrenia-associated loci with high number of SNPs. Surprisingly, the number of expression neighbors of the genes in these loci were 35 times higher for the positively correlating genes (32 times higher for the negatively correlating ones) than for the rest of the ~16000 genes. While the genes in the 108 loci have little known impact in schizophrenia, we identified many more known schizophrenia-related important genes with a high degree of connectedness (e.g. MOBP, SYNGR1 and DGCR6), validating our approach. Both the most connected positive and negative hubs affected synapse-related genes the most, supporting the synaptic origin of schizophrenia. At least half of the top genes in both the correlating and anti-correlating categories are cancer-related, including oncogenes (RRAS and ALDOA), providing further insight into the observed inverse relationship between the two diseases.

See more in PubMed

Barabasi A. L. & Oltvai Z. N. Network biology: understanding the cell’s functional organization. Nat Rev Genet 5, 101–113, doi: 10.1038/nrg1272 (2004). PubMed DOI

Goh K. I. et al.. The human disease network. Proceedings of the National Academy of Sciences of the United States of America 104, 8685–8690, doi: 10.1073/pnas.0701361104 (2007). PubMed DOI PMC

Terzian A. C., Andreoli S. B., Razzouk D., Chaves A. C. & Mari Jde J. Fertility and fecundity of an outpatient sample with schizophrenia. Rev Bras Psiquiatr 28, 305–307 (2006). PubMed

Kenny E. M. et al.. Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. Mol Psychiatry 19, 872–879, doi: 10.1038/mp.2013.127 (2014). PubMed DOI

Maynard T. M., Sikich L., Lieberman J. A. & LaMantia A. S. Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr Bull 27, 457–476 (2001). PubMed

Takata A., Ionita-Laza I., Gogos J. A., Xu B. & Karayiorgou M. De Novo Synonymous Mutations in Regulatory Elements Contribute to the Genetic Etiology of Autism and Schizophrenia. Neuron 89, 940–947, doi: 10.1016/j.neuron.2016.02.024 (2016). PubMed DOI PMC

Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427, doi: 10.1038/nature13595 (2014). PubMed DOI PMC

Hawrylycz M. J. et al.. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399, doi: 10.1038/nature11405 (2012). PubMed DOI PMC

Miller J. A. et al.. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206, doi: 10.1038/nature13185 (2014). PubMed DOI PMC

Wockner L. F. et al.. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl Psychiatry 4, e339, doi: 10.1038/tp.2013.111 (2014). PubMed DOI PMC

Wu Y., Yao Y. G. & Luo X. J. SZDB: A Database for Schizophrenia Genetic Research. Schizophr Bull, doi: 10.1093/schbul/sbw102 (2016). PubMed DOI PMC

Rappaport N. et al.. MalaCards: A Comprehensive Automatically-Mined Database of Human Diseases. Curr Protoc Bioinformatics 47, 1 24 21–19, doi: 10.1002/0471250953.bi0124s47 (2014). PubMed DOI

Safran M. et al.. GeneCards Version 3: the human gene integrator. Database: the journal of biological databases and curation 2010, baq020, doi: 10.1093/database/baq020 (2010). PubMed DOI PMC

Binns D. et al.. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 25, 3045–3046, doi: 10.1093/bioinformatics/btp536 (2009). PubMed DOI PMC

Davidkova G., McCullumsmith R. E. & Meador-Woodruff J. H. Expression of ARHGEF11 mRNA in schizophrenic thalamus. Ann N Y Acad Sci 1003, 375–377 (2003). PubMed

van Kammen D. P. et al.. CSF diazepam binding inhibitor and schizophrenia: clinical and biochemical relationships. Biol Psychiatry 34, 515–522 (1993). PubMed

Yamamoto Y. et al.. Cloning and expression of myelin-associated oligodendrocytic basic protein. A novel basic protein constituting the central nervous system myelin. J Biol Chem 269, 31725–31730 (1994). PubMed

Montague P., McCallion A. S., Davies R. W. & Griffiths I. R. Myelin-associated oligodendrocytic basic protein: a family of abundant CNS myelin proteins in search of a function. Dev Neurosci 28, 479–487, doi: 10.1159/000095110 (2006). PubMed DOI

Zheng R. et al.. Neuropeptide-stimulated cell migration in prostate cancer cells is mediated by RhoA kinase signaling and inhibited by neutral endopeptidase. Oncogene 25, 5942–5952, doi: 10.1038/sj.onc.1209586 (2006). PubMed DOI

Bourguignon L. Y., Singleton P. A., Zhu H. & Diedrich F. Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes Grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression. J Biol Chem 278, 29420–29434, doi: 10.1074/jbc.M301885200 (2003). PubMed DOI

Ettinger S. L. et al.. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res 64, 2212–2221 (2004). PubMed

Yang Y. et al.. Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp Cell Res 282, 132–137 (2003). PubMed

Ji S. et al.. ALDOA functions as an oncogene in the highly metastatic pancreatic cancer. Cancer Lett 374, 127–135, doi: 10.1016/j.canlet.2016.01.054 (2016). PubMed DOI

Baranwal S. et al.. Molecular characterization of the tumor-suppressive function of nischarin in breast cancer. J Natl Cancer Inst 103, 1513–1528, doi: 10.1093/jnci/djr350 (2011). PubMed DOI PMC

Weisbrod A. B. et al.. Altered PTEN, ATRX, CHGA, CHGB, and TP53 expression are associated with aggressive VHL-associated pancreatic neuroendocrine tumors. Horm Cancer 4, 165–175, doi: 10.1007/s12672-013-0134-1 (2013). PubMed DOI PMC

Ishikawa N. et al.. Characterization of SEZ6L2 cell-surface protein as a novel prognostic marker for lung cancer. Cancer Sci 97, 737–745, doi: 10.1111/j.1349-7006.2006.00258.x (2006). PubMed DOI PMC

Amler L. C. et al.. Identification and characterization of novel genes located at the t(1;15)(p36.2;q24) translocation breakpoint in the neuroblastoma cell line NGP. Genomics 64, 195–202, doi: 10.1006/geno.1999.6097 (2000). PubMed DOI

de Groot J. F., Piao Y., Lu L., Fuller G. N. & Yung W. K. Knockdown of GluR1 expression by RNA interference inhibits glioma proliferation. J Neurooncol 88, 121–133, doi: 10.1007/s11060-008-9552-2 (2008). PubMed DOI

Levin A. M. et al.. Chromosome 17q12 variants contribute to risk of early-onset prostate cancer. Cancer Res 68, 6492–6495, doi: 10.1158/0008-5472.CAN-08-0348 (2008). PubMed DOI PMC

Liu Z., Ballinger J. R., Rauth A. M., Bendayan R. & Wu X. Y. Delivery of an anticancer drug and a chemosensitizer to murine breast sarcoma by intratumoral injection of sulfopropyl dextran microspheres. J Pharm Pharmacol 55, 1063–1073, doi: 10.1211/0022357021567 (2003). PubMed DOI

Negishi M., Oinuma I. & Katoh H. Plexins: axon guidance and signal transduction. Cell Mol Life Sci 62, 1363–1371, doi: 10.1007/s00018-005-5018-2 (2005). PubMed DOI PMC

Golfinos J. G. et al.. Expression of the genes encoding myelin basic protein and proteolipid protein in human malignant gliomas. Clin Cancer Res 3, 799–804 (1997). PubMed

Ingermann A. R. et al.. Identification of a novel cell death receptor mediating IGFBP-3-induced anti-tumor effects in breast and prostate cancer. J Biol Chem 285, 30233–30246, doi: 10.1074/jbc.M110.122226 (2010). PubMed DOI PMC

Daigo Y. et al.. Isolation, mapping and mutation analysis of a human cDNA homologous to the doc-1 gene of the Chinese hamster, a candidate tumor suppressor for oral cancer. Genes Chromosomes Cancer 20, 204–207 (1997). PubMed

Moschonas A. et al.. CD40 induces antigen transporter and immunoproteasome gene expression in carcinomas via the coordinated action of NF-kappaB and of NF-kappaB-mediated de novo synthesis of IRF-1. Mol Cell Biol 28, 6208–6222, doi: 10.1128/MCB.00611-08 (2008). PubMed DOI PMC

Most P. et al.. Extracellular S100A1 protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2). J Biol Chem 278, 48404–48412, doi: 10.1074/jbc.M308587200 (2003). PubMed DOI

Pfuhl T. et al.. Biochemical characterisation of the proteins encoded by the DiGeorge critical region 6 (DGCR6) genes. Hum Genet 117, 70–80, doi: 10.1007/s00439-005-1267-2 (2005). PubMed DOI

Morihiro Y. et al.. Fatty acid binding protein 7 as a marker of glioma stem cells. Pathol Int 63, 546–553, doi: 10.1111/pin.12109 (2013). PubMed DOI

Ishii H. et al.. Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J Biol Chem 289, 27386–27399, doi: 10.1074/jbc.M114.589432 (2014). PubMed DOI PMC

Su Y. et al.. Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev 19, 327–337, doi: 10.1158/1055-9965.EPI-09-0865 (2010). PubMed DOI PMC

Walsh N. et al.. Aldehyde dehydrogenase 1A1 and gelsolin identified as novel invasion-modulating factors in conditioned medium of pancreatic cancer cells. J Proteomics 71, 561–571, doi: 10.1016/j.jprot.2008.09.002 (2008). PubMed DOI

Gao F. et al.. The role of LGR5 and ALDH1A1 in non-small cell lung cancer: Cancer progression and prognosis. Biochem Biophys Res Commun 462, 91–98, doi: 10.1016/j.bbrc.2015.04.029 (2015). PubMed DOI

Zhou Y. et al.. Clinicopathological significance of ALDH1A1 in lung, colorectal, and breast cancers: a meta-analysis. Biomark Med 9, 777–790, doi: 10.2217/BMM.15.49 (2015). PubMed DOI

Gene Ontology C. Gene Ontology Consortium: going forward. Nucleic acids research 43, D1049–1056, doi: 10.1093/nar/gku1179 (2015). PubMed DOI PMC

Szklarczyk D. et al.. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic acids research 43, D447–452, doi: 10.1093/nar/gku1003 (2015). PubMed DOI PMC

Volk D. W. & Lewis D. A. Early developmental disturbances of cortical inhibitory neurons: contribution to cognitive deficits in schizophrenia. Schizophr Bull 40, 952–957, doi: 10.1093/schbul/sbu111 (2014). PubMed DOI PMC

Mirnics K., Middleton F. A., Lewis D. A. & Levitt P. Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 24, 479–486 (2001). PubMed

Filbin M. T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4, 703–713, doi: 10.1038/nrn1195 (2003). PubMed DOI

Takahashi N., Sakurai T., Davis K. L. & Buxbaum J. D. Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol 93, 13–24, doi: 10.1016/j.pneurobio.2010.09.004 (2011). PubMed DOI PMC

Tkachev D. et al.. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362, 798–805, doi: 10.1016/S0140-6736(03)14289-4 (2003). PubMed DOI

Fields R. D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31, 361–370, doi: 10.1016/j.tins.2008.04.001 (2008). PubMed DOI PMC

Raiker S. J. et al.. Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity. J Neurosci 30, 12432–12445, doi: 10.1523/JNEUROSCI.0895-10.2010 (2010). PubMed DOI PMC

Tabares-Seisdedos R. & Rubenstein J. L. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiatry 14, 563–589, doi: 10.1038/mp.2009.2 (2009). PubMed DOI

Kar G., Gursoy A. & Keskin O. Human cancer protein-protein interaction network: a structural perspective. PLoS computational biology 5, e1000601, doi: 10.1371/journal.pcbi.1000601 (2009). PubMed DOI PMC

Liu Y. et al.. Exploring the pathogenetic association between schizophrenia and type 2 diabetes mellitus diseases based on pathway analysis. BMC Med Genomics 6 Suppl 1, S17, doi: 10.1186/1755-8794-6-S1-S17 (2013). PubMed DOI PMC

Gumerov V. & Hegyi H. MicroRNA-derived network analysis of differentially methylated genes in schizophrenia, implicating GABA receptor B1 [GABBR1] and protein kinase B [AKT1]. Biology direct 10, 59, doi: 10.1186/s13062-015-0089-y (2015). PubMed DOI PMC

Ibanez K., Boullosa C., Tabares-Seisdedos R., Baudot A. & Valencia A. Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic meta-analyses. PLoS Genet 10, e1004173, doi: 10.1371/journal.pgen.1004173 (2014). PubMed DOI PMC

Thurman R. E. et al.. The accessible chromatin landscape of the human genome. Nature 489, 75–82, doi: 10.1038/nature11232 (2012). PubMed DOI PMC

Shannon P. et al.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13, 2498–2504, doi: 10.1101/gr.1239303 (2003). PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...