Climatic niche evolution is faster in sympatric than allopatric lineages of the butterfly genus Pyrgus
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
28404781
PubMed Central
PMC5394673
DOI
10.1098/rspb.2017.0208
PII: rspb.2017.0208
Knihovny.cz E-zdroje
- Klíčová slova
- climatic niche, macro-evolutionary processes, next-generation sequencing, parametric biogeography,
- MeSH
- biologická evoluce * MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- motýli genetika fyziologie MeSH
- podnebí * MeSH
- sympatrie MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Asie MeSH
- Evropa MeSH
- severní Afrika MeSH
Understanding how speciation relates to ecological divergence has long fascinated biologists. It is assumed that ecological divergence is essential to sympatric speciation, as a mechanism to avoid competition and eventually lead to reproductive isolation, while divergence in allopatry is not necessarily associated with niche differentiation. The impact of the spatial context of divergence on the evolutionary rates of abiotic dimensions of the ecological niche has rarely been explored for an entire clade. Here, we compare the magnitude of climatic niche shifts between sympatric versus allopatric divergence of lineages in butterflies. By combining next-generation sequencing, parametric biogeography and ecological niche analyses applied to a genus-wide phylogeny of Palaearctic Pyrgus butterflies, we compare evolutionary rates along eight climatic dimensions across sister lineages that diverged in large-scale sympatry versus allopatry. In order to examine the possible effects of the spatial scale at which sympatry is defined, we considered three sets of biogeographic assignments, ranging from narrow to broad definition. Our findings suggest higher rates of niche evolution along all climatic dimensions for sister lineages that diverge in sympatry, when using a narrow delineation of biogeographic areas. This result contrasts with significantly lower rates of climatic niche evolution found in cases of allopatric speciation, despite the biogeographic regions defined here being characterized by significantly different climates. Higher rates in allopatry are retrieved when biogeographic areas are too widely defined-in such a case allopatric events may be recorded as sympatric. Our results reveal the macro-evolutionary significance of abiotic niche differentiation involved in speciation processes within biogeographic regions, and illustrate the importance of the spatial scale chosen to define areas when applying parametric biogeographic analyses.
Biology Centre of the Czech Academy of Sciences Ceske Budejovice Czech Republic
Centre Suisse de Cartographie de la Faune Neuchâtel Switzerland
Departamento de Biología Universidad Autónoma de Madrid Madrid Spain
Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
Department of Life Sciences Natural History Museum Cromwell Road London UK
Institute of Evolutionary Biology CSIC Universitat Pompeu Fabra Barcelona Spain
Institute of Terrestrial Ecosystems ETH Zürich Zurich Switzerland
Laubacher Str 4 Lich Hessen Germany
Swiss Federal Research Institute WSL Birmensdorf Switzerland
W Szafer Institute of Botany Polish Academy of Sciences Kraków Poland
Zobrazit více v PubMed
Wright S. 1932. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In Proceedings of the 6th International Congress on Genetics, pp. 356–366.
Dobzhansky T, Dobzhansky TG. 1937. Genetics and the origin of species. New York, NY: Columbia University Press.
Mayr E. 1942. Systematics and the origin of species, from the viewpoint of a zoologist. New York, NY: Harvard University Press.
Schluter D. 2000. The ecology of adaptive radiation. Oxford, UK: OUP.
Coyne JA, Orr HA. 2004. Speciation. Sunderland, MA: Sinauer Associates.
Grant PR, Rosemary Grant B. 2011. How and why species multiply: the radiation of Darwin’s finches Princeton, NJ: Princeton University Press.
Schluter D. 2001. Ecology and the origin of species. Trends Ecol. Evol. 16, 372–380. (10.1016/S0169-5347(01)02198-X) PubMed DOI
Safran RJ, Nosil P. 2012. Speciation: the origin of new species. Nat. Educ. Knowl. 3, 17.
Schluter D. 2009. Evidence for ecological speciation and its alternative. Science 323, 737–741. (10.1126/science.1160006) PubMed DOI
Faria R, et al. 2014. Advances in ecological speciation: an integrative approach. Mol. Ecol. 23, 513–521. (10.1111/mec.12616) PubMed DOI
Feder JL, Egan SP, Nosil P. 2012. The genomics of speciation-with-gene-flow. Trends Genet. 28, 342–350. (10.1016/j.tig.2012.03.009) PubMed DOI
Berlocher SH, Feder JL. 2002. Sympatric speciation in phytophagous insects: moving beyond controversy? Annu. Rev. Entomol. 47, 773–815. (10.1146/annurev.ento.47.091201.145312) PubMed DOI
Rundle HD, Nosil P. 2005. Ecological speciation. Ecol. Lett. 8, 336–352. (10.1111/j.1461-0248.2004.00715.x) DOI
Pfennig KS, Pfennig DW. 2009. Character displacement: ecological and reproductive responses to a common evolutionary problem. Q. Rev. Biol. 84, 253–276. (10.1086/605079) PubMed DOI PMC
Nosil P. 2012. Ecological speciation. Oxford, UK: Oxford University Press.
Hartl DL, Clark AG, Clark AG. 1997. Principles of population genetics. Sunderland, MA: Sinauer associates.
Ng J, Glor RE. 2011. Genetic differentiation among populations of a Hispaniolan trunk anole that exhibit geographical variation in dewlap colour: Genetic differentiation in Anolis distichus. Mol. Ecol. 20, 4302–4317. (10.1111/j.1365-294X.2011.05267.x) PubMed DOI
Prunier JG, Dubut V, Chikhi L, Blanchet S. 2016. Isolation-by-drift: quantifying the respective contributions of genetic drift and gene flow in shaping spatial patterns of genetic differentiation. BioRxiv (10.10.1101/031633) DOI
McCormack JE, Zellmer AJ, Knowles LL. 2010. Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation? Insights from tests with niche models. Evolution 64, 1231–1244. PubMed
Lande R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30, 314–334. (10.2307/2407703) PubMed DOI
Lande R. 1980. Genetic variation and phenotypic evolution during allopatric speciation. Am. Nat. 116, 463–479. (10.1086/283642) DOI
Mallet J, Meyer A, Nosil P, Feder JL. 2009. Space, sympatry and speciation. J. Evol. Biol. 22, 2332–2341. (10.1111/j.1420-9101.2009.01816.x) PubMed DOI
Brown WL, Wilson EO. 1956. Character displacement. Syst. Zool. 5, 49–64. (10.2307/2411924) DOI
Bolnick DI. 2007. Sympatric speciation: models and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 38, 459–487. (10.1146/annurev.ecolsys.38.091206.095804) DOI
Grant PR. 1972. Convergent and divergent character displacement. Biol. J. Linn. Soc. Lond. 4, 39–68. (10.1111/j.1095-8312.1972.tb00690.x) DOI
Iyengar VK, Castle T, Mullen SP. 2014. Sympatric sexual signal divergence among North American Calopteryx damselflies is correlated with increased intra- and interspecific male–male aggression. Behav. Ecol. Sociobiol. 68, 275–282. (10.1007/s00265-013-1642-2) DOI
Prosser JI, et al. 2007. The role of ecological theory in microbial ecology. Nat. Rev. Microbiol. 5, 384–392. (10.1038/nrmicro1643) PubMed DOI
Wagner CE, McCune AR, Lovette IJ. 2012. Recent speciation between sympatric Tanganyikan cichlid colour morphs. Mol. Ecol. 21, 3283–3292. (10.1111/j.1365-294X.2012.05607.x) PubMed DOI
Hernández-Roldán JL, Dapporto L, Dincă V, Vicente JC, Hornett EA, Šíchová J, Lukhtanov VA, Talavera G, Vila R. 2016. Integrative analyses unveil speciation linked to host plant shift in Spialia butterflies. Mol. Ecol. 25, 4267–4284. (10.1111/mec.13756) PubMed DOI
Rennison DJ, Owens GL, Heckman N, Schluter D, Veen T. 2016. Rapid adaptive evolution of colour vision in the threespine stickleback radiation. Proc. R. Soc. B 283, 20160242 (10.1098/rspb.2016.0242) PubMed DOI PMC
Turelli M, Barton NH, Coyne JA. 2001. Theory and speciation. Trends Ecol. Evol. 16, 330–343. (10.1016/S0169-5347(01)02177-2) PubMed DOI
Wiens JJ, et al. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324. (10.1111/j.1461-0248.2010.01515.x) PubMed DOI
Peterson AT. 2011. Ecological niche conservatism: a time-structured review of evidence. J. Biogeogr. 38, 817–827. (10.1111/j.1365-2699.2010.02456.x) DOI
Feder JL, Chilcote CA, Bush GL. 1988. Genetic differentiation between sympatric host races of the apple maggot fly Rhagoletis pomonella. Nature 336, 61–64. (10.1038/336061a0) DOI
Florio AM, Ingram CM, Rakotondravony HA, Louis EE, Raxworthy CJ. 2012. Detecting cryptic speciation in the widespread and morphologically conservative carpet chameleon (Furcifer lateralis) of Madagascar. J. Evol. Biol. 25, 1399–1414. (10.1111/j.1420-9101.2012.02528.x) PubMed DOI
Blair ME, Sterling EJ, Dusch M, Raxworthy CJ, Pearson RG. 2013. Ecological divergence and speciation between lemur (Eulemur) sister species in Madagascar. J. Evol. Biol. 26, 1790–1801. (10.1111/jeb.12179) PubMed DOI
Merrill RM, Naisbit RE, Mallet J, Jiggins CD. 2013. Ecological and genetic factors influencing the transition between host-use strategies in sympatric Heliconius butterflies. J. Evol. Biol. 26, 1959–1967. (10.1111/jeb.12194) PubMed DOI
Warren AD, Ogawa JR, Brower AVZ. 2008. Phylogenetic relationships of subfamilies and circumscription of tribes in the family Hesperiidae (Lepidoptera: Hesperioidea). Cladistics 24, 642–676. (10.1111/j.1096-0031.2008.00218.x) DOI
Hodkinson ID. 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biol. Rev. Camb. Philos. Soc. 80, 489–513. (10.1017/S1464793105006767) PubMed DOI
Sømme L, Zachariassen KE. 1981. Adaptations to low temperature in high altitude insects from Mount Kenya. Ecol. Entomol. 6, 199–204. (10.1111/j.1365-2311.1981.tb00606.x) DOI
Sehnal F. 1991. Effects of cold on morphogenesis. In Insects at low temperature (eds Lee RE Jr, Denlinger DL), pp. 149–173. New York, NY: Springer.
Pearson RG, Dawson TP. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371. (10.1046/j.1466-822X.2003.00042.x) DOI
Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18, 586–608. (10.2307/2406212) DOI
Kergoat GJ, Alvarez N, Hossaert-McKey M, Faure N, Silvain J-F. 2005. Parallels in the evolution of the two largest New and Old World seed-beetle genera (Coleoptera, Bruchidae). Mol. Ecol. 14, 4003–4021. (10.1111/j.1365-294X.2005.02702.x) PubMed DOI
Working Group on Lepidopterists. 1999. Les papillons et leurs biotopes. Tome 2. Cheseaux-Noréaz: Switzerland: Pro Natura.
Maddison DR, Schulz K-S, Maddison WP. 2007. The tree of life web project. Zootaxa 1668, 1–766.
Jong R. 1972. Systematics and geographic history of the genus Pyrgus in the Palaearctic region (Lepidoptera, Hesperiidae). Tijdschr. Entomol. 115, 1–121.
Telenius A. 2011. Biodiversity information goes public: GBIF at your service. Nord. J. Bot. 29, 378–381. (10.1111/j.1756-1051.2011.01167.x) DOI
Stiller M, Knapp M, Stenzel U, Hofreiter M, Meyer M. 2009. Direct multiplex sequencing (DMPS)—a novel method for targeted high-throughput sequencing of ancient and highly degraded DNA. Genome Res. 19, 1843–1848. (10.1101/gr.095760.109) PubMed DOI PMC
Meyer M, Kircher M. 2010. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448. (10.1101/pdb.prot5448) PubMed DOI
Tin MM-Y, Economo EP, Mikheyev AS. 2014. Sequencing degraded DNA from non-destructively sampled museum specimens for RAD-tagging and low-coverage shotgun phylogenetics. PLoS ONE 9, e96793 (10.1371/journal.pone.0096793) PubMed DOI PMC
Mandrioli M, Borsatti F, Mola L. 2006. Factors affecting DNA preservation from museum-collected lepidopteran specimens. Entomol. Exp. Appl. 120, 239–244. (10.1111/j.1570-7458.2006.00451.x) DOI
Lee PLM, Prys-Jones RP. 2008. Extracting DNA from museum bird eggs, and whole genome amplification of archive DNA. Mol. Ecol. Resour. 8, 551–560. (10.1111/j.1471-8286.2007.02042.x) PubMed DOI
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. (10.1093/bioinformatics/btu170) PubMed DOI PMC
Chevreux B, Wetter T, Suhai S. 1999. Genome sequence assembly using trace signals and additional sequence information. Computer science and biology: proceedings of the German Conference on Bioinformatics, 99, 45–56.
Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680. (10.1093/nar/22.22.4673) PubMed DOI PMC
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acid S., 41, 95–98.
Bankevich A, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. (10.1089/cmb.2012.0021) PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. (10.1016/S0022-2836(05)80360-2) PubMed DOI
Kearse M, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. (10.1093/bioinformatics/bts199) PubMed DOI PMC
Katoh K, Misawa K, Kuma K-I, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066. (10.1093/nar/gkf436) PubMed DOI PMC
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. (10.1093/nar/gkh340) PubMed DOI PMC
Larkin MA, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948. (10.1093/bioinformatics/btm404) PubMed DOI
Criscuolo A, Gribaldo S. 2010. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (10.1186/1471-2148-10-210) PubMed DOI PMC
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. (10.1093/bioinformatics/btl446) PubMed DOI
Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 57, 758–771. (10.1080/10635150802429642) PubMed DOI
Anisimova M, Gil M, Dufayard J-F, Dessimoz C, Gascuel O. 2011. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 60, 685–699. (10.1093/sysbio/syr041) PubMed DOI PMC
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. (10.1093/sysbio/syq010) PubMed DOI
O'Meara BC, Ané C, Sanderson MJ, Wainwright PC. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60, 922–933. (10.1111/j.0014-3820.2006.tb01171.x) PubMed DOI
Brower AV. 1994. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl Acad. Sci. USA 91, 6491–6495. (10.1073/pnas.91.14.6491) PubMed DOI PMC
Paradis E, Claude J, Strimmer K. 2004. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20, 289–290. (10.1093/bioinformatics/btg412) PubMed DOI
Ree RH, Smith SA. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14. (10.1080/10635150701883881) PubMed DOI
Buerki S, Forest F, Alvarez N, Nylander JAA, Arrigo N, Sanmartín I. 2011. An evaluation of new parsimony-based versus parametric inference methods in biogeography: a case study using the globally distributed plant family Sapindaceae. J. Biogeogr. 38, 531–550. (10.1111/j.1365-2699.2010.02432.x) DOI
Ronquist F, Cannatella D. 1997. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst. Biol. 46, 195–203. (10.1093/sysbio/46.1.195) DOI
Yu Y, Harris AJ, Blair C, He X. 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46–49. (10.1016/j.ympev.2015.03.008) PubMed DOI
Buerki S, Forest F, Stadler T, Alvarez N. 2013. The abrupt climate change at the Eocene-Oligocene boundary and the emergence of Southeast Asia triggered the spread of sapindaceous lineages. Ann. Bot. 112, 151–160. (10.1093/aob/mct106) PubMed DOI PMC
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. (10.1002/joc.1276) DOI
Mercader RJ, Scriber JM. 2008. Asymmetrical thermal constraints on the parapatric species boundaries of two widespread generalist butterflies. Ecol. Entomol. 33, 537–545. (10.1111/j.1365-2311.2008.01001.x) DOI
Oksanen J, et al. 2013. vegan: Community ecology package. R package version 2.0-9. See https://cran.r-project.org, https://github.com/vegandevs/vegan.
Eastman JM, Alfaro ME, Joyce P, Hipp AL, Harmon LJ. 2011. A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution 65, 3578–3589. (10.1111/j.1558-5646.2011.01401.x) PubMed DOI
Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223. (10.1111/j.2041-210X.2011.00169.x) DOI
Dray S, et al. 2007. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20. (10.18637/jss.v022.i04) DOI
Losos JB. 1990. The evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards. Evolution 44, 1189–1203. (10.2307/2409282) PubMed DOI
Futuyma DJ, Moreno G. 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst 19, 207–233. (10.1146/annurev.es.19.110188.001231) DOI
Borer M, van Noort T, Arrigo N, Buerki S, Alvarez N. 2011. Does a shift in host plants trigger speciation in the Alpine leaf beetle Oreina speciosissima (Coleoptera, Chrysomelidae)? BMC Evol. Biol. 11, 310 (10.1186/1471-2148-11-310) PubMed DOI PMC
Imada Y, Kawakita A, Kato M. 2011. Allopatric distribution and diversification without niche shift in a bryophyte-feeding basal moth lineage (Lepidoptera: Micropterigidae). Proc. R. Soc. B 278, 3026–3033. (10.1098/rspb.2011.0134) PubMed DOI PMC
Dieckmann U, Doebeli M. 1999. On the origin of species by sympatric speciation. Nature 400, 354–357. (10.1038/22521) PubMed DOI
Bush GL, Smith JJ. 1998. The genetics and ecology of sympatric speciation: a case study. Res. Popul. Ecol. 40, 175–187. (10.1007/BF02763403) DOI
Pitteloud C, et al. 2017. Data from: Climatic niche evolution is faster in sympatric than allopatric lineages of the butterfly genus Pyrgus. Dryad Digital Repository. (10.5061/dryad.sc613) PubMed DOI PMC