Head-to-head comparison of structurally unrelated dipeptidyl peptidase 4 inhibitors in the setting of renal ischemia reperfusion injury

. 2017 Jul ; 174 (14) : 2273-2286. [epub] 20170607

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28423178

BACKGROUND AND PURPOSE: Results regarding protective effects of dipeptidyl peptidase 4 (DPP4) inhibitors in renal ischaemia-reperfusion injury (IRI) are conflicting. Here we have compared structurally unrelated DPP4 inhibitors in a model of renal IRI. EXPERIMENTAL APPROACH: IRI was induced in uninephrectomized male rats by renal artery clamping for 30 min. The sham group was uninephrectomized but not subjected to IRI. DPP4 inhibitors or vehicle were given p.o. once daily on three consecutive days prior to IRI: linagliptin (1.5 mg·kg-1 ·day-1 ), vildagliptin (8 mg·kg-1 ·day-1 ) and sitagliptin (30 mg·kg-1 ·day-1 ). An additional group received sitagliptin until study end (before IRI: 30 mg·kg-1 ·day-1 ; after IRI: 15 mg·kg-1 ·day-1 ). KEY RESULTS: Plasma-active glucagon-like peptide type 1 (GLP-1) increased threefold to fourfold in all DPP4 inhibitor groups 24 h after IRI. Plasma cystatin C, a marker of GFR, peaked 48 h after IRI. Compared with the placebo group, DPP4 inhibition did not reduce increased plasma cystatin C levels. DPP4 inhibitors ameliorated histopathologically assessed tubular damage with varying degrees of drug-specific efficacies. Renal osteopontin expression was uniformly reduced by all DPP4 inhibitors. IRI-related increased renal cytokine expression was not decreased by DPP4 inhibition. Renal DPP4 activity at study end was significantly inhibited in the linagliptin group, but only numerically reduced in the prolonged/dose-adjusted sitagliptin group. Active GLP-1 plasma levels at study end were increased only in the prolonged/dose-adjusted sitagliptin treatment group. CONCLUSIONS AND IMPLICATIONS: In rats with renal IRI, DPP4 inhibition did not alter plasma cystatin C, a marker of glomerular function, but may protect against tubular damage.

Zobrazit více v PubMed

Alexander SPH, Fabbro D, Kelly E, Marrion N, Peters JA, Benson HE et al. (2015). The Concise Guide to PHARMACOLOGY 2015/16: Enzymes. Br J Pharmacol 172: 6024–6109. PubMed PMC

Arsenijevic D, Cajot J‐F, Dulloo AG, Montani J‐P (2015). Uninephrectomy in rats on a fixed food intake results in adipose tissue lipolysis implicating spleen cytokines. Front Physiol 6: 195. PubMed PMC

Baetta R, Corsini A (2011). Pharmacology of dipeptidyl peptidase‐4 inhibitors: similarities and differences. Drugs 71: 1441–1467. PubMed

Basile DP, Anderson MD, Sutton TA (2012). Pathophysiology of acute kidney injury. Compr Physiol 2: 1303–1353. PubMed PMC

Belayev LY, Palevsky PM (2014). The link between acute kidney injury and chronic kidney disease. Curr Opin Nephrol Hypertens 23: 149–154. PubMed PMC

Bloomfield DM, Krishna R, Hreniuk D, Hickey L, Ghosh K, Bergman AJ et al. (2009). A thorough QTc study to assess the effect of sitagliptin, a DPP4 inhibitor, on ventricular repolarization in healthy subjects. J Clin Pharmacol 49: 937–946. PubMed

Blydt‐Hansen TD, Katori M, Lassman C, Ke B, Coito AJ, Iyer S et al. (2003). Gene transfer‐induced local heme oxygenase‐1 overexpression protects rat kidney transplants from ischemia/reperfusion injury. J Am Soc Nephrol 14: 745–754. PubMed

Bonventre JV, Yang L (2011). Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121: 4210–4221. PubMed PMC

Ceriello A, Sportiello L, Rafaniello C, Rossi F (2014). DPP‐4 inhibitors: pharmacological differences and their clinical implications. Expert Opin Drug Saf 13 (Suppl 1): S57–S68. PubMed

Chang M, Chen C, Chen Y, Wu Y, Zhen Y, Leu S et al. (2015). Sitagliptin protects rat kidneys from acute ischemia‐reperfusion injury via upregulation of GLP‐1 and GLP‐1 receptors. Acta Pharmacol Sin 36: 119–130. PubMed PMC

Chawla LS, Amdur RL, Amodeo S, Kimmel PL, Palant CE (2011). The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int 79: 1361–1369. PubMed PMC

Chaykovska L, von Websky K, Rahnenführer J, Alter M, Heiden S, Fuchs H et al. (2011). Effects of DPP‐4 inhibitors on the heart in a rat model of uremic cardiomyopathy. PLoS One 6: e27861. PubMed PMC

Chen Y‐T, Tsai T‐H, Yang C‐C, Sun C‐K, Chang L‐T, Chen H‐H et al. (2013). Exendin‐4 and sitagliptin protect kidney from ischemia‐reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med 11: 270. PubMed PMC

Coca SG, Singanamala S, Parikh CR (2012). Chronic kidney disease after acute kidney injury: a systematic review and meta‐analysis. Kidney Int 81: 442–448. PubMed PMC

Connelly KA, Bowskill BB, Advani SL, Thai K, Chen L‐H, Kabir MG et al. (2014). Dipeptidyl peptidase‐4 inhibition improves left ventricular function in chronic kidney disease. Clin Invest Med 37: E172. PubMed

Curtis MJ, Bond RA, Spina D, Ahluwalia A, Alexander SPA, Giembycz MA et al. (2015). Experimental design and analysis and their reporting: new guidance for publication in BJP. Br J Pharmacol 172: 3461–3471. PubMed PMC

Daniel C, Grigo C, Wang Z, von Hörsten S, Amann K (2012). CD26/DPP4 deficiency impairs kidney function in the ischemia/reperfusion model in the rat. Poster (P351) presented at: 4. Jahrestagung der Deutschen Gesellschaft für Nephrologie. 08.10.2012. Hamburg. Germany. Available at: http://www.aey-congresse.com/nephrokongress2012/Sitzung.aspx?PSID=1921&PAID=4866

Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT et al. (2011). Interleukin‐6 enhances insulin secretion by increasing glucagon‐like peptide‐1 secretion from L cells and alpha cells. Nat Med 17: 1481–1489. PubMed PMC

Endre ZH, Kellum JA, Di Somma S, Doi K, Goldstein SL, Koyner JL et al. (2013). Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol 182: 30–44. PubMed

Field A (2013). Discovering Statistics Using IBM SPSS Statistics. SAGE: London, UK.

Filippatos TD, Athyros VG, Elisaf MS (2014). The pharmacokinetic considerations and adverse effects of DPP‐4 inhibitors [corrected]. Expert Opin Drug Metab Toxicol 10: 787–812. PubMed

Glorie LLF, Verhulst A, Matheeussen V, Baerts L, Magielse J, Hermans N et al. (2012). DPP4 inhibition improves functional outcome after renal ischemia‐reperfusion injury. Am J Physiol Renal Physiol 303: F681–F688. PubMed

Hocher B, Sharkovska Y, Mark M, Klein T, Pfab T (2013). The novel DPP‐4 inhibitors linagliptin and BI 14361 reduce infarct size after myocardial ischemia/reperfusion in rats. Int J Cardiol 167: 87–93. PubMed

Hsu CY, Ordoñez JD, Chertow GM, Fan D, McCulloch CE, Go AS (2008). The risk of acute renal failure in patients with chronic kidney disease. Kidney Int 74: 101–107. PubMed PMC

Huan Y, Jiang Q, Liu J, Shen Z (2015). Establishment of a dipeptidyl peptidases (DPP) 8/9 expressing cell model for evaluating the selectivity of DPP4 inhibitors. J Pharmacol Toxicol Methods 71: 8–12. PubMed

Jungraithmayr W, De Meester I, Matheeussen V, Baerts L, Arni S, Weder W (2012). CD26/DPP‐4 inhibition recruits regenerative stem cells via stromal cell‐derived factor‐1 and beneficially influences ischaemia‐reperfusion injury in mouse lung transplantation. Eur J Cardiothorac Surg 41: 1166–1173. PubMed

Kahles F, Meyer C, Möllmann J, Diebold S, Findeisen HM, Lebherz C et al. (2014). GLP‐1 secretion is increased by inflammatory stimuli in an IL‐6‐dependent manner, leading to hyperinsulinemia and blood glucose lowering. Diabetes 63: 3221–3229. PubMed

Kam Tao Li P, Burdmann EA, Mehta RL (2013). Acute kidney injury: global health alert. J Nephropathol 2: 90–97. PubMed PMC

Kellum JA (2015). Diagnostic criteria for acute kidney injury: present and future. Crit Care Clin 31: 621–632. PubMed PMC

Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG (2010). Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160: 1577–1579. PubMed PMC

Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2012). Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Osteoarthritis Cartilage 20: 256–260. PubMed

Kramann R, Kusaba T, Humphreys BD (2015). Who regenerates the kidney tubule? Nephrol Dial Transplant gfu281 30: 903–910. PubMed PMC

Lafrance J‐P, Miller DR (2010). Acute kidney injury associates with increased long‐term mortality. JASN 21: 345–352. PubMed PMC

McGrath JC, Lilley E (2015). Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol 172: 3189–3193. PubMed PMC

Mentlein R (1999). Dipeptidyl‐peptidase IV (CD26) – role in the inactivation of regulatory peptides. Regul Pept 85: 9–24. PubMed

Mulvihill EE, Drucker DJ (2014). Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase‐4 inhibitors. Endocr Rev 35: 992–1019. PubMed PMC

Muth JED (2014). Basic Statistics and Pharmaceutical Statistical Applications, Third edn. CRC Press: Boca Raton, FL, USA.

Nakamaru Y, Akahoshi F, Iijima H, Hisanaga N, Kume T (2016). Tissue distribution of teneligliptin in rats and comparisons with data reported for other dipeptidyl peptidase‐4 inhibitors. Biopharm Drug Dispos 37: 142–155. PubMed PMC

Nambi P, Gellai M, Wu HL, Prabhakar U (1997). Upregulation of osteopontin in ischemia‐induced renal failure in rats: a role for ET‐1? Biochem Biophys Res Commun 241: 212–214. PubMed

Noiri E, Dickman K, Miller F, Romanov G, Romanov VI, Shaw R et al. (1999). Reduced tolerance to acute renal ischemia in mice with a targeted disruption of the osteopontin gene. Kidney Int 56: 74–82. PubMed

Nuransoy A, Beytur A, Polat A, Samdanci E, Sagir M, Parlakpinar H (2015). Protective effect of sitagliptin against renal ischemia reperfusion injury in rats. Ren Fail 37: 687–693. PubMed

Padanilam BJ, Martin DR, Hammerman MR (1996). Insulin‐like growth factor I‐enhanced renal expression of osteopontin after acute ischemic injury in rats. Endocrinology 137: 2133–2140. PubMed

Park Y, Hirose R, Dang K, Xu F, Behrends M, Tan V et al. (2008). Increased severity of renal ischemia‐reperfusion injury with venous clamping compared to arterial clamping in a rat model. Surgery 143: 243–251. PubMed

Persy VP, Verstrepen WA, Ysebaert DK, De Greef KE, De Broe ME (1999). Differences in osteopontin up‐regulation between proximal and distal tubules after renal ischemia/reperfusion. Kidney Int 56: 601–611. PubMed

Persy VP, Verhulst A, Ysebaert DK, De Greef KE, De Broe ME (2003). Reduced postischemic macrophage infiltration and interstitial fibrosis in osteopontin knockout mice. Kidney Int 63: 543–553. PubMed

Putra SED, Tsuprykov O, Von Websky K, Ritter T, Reichetzeder C, Hocher B (2014). Dealing with large sample sizes: comparison of a new one spot dot blot method to western blot. Clin Lab 60: 1871–1877. PubMed

Racusen LC, Solez K (1986). Nephrotoxic tubular and interstitial lesions: morphology and classification. Toxicol Pathol 14: 45–57. PubMed

Sauvé M, Ban K, Momen MA, Zhou Y‐Q, Henkelman RM, Husain M et al. (2010). Genetic deletion or pharmacological inhibition of dipeptidyl peptidase‐4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes 59: 1063–1073. PubMed PMC

Scheen AJ (2015). Pharmacokinetics and clinical use of incretin‐based therapies in patients with chronic kidney disease and type 2 diabetes. Clin Pharmacokinet 54: 1–21. PubMed

Schnapp G, Klein T, Hoevels Y, Bakker RA, Nar H (2016). Comparative analysis of binding kinetics and thermodynamics of dipeptidyl peptidase‐4 inhibitors and their relationship to structure. J Med Chem 59: 7466–7477. PubMed

Silver SA, Cardinal H, Colwell K, Burger D, Dickhout JG (2015). Acute kidney injury: preclinical innovations, challenges, and opportunities for translation. Can J Kidney Health Dis 2: 30. PubMed PMC

Southan C, Sharman JL, Benson HE, Faccenda E, Pawson AJ, Alexander SPH et al. (2016). The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res 44: D1054–D1068. PubMed PMC

Thakar CV, Christianson A, Freyberg R, Almenoff P, Render ML (2009). Incidence and outcomes of acute kidney injury in intensive care units: a veteran's administration study. Crit Care Med 37: 2552–2558. PubMed

Thomas L, Eckhardt M, Langkopf E, Tadayyon M, Himmelsbach F, Mark M (2008). (R)‐8‐(3‐Amino‐piperidin‐1‐yl)‐7‐but‐2‐ynyl‐3‐methyl‐1‐(4‐methyl‐quinazolin‐2‐ylmethyl)‐3,7‐dihydro‐purine‐2,6‐dione (BI 1356), a novel xanthine‐based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase‐4 inhibitors. J Pharmacol Exp Ther 325: 175–182. PubMed

Timper K, Grisouard J, Sauter NS, Herzog‐Radimerski T, Dembinski K, Peterli R et al. (2013). Glucose‐dependent insulinotropic polypeptide induces cytokine expression, lipolysis, and insulin resistance in human adipocytes. Am J Physiol Endocrinol Metab 304: E1–13. PubMed

Timper K, Dalmas E, Dror E, Rütti S, Thienel C, Sauter NS et al. (2016). Glucose‐dependent insulinotropic peptide stimulates glucagon‐like peptide 1 production by pancreatic islets via interleukin 6, produced by α cells. Gastroenterology 151: 165–179. PubMed

Uchida S, Endou H (1988). Substrate specificity to maintain cellular ATP along the mouse nephron. Am J Physiol 255: F977–F983. PubMed

Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S et al. (2005). Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294: 813–818. PubMed

Vaghasiya J, Sheth N, Bhalodia Y, Manek R (2011). Sitagliptin protects renal ischemia reperfusion induced renal damage in diabetes. Regul Pept 166: 48–54. PubMed

Vercauteren SR, Ysebaert DK, De Greef KE, Eyskens EJ, De Broe ME (1999). Chronic reduction in renal mass in the rat attenuates ischemia/reperfusion injury and does not impair tubular regeneration. J Am Soc Nephrol 10: 2551–2561. PubMed

Wagner M, Cadetg P, Ruf R, Mazzucchelli L, Ferrari P, Redaelli CA (2003). Heme oxygenase‐1 attenuates ischemia/reperfusion‐induced apoptosis and improves survival in rat renal allografts. Kidney Int 63: 1564–1573. PubMed

Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, Gejyo F (2001). Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int 60: 1645–1657. PubMed

Youssef MI, Mahmoud AAA, Abdelghany RH (2015). A new combination of sitagliptin and furosemide protects against remote myocardial injury induced by renal ischemia/reperfusion in rats. Biochem Pharmacol 96: 20–29. PubMed

Zhang Z‐X, Shek K, Wang S, Huang X, Lau A, Yin Z et al. (2010). Osteopontin expressed in tubular epithelial cells regulates NK cell‐mediated kidney ischemia reperfusion injury. J Immunol 185: 967–973. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...