Clonal evolution in myelodysplastic syndromes
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28429724
PubMed Central
PMC5530598
DOI
10.1038/ncomms15099
PII: ncomms15099
Knihovny.cz E-resources
- MeSH
- Bone Marrow Cells drug effects metabolism pathology MeSH
- Drug Resistance, Neoplasm genetics MeSH
- GTP Phosphohydrolases genetics metabolism MeSH
- Angiogenesis Inhibitors therapeutic use MeSH
- Clonal Evolution drug effects MeSH
- Lenalidomide MeSH
- Middle Aged MeSH
- Humans MeSH
- Disease Management MeSH
- Membrane Proteins genetics metabolism MeSH
- Monitoring, Physiologic MeSH
- Mutation MeSH
- Myelodysplastic Syndromes drug therapy genetics metabolism pathology MeSH
- Biomarkers, Tumor genetics metabolism MeSH
- Tumor Suppressor Protein p53 genetics metabolism MeSH
- Follow-Up Studies MeSH
- Disease Progression MeSH
- Proto-Oncogene Proteins p21(ras) genetics metabolism MeSH
- Gene Expression Regulation, Neoplastic * MeSH
- Exome Sequencing MeSH
- Aged MeSH
- Thalidomide analogs & derivatives therapeutic use MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- GTP Phosphohydrolases MeSH
- Angiogenesis Inhibitors MeSH
- KRAS protein, human MeSH Browser
- Lenalidomide MeSH
- Membrane Proteins MeSH
- Biomarkers, Tumor MeSH
- Tumor Suppressor Protein p53 MeSH
- NRAS protein, human MeSH Browser
- Proto-Oncogene Proteins p21(ras) MeSH
- Thalidomide MeSH
- TP53 protein, human MeSH Browser
Cancer development is a dynamic process during which the successive accumulation of mutations results in cells with increasingly malignant characteristics. Here, we show the clonal evolution pattern in myelodysplastic syndrome (MDS) patients receiving supportive care, with or without lenalidomide (follow-up 2.5-11 years). Whole-exome and targeted deep sequencing at multiple time points during the disease course reveals that both linear and branched evolutionary patterns occur with and without disease-modifying treatment. The application of disease-modifying therapy may create an evolutionary bottleneck after which more complex MDS, but also unrelated clones of haematopoietic cells, may emerge. In addition, subclones that acquired an additional mutation associated with treatment resistance (TP53) or disease progression (NRAS, KRAS) may be detected months before clinical changes become apparent. Monitoring the genetic landscape during the disease may help to guide treatment decisions.
See more in PubMed
Bejar R. et al.. Clinical effect of point mutations in myelodysplastic syndromes. N. Engl. J. Med. 364, 2496–2506 (2011). PubMed PMC
Papaemmanuil E. et al.. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122, 3616–3627 quiz 3699 (2013). PubMed PMC
Haferlach T. et al.. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28, 241–247 (2014). PubMed PMC
Welch J. S. et al.. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012). PubMed PMC
Walter M. J. et al.. Clonal architecture of secondary acute myeloid leukemia. N. Engl. J. Med. 366, 1090–1098 (2012). PubMed PMC
Klco J. M. et al.. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 25, 379–392 (2014). PubMed PMC
Grove C. S. & Vassiliou G. S. Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer? Dis. Model. Mech. 7, 941–951 (2014). PubMed PMC
McGranahan N. & Swanton C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27, 15–26 (2015). PubMed
Lin T. L. et al.. Clonal leukemic evolution in myelodysplastic syndromes with TET2 and IDH1/2 mutations. Haematologica 99, 28–36 (2014). PubMed PMC
Mian S. A. et al.. SF3B1 mutant MDS-initiating cells may arise from the haematopoietic stem cell compartment. Nat. Commun. 6, 10004 (2015). PubMed PMC
Chesnais V. et al.. Effect of lenalidomide treatment on clonal architecture of myelodysplastic syndromes without 5q deletion. Blood 127, 749–760 (2016). PubMed PMC
Walter M. J. et al.. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia 27, 1275–1282 (2013). PubMed PMC
Woll P. S. et al.. Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. Cancer Cell 25, 794–808 (2014). PubMed
Mossner M. et al.. Mutational hierarchies in myelodysplastic syndromes dynamically adapt and evolve upon therapy response and failure. Blood 128, 1246–1259 (2016). PubMed
Jadersten M. et al.. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J. Clin. Oncol. 29, 1971–1979 (2011). PubMed
Caye A. et al.. Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat. Genet. 47, 1334–1340 (2015). PubMed
Meggendorfer M. et al.. Karyotype evolution and acquisition of FLT3 or RAS pathway alterations drive progression of myelodysplastic syndrome to acute myeloid leukemia. Haematologica 100, e487–e490 (2015). PubMed PMC
Takahashi K. et al.. Dynamic acquisition of FLT3 or RAS alterations drive a subset of patients with lower risk MDS to secondary AML. Leukemia 27, 2081–2083 (2013). PubMed
Badar T. et al.. Detectable FLT3-ITD or RAS mutation at the time of transformation from MDS to AML predicts for very poor outcomes. Leuk. Res. 39, 1367–1374 (2015). PubMed PMC
Dunna N. R. et al.. NRAS mutations in de novo acute leukemia: prevalence and clinical significance. Indian J. Biochem. Biophys. 51, 207–210 (2014). PubMed
Singh H., Longo D. L. & Chabner B. A. Improving prospects for targeting RAS. J. Clin. Oncol. 33, 3650–3659 (2015). PubMed
Kronke J. et al.. Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature 523, 183–188 (2015). PubMed PMC
Saft L. et al.. p53 protein expression independently predicts outcome in patients with lower-risk myelodysplastic syndromes with del(5q). Haematologica 99, 1041–1049 (2014). PubMed PMC
Smith A. E. et al.. CSNK1A1 mutations and isolated del(5q) abnormality in myelodysplastic syndrome: a retrospective mutational analysis. Lancet Haematol. 2, e212–e221 (2015). PubMed
Heuser M. et al.. Frequency and prognostic impact of casein kinase 1A1 mutations in MDS patients with deletion of chromosome 5q. Leukemia 29, 1942–1945 (2015). PubMed
Bello E. et al.. CSNK1A1 mutations and gene expression analysis in myelodysplastic syndromes with del(5q). Br. J. Haematol. 171, 153–294 (2015). PubMed PMC
Wong T. N. et al.. Rapid expansion of preexisting nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML. Blood 127, 893–897 (2016). PubMed PMC
Xie M. et al.. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014). PubMed PMC
Jaiswal S. et al.. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014). PubMed PMC
Genovese G. et al.. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014). PubMed PMC
Merlevede J. et al.. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat. Commun. 7, 10767 (2016). PubMed PMC
Mohamedali A. M. et al.. High concordance of genomic and cytogenetic aberrations between peripheral blood and bone marrow in myelodysplastic syndrome (MDS). Leukemia 29, 1928–1938 (2015). PubMed
Jabbour E. & Kantarjian H. Chronic myeloid leukemia: 2016 update on diagnosis, therapy, and monitoring. Am. J. Hematol. 91, 252–265 (2016). PubMed
Shaffer L. G., McGowan-Jordan J. & Schmid M. ISCN 2013: an International System for Human Cytogenetic Nomenclature Karger (2013).
Pang W. W. et al.. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc. Natl Acad. Sci. USA 110, 3011–3016 (2013). PubMed PMC
Shlush L. I. et al.. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014). PubMed PMC
Yoshida K. et al.. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011). PubMed
Simons A. et al.. Microarray-based genomic profiling as a diagnostic tool in acute lymphoblastic leukemia. Genes Chromosomes Cancer 50, 969–981 (2011). PubMed
Schoumans J. et al.. Guidelines for genomic array analysis in acquired haematological neoplastic disorders. Genes Chromosomes Cancer 55, 480–491 (2016). PubMed
Heinrichs S., Li C. & Look A. T. SNP array analysis in hematologic malignancies: avoiding false discoveries. Blood 115, 4157–4161 (2010). PubMed PMC
Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013). PubMed PMC
Cazzola M. & Kralovics R. From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. Blood 123, 3714–3719 (2014). PubMed
Makishima H. et al.. Somatic SETBP1 mutations in myeloid malignancies. Nat. Genet. 45, 942–946 (2013). PubMed PMC
Micol J. B. et al.. Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood 124, 1445–1449 (2014). PubMed PMC