Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops

. 2017 Jun ; 24 (17) : 14706-14716. [epub] 20170430

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28456920
Odkazy

PubMed 28456920
DOI 10.1007/s11356-017-9051-0
PII: 10.1007/s11356-017-9051-0
Knihovny.cz E-zdroje

Heavy metal soil contamination from mining and smelting has been reported in several regions around the world, and phytoextraction, using plants to accumulate risk elements in aboveground harvestable organs, is a useful method of substantially reducing this contamination. In our 3-year experiment, we tested the hypothesis that phytoextraction can be successful in local soil conditions without external fertilizer input. The phytoextraction efficiency of 15 high-yielding crop species was assessed in a field experiment performed at the Litavka River alluvium in the Příbram region of Czechia. This area is heavily polluted by Cd, Zn, and Pb from smelter installations which also polluted the river water and flood sediments. Heavy metal concentrations were analyzed in the herbaceous plants' aboveground and belowground biomass and in woody plants' leaves and branches. The highest Cd and Zn mean concentrations in the aboveground biomass were recorded in Salix x fragilis L. (10.14 and 343 mg kg-1 in twigs and 16.74 and 1188 mg kg-1 in leaves, respectively). The heavy metal content in woody plants was significantly higher in leaves than in twigs. In addition, Malva verticillata L. had the highest Cd, Pb, and Zn concentrations in herbaceous species (6.26, 12.44, and 207 mg kg-1, respectively). The calculated heavy metal removal capacities in this study proved high phytoextraction efficiency in woody species; especially for Salix × fragilis L. In other tested plants, Sorghum bicolor L., Helianthus tuberosus L., Miscanthus sinensis Andersson, and Phalaris arundinacea L. species are also recommended for phytoextraction.

Zobrazit více v PubMed

Environ Pollut. 2006 Nov;144(1):93-100 PubMed

Bioresour Technol. 2010 Mar;101(6):2063-6 PubMed

Environ Sci Pollut Res Int. 2014 Mar;21(5):3792-802 PubMed

Environ Sci Pollut Res Int. 2015 Dec;22(23):18801-13 PubMed

New Phytol. 2015 Jan;205(1):240-54 PubMed

Biotechnol Adv. 2016 Nov 1;34(6):1131-48 PubMed

Chemosphere. 2014 Jun;104:15-24 PubMed

Int J Phytoremediation. 2015;17(1-6):414-21 PubMed

Int J Phytoremediation. 2015;17(10):988-98 PubMed

J Hazard Mater. 2010 May 15;177(1-3):268-73 PubMed

Int J Phytoremediation. 2011 Sep;13(8):731-49 PubMed

Appl Biochem Biotechnol. 2012 Sep;168(1):163-73 PubMed

Physiol Plant. 2011 Sep;143(1):50-63 PubMed

J Hazard Mater. 2009 Sep 30;169(1-3):170-5 PubMed

Environ Int. 2005 May;31(4):609-13 PubMed

Rev Environ Contam Toxicol. 2011;213:113-36 PubMed

Biotechnol Adv. 2009 Sep-Oct;27(5):555-61 PubMed

Environ Sci Pollut Res Int. 2013 Jan;20(1):163-74 PubMed

J Environ Manage. 2014 Dec 15;146:94-99 PubMed

Environ Pollut. 2006 Mar;140(1):62-70 PubMed

Environ Sci Pollut Res Int. 2013 Oct;20(10):7194-203 PubMed

Environ Int. 2003 Jul;29(4):529-40 PubMed

Physiol Plant. 2014 Aug;151(4):390-405 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Life in a Contaminated Environment: How Soil Nematodes Can Indicate Long-Term Heavy-Metal Pollution

. 2022 Feb ; 54 (1) : 20220053. [epub] 20221120

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...