The Response of Macro- and Micronutrient Nutrient Status and Biochemical Processes in Rats Fed on a Diet with Selenium-Enriched Defatted Rapeseed and/or Vitamin E Supplementation
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
28638832
PubMed Central
PMC5468552
DOI
10.1155/2017/6759810
Knihovny.cz E-resources
- MeSH
- Brassica rapa * MeSH
- Food, Fortified * MeSH
- Rats MeSH
- Kidney metabolism MeSH
- Rats, Inbred SHR MeSH
- Rats, Inbred WKY MeSH
- Dietary Supplements * MeSH
- Selenium * blood pharmacology MeSH
- Vitamin E pharmacology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Selenium * MeSH
- Vitamin E MeSH
The response of nutrient status and biochemical processes in (i) Wistar and (ii) spontaneously hypertensive (SHR) rats upon dietary intake of selenium- (Se-) enriched defatted rapeseed (DRS) and/or vitamin E fortification was examined to assess the health benefit of DRS in animal nutrition. Twenty-four individuals of each type of rat were used: The control group was fed with an untreated diet (Diet A). In Diets B and C, soybean meal was replaced with defatted DRS, which comprised 14% of the total diet. The selenized DRS application resulted in ~3-fold increase of Se content in the diet. Diet C was also fortified with the addition of vitamin E, increasing the natural content by 30%. The Se content of the blood and kidneys tended to increase in the DRS groups, where the changes were significant (P < 0.05) only in the case of SHR rats. The iodine (I) content and the proportion of iodide in rat livers indicated a lower transformation rate of iodide into organoiodine compounds compared to the control. Slight and ambiguous alterations in the antioxidative response of the rat were observed in the DRS groups, but the addition of vitamin E to the diet helped to moderate these effects.
Faculty of Chemical Engineering University of Chemistry and Technology Prague Czech Republic
Institute of Physiology Academy of Science of the Czech Republic Prague Czech Republic
See more in PubMed
Mozaffarian D. Fish, mercury, selenium and cardiovascular risk: current evidence and unanswered questions. International Journal of Environmental Research and Public Health. 2009;6(6):1894–1916. doi: 10.3390/ijerph6061894. PubMed DOI PMC
Żarczyńska K., Sobiech P., Radwińska J., Rękawek W. Effects of selenium on animal health. Journal of Elemntology. 2013;18(2) doi: 10.5601/jelem.2013.18.2.12. DOI
Lukas J., Drabek J., Lukas D., Dusek L., Gatek J. The epidemiology of thyroid cancer in the Czech Republic in comparison with other countries. Biomedical Papers. 2013;157(3):266–275. doi: 10.5507/bp.2012.086. PubMed DOI
Wu Q., Rayman M. P., Lv H., et al. Low population selenium status is associated with increased prevalence of thyroid disease. Journal of Clinical Endocrinology and Metabolism. 2015;100(11):4037–4047. doi: 10.1210/jc.2015-2222. PubMed DOI
Wimmer I., Hartmann T., Brustbauer R., Minear G., Dam K. Selenium levels in patients with autoimmune thyroiditis and controls in Lower Austria. Hormone and Metabolic Research. 2014;46(10):707–709. doi: 10.1055/s-0034-1377029. PubMed DOI
El-Fadeli S., Bouhouch S., Skalny A. V., et al. Effects of imbalance in trace element on thyroid gland from moroccan children. Biological Trace Element Research. 2016;170(2):288–293. doi: 10.1007/s12011-015-0485-2. PubMed DOI
Loyke H. F. Effects of elements in human blood pressure control. Biological Trace Element Research. 2002;85(3):193–209. doi: 10.1385/BTER:85:3:193. PubMed DOI
Yakobson G. S., Antonov A. R., Golovatyuk A. V., Markel' A. L., Yakobson M. G. Selenium content and blood antioxidant activity in rats with hereditary arterial hypertension during experimental myocardial infarction. Bulletin of Experimental Biology and Medicine. 2001;132(1):641–643. doi: 10.1023/A:1012563825191. PubMed DOI
Alissa E. M., Bahjri S. M., Ahmed W. H., Al-ama N., Ferns G. A. A. Trace element status in Saudi patients with established atherosclerosis. Journal of Trace Elements in Medicine and Biology. 2006;20(2):105–114. doi: 10.1016/j.jtemb.2005.10.004. PubMed DOI
Das U. N. Nutritional factors in the pathobiology of human essential hypertension. Nutrition. 2001;17(4):337–346. doi: 10.1016/S0899-9007(00)00586-4. PubMed DOI
Laclaustra M., Navas-Acien A., Stranges S., Ordovas J. M., Guallar E. Serum selenium concentrations and hypertension in the US population. Circulation: Cardiovascular Quality and Outcomes. 2009;2(4):369–376. doi: 10.1161/CIRCOUTCOMES.108.831552. PubMed DOI PMC
Kuruppu D., Hendrie H. C., Yang L., Gao S. Selenium levels and hypertension: A systematic review of the literature. Public Health Nutrition. 2013;17(6):1342–1352. doi: 10.1017/S1368980013000992. PubMed DOI PMC
Thakur M. L., Srivastava U. S. Vitamin-E metabolism and its application. Nutrition Research. 1996;16(10):1767–1809. doi: 10.1016/0271-5317(96)00196-0. DOI
Yu J., Shan Z., Chong W., et al. Vitamin E ameliorates iodine-induced cytotoxicity in thyroid. Journal of Endocrinology. 2011;209(3):299–306. doi: 10.1530/JOE-11-0030. PubMed DOI
Pavlata L., Illek J., Pechová A., Matějíček M. Selenium status of cattle in the Czech Republic. Acta Veterinaria Brno. 2002;71(1):3–8. doi: 10.2754/avb200271010003. DOI
Bañuelos G. S., Mayland H. F. Absorption and distribution of selenium in animals consuming canola grown for selenium phytoremediation. Ecotoxicology and Environmental Safety. 2000;46(3):322–328. doi: 10.1006/eesa.1999.1909. PubMed DOI
Heaney R. K., Kozlowska H., Mawson R., Zdunczik Z. Defatted repe seeds-glucosinolates and their antinutritional effects. Part 3. Animal growth and performance. Molecular Nutrition & Food Research. 1994;37:336–344. PubMed
Heaney R. K., Kozlowska H., Mawson R., Zdunczyk Z. Rapeseed meal‐glucosinolates and their antinutritional effects Part 4. Goitrogenicity and internal organs abnormalities in animals. Molecular Nutrition & Food Research. 1994;38(2):178–191. doi: 10.1002/food.19940380210. PubMed DOI
Tvrdá J., Tůmová N., Fucíková A., et al. The biochemical and hematological response of rats on defatted rape seeds addition into the diet. Acad J Agric Res. 2015;3:395–401.
Myška A., Száková J., Fučíková A., et al. Effect of selenium-enriched defatted rape seeds on tissue cadmium and essential elements utilization in rats. Czech Journal of Animal Science. 2016;61(No. 11):496–505. doi: 10.17221/88/2015-CJAS. DOI
Száková J., Praus L., Tremlová J., Kulhánek M., Tlustoš P. Efficiency of foliar selenium application on oilseed rape (Brassica napus L.) as influenced by rainfall and soil characteristics. Archives of Agronomy and Soil Science. 2017;63(9):1240–1254. doi: 10.1080/03650340.2016.1275581. DOI
Knapp G., Maichin B., Fecher P., Hasse S., Schramel P. Iodine determination in biological materials: Options for sample preparation and final determination. Fresenius' Journal of Analytical Chemistry. 1998;362(6):508–513. doi: 10.1007/s002160051116. DOI
Kaňa A., Hrubá L., Vosmanská M., Mestek O. Analysis of iodine and its species in animal tissues. Chemical Speciation and Bioavailability. 2015;27(2):81–91. doi: 10.1080/09542299.2015.1087160. DOI
Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta. 1991;196(2-3):143–151. doi: 10.1016/0009-8981(91)90067-M. PubMed DOI
Flohé L., Günzler W. A. Assays of glutathione peroxidase. Methods in Enzymology. 1984;105:114–121. doi: 10.1016/S0076-6879(84)05015-1. PubMed DOI
Worthington D. J., Rosemeyer M. A. Human glutathione reductase: purification of the crystalline enzyme from erythorocytes. European Journal of Biochemistry. 1974;48(1):167–177. doi: 10.1111/j.1432-1033.1974.tb03754.x. PubMed DOI
Luthman M., Holmgren A. Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry. 1982;21(26):6628–6633. doi: 10.1021/bi00269a003. PubMed DOI
Habig W. H., Pabst M. J., Jakoby W. B. Glutathion-S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry. 1974;249(22):7130–7139. PubMed
Hambidge M. Biomarkers of trace mineral intake and status. Journal of Nutrition. 2003;133(3) PubMed
Hou X., Hansen V., Aldahan A., Possnert G., Lind O. C., Lujaniene G. A review on speciation of iodine-129 in the environmental and biological samples. Analytica Chimica Acta. 2009;632(2):181–196. doi: 10.1016/j.aca.2008.11.013. PubMed DOI
Szczepaniak W. The mineral profile of winter oilseed rape in critical growth stages – Potassium. Journal of Elementology. 2015;20(1):203–215. doi: 10.5601/jelem.2014.19.3.625. DOI
Brennan R. F., Bolland M. D. A. Comparing the nitrogen and potassium requirements of canola and wheat for yield and grain quality. Journal of Plant Nutrition. 2009;32(12):2008–2026. doi: 10.1080/01904160903308127. DOI
Brennan R. F., Bolland M. D. A. Comparing the potassium requirements of canola and wheat. Australian Journal of Agricultural Research. 2007;58(4):359–366. doi: 10.1071/AR06244. DOI
Patel S. K., Rhoads F. M., Hanlon E. A., Barnett R. D. Potassium and magnesium uptake by wheat and soybean roots as influenced by fertilizer rate. Communications in Soil Science and Plant Analysis. 1993;24(13-14):1543–1556. doi: 10.1080/00103629309368897. DOI
Fageria N. K., Baligar V. C. Growth and nutrient concentrations of common bean, lowland rice, corn, soybean, and wheat at different soil pH on an Inceptisol. Journal of Plant Nutrition. 1999;22(9):1495–1507. doi: 10.1080/01904169909365730. DOI
Loyke H. F. Selenium and blood pressure studies in young and adult normotensive, renal, and spontaneously hypertensive animals. Biological Trace Element Research. 1992;33(1-3):129–133. doi: 10.1007/BF02784001. PubMed DOI
Telišman S., Jurasović J., Pizent A., Cvitković P. Blood pressure in relation to biomarkers of lead, cadmium, copper, zinc, and selenium in men without occupational exposure to metals. Environmental Research. 2001;87(2):57–68. doi: 10.1006/enrs.2001.4292. PubMed DOI
Lymbury R. S., Marino M. J., Perkins A. V. Effect of dietary selenium on the progression of heart failure in the ageing spontaneously hypertensive rat. Molecular Nutrition & Food Research. 2010;54(10):1436–1444. doi: 10.1002/mnfr.201000012. PubMed DOI
Gouaref I., Bellahsene Z., Zekri S., Alamir B., Koceir E.-A. The link between trace elements and metabolic syndrome/oxidative stress in essential hypertension with or without type 2 diabetes. Annales de Biologie Clinique. 2016;72(2):233–243. doi: 10.1684/abc.2016.1126. PubMed DOI
Vigeh M., Yokoyama K., Ohtani K., Shahbazi F., Matsukawa T. Increase in blood manganese induces gestational hypertension during pregnancy. Hypertension in Pregnancy. 2013;32(3):214–224. doi: 10.3109/10641955.2013.784784. PubMed DOI
Martinez D. A., Diaz G. J. Effect of graded levels of dietary nickel and manganese on blood haemoglobin content and pulmonary hypertension in broiler chickens. Avian Pathology. 1996;25(3):537–549. doi: 10.1080/03079459608419160. PubMed DOI
Giray B., Riondel J., Arnaud J., Ducros V., Favier A., Hincal F. Iodine and/or selenium deficiency alters tissue distribution pattern of other trace elements in rats. Biological Trace Element Research. 2003;95(3):247–258. doi: 10.1385/BTER:95:3:247. PubMed DOI
Lima N. L. L., Sobrinho A. G. D. S., de Almeida F. A., et al. Quantitative and qualitative characteristics of the non-carcass components and the meat of lambs fed sunflower seeds and vitamin E. Revista Brasileira de Zootecnia. 2013;42(1):51–60. doi: 10.1590/S1516-35982013000100008. DOI
Orzi F., Morisco C., Colangelo V., Di Grezia R., Lembo G. Lack of effect of insulin on glucose utilization of the hypothalamus in normotensive and hypertensive rats. Neuroscience Letters. 2000;278(1-2):29–32. doi: 10.1016/S0304-3940(99)00876-9. PubMed DOI
Murillo M., Carrion N., Quintana M., et al. Determination of selenium and iodine in human thyroids. Journal of Trace Elements in Medicine and Biology. 2005;19(1):23–27. doi: 10.1016/j.jtemb.2005.07.005. PubMed DOI
Schmutzler C., Mentrup B., Schomburg L., Hoang-Vu C., Herzog V., Köhrle J. Selenoproteins of the thyroid gland: Expression, localization and possible function of glutathione peroxidase 3. Biological Chemistry. 2007;388(10):1053–1059. doi: 10.1515/BC.2007.122. PubMed DOI
Drutel A., Archambeaud F., Caron P. Selenium and the thyroid gland: more good news for clinicians. Clinical Endocrinology. 2013;78(2):155–164. doi: 10.1111/cen.12066. PubMed DOI
Windisch W. Interaction of chemical species with biological regulation of the metabolism of essential trace elements. Analytical and Bioanalytical Chemistry. 2002;372(3):421–425. doi: 10.1007/s00216-001-1117-6. PubMed DOI
Svetina A., Jerković I., Vrabac L., Ćurić S. Thyroid function, metabolic indices and growth performance in pigs fed 00-rapeseed meal. Acta Veterinaria Hungarica. 2003;51(3):283–295. doi: 10.1556/AVet.51.2003.3.4. PubMed DOI
Sethy K., Dass R. S., Garg A. K., Sahu S., Gogoi S. Effect of different selenium sources (Selenium yeast and sodium selenite) on haematology, blood chemistry and thyroid hormones in male goats (Capra hircus) Indian Journal of Animal Research. 2015;49(6):788–792. doi: 10.18805/ijar.7040. DOI
Alashi A. M., Blanchard C. L., Mailer R. J., et al. Blood pressure lowering effects of Australian canola protein hydrolysates in spontaneously hypertensive rats. Food Research International. 2014;55:281–287. doi: 10.1016/j.foodres.2013.11.015. DOI
Chandra G., Aggarwal A., Singh A. K., Kumar M. Effect of vitamin E and zinc supplementation on liver enzymatic profile of pre- and post-partum Sahiwal cows. Indian Journal of Animal Sciences. 2014;84(5):507–510.
Giray B., Riondel J., Richard M. J., Favier A., Hincal F. Oxidant/antioxidant status in relation to thyroid hormone metabolism in selenium- and/or iodine-deficient rats. Journal of Trace Elements in Experimental Medicine. 2004;17(2):109–121. doi: 10.1002/jtra.20001. DOI
Parshukova O., Potolitsyna N., Shadrina V., Chernykh A., Bojko E. Features of selenium metabolism in humans living under the conditions of North European Russia. International Archives of Occupational and Environmental Health. 2014;87(6):607–614. doi: 10.1007/s00420-013-0895-4. PubMed DOI
Dorfmüller P., Chaumais M. C., Giannakouli M., et al. Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension. Respiratory Research. 2011;12:p. 119. doi: 10.1186/1465-9921-12-119. PubMed DOI PMC
Cinar M., Yildirim E., Yigit A. A., Macun H. C., Duru O. Effects of magnesium sulphate on the oxidative stress, biochemical and hematological parameters in pregnant rats with L-name induced preeclampsia. Fresenius Environmental Bulletin. 2011;20(8):1942–1948.
Ciocoiu M., Badescu L., Miron A., Badescu M. The involvement of a polyphenol-rich extract of black chokeberry in oxidative stress on experimental arterial hypertension. Evidence-Based Complementary and Alternative Medicine. 2013;2013:8. doi: 10.1155/2013/912769.912769 PubMed DOI PMC
Lee S. K., Arunkumar S., Sirajudeen K. N. S., Singh H. J. Glutathione system in young spontaneously hypertensive rats. Journal of Physiology and Biochemistry. 2010;66(4):321–327. doi: 10.1007/s13105-010-0038-2. PubMed DOI
Vericel E., Narce M., Ulmann L., Poisson J.-P., Lagarde M. Age-related changes in antioxidant defence mechanisms and peroxidation in isolated hepatocytes from spontaneously hypertensive and normotensive rats. Molecular and Cellular Biochemistry. 1994;132(1):25–29. doi: 10.1007/BF00925671. PubMed DOI
Ruseva B., Atanasova M., Tsvetkova R., et al. Effect of selenium supplementation on redox status of the aortic wall in young spontaneously hypertensive rats. Oxidative Medicine and Cellular Longevity. 2015;2015 doi: 10.1155/2015/609053.609053 PubMed DOI PMC
Horký P., Sochor J., Skladánka J., Klusoňová I., Nevrkla P. Effect of selenium, vitamins E and C on antioxidant potential and quality of boar ejaculate. Journal of Animal and Feed Sciences. 2016;25(1):29–36. doi: 10.22358/jafs/65584/2016. DOI
Wittkop B., Snowdon R. J., Friedt W. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica. 2009;170(1):131–140. doi: 10.1007/s10681-009-9940-5. DOI
El-Beltagi H. E. S., Mohamed A. A. Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L.) cultivars. Grasas y Aceites. 2010;61(2):143–150. doi: 10.3989/gya.087009. DOI
Xun P., Hou N., Daviglus M., et al. Fish oil, selenium and mercury in relation to incidence of hypertension: A 20-year follow-up study. Journal of Internal Medicine. 2011;270(2):175–186. doi: 10.1111/j.1365-2796.2010.02338.x. PubMed DOI PMC
Ono T., Kohya T., Tsukamoto E., et al. Improvement in fatty acid utilization in relation to a change in left ventricular hypertrophy in spontaneously hypertensive rats. Japanese Circulation Journal. 2000;64(2):177–120. doi: 10.1253/jcj.64.177. PubMed DOI
Gabryszuk M., Czauderna M., Baranowski A., Strzalkowska N., Jozwik A., Krzyewski J. The effect of diet supplementation with Se, Zn and vitamin E on cholesterol, CLA and fatty acid contents of meat and liver of lambs. Animal Science Papers and Reports. 2007;25:25–33.
Stone W. L., Scott R. L., Stewart E. M., Kheshti A. Lipoprotein alterations in the spontaneously hypertensive rat fed diets deficient in selenium and vitamin E. Proceedings of the Society for Experimental Biology and Medicine. 1994;206(2):130–137. doi: 10.3181/00379727-206-43731. PubMed DOI
Ikeda I., Tomari Y., Sugano M. Interrelated effects of dietary fiber and fat on lymphatic cholesterol and triglyceride absorption in rats. Journal of Nutrition. 1989;119:1383–1387. PubMed
Zeman L., Doležal P., Kopřiva A., et al. Nutrition and Feeding of Livestock, 1. publ. Prague, Czech Republic: Profi Press; 2006.