COVID-19, Vaccination, and Female Fertility in the Czech Republic
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MH CZ - DRO, Institute of Endocrinology EÚ, 00023761
Ministry of Health Czech Republic
PubMed
36142820
PubMed Central
PMC9501189
DOI
10.3390/ijms231810909
PII: ijms231810909
Knihovny.cz E-zdroje
- Klíčová slova
- AMH, COVID-19, antral follicle count, infection, safety, steroids, vaccination, woman fertility,
- MeSH
- 20-alfa-dihydroprogesteron MeSH
- androgeny MeSH
- antimülleriánský hormon * MeSH
- COVID-19 * prevence a kontrola MeSH
- dehydroepiandrosteron MeSH
- dihydrotestosteron MeSH
- estradiol MeSH
- estron MeSH
- fertilita MeSH
- folikuly stimulující hormon MeSH
- lidé MeSH
- vakcíny proti COVID-19 MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- 20-alfa-dihydroprogesteron MeSH
- androgeny MeSH
- antimülleriánský hormon * MeSH
- dehydroepiandrosteron MeSH
- dihydrotestosteron MeSH
- estradiol MeSH
- estron MeSH
- folikuly stimulující hormon MeSH
- vakcíny proti COVID-19 MeSH
The fast-track process to approve vaccines against COVID-19 has raised questions about their safety, especially in relation to fertility. Over the last 2 years, studies have appeared monitoring female fertility, especially from assisted reproduction centers or in animal experiments. However, studies monitoring healthy populations are still limited. The aim of our study was to monitor the relevant parameters of female fertility (sex and other steroids, LH, FSH, SHBG, Antimüllerian hormone and antral follicle count) before and then 2-4 months after the third dose of vaccination against COVID-19 in a group of 25 healthy fertile woman. In addition, anti-SARS-CoV-2 and anti-SARS-CoV-2S antibodies were determined. We did not observe significant changes in the measured parameters before and after the third dose of vaccination. By comparing levels of the analytes with antibodies indicating a prior COVID-19 infection, we found that women who had experienced the disease had statistically lower levels of estrone, estradiol, SHBG and 5α-dihydroprogesterone, and conversely, higher levels of androgen active dehydroepiandrosterone and dihydrotestosterone. Our results confirm that vaccination does not affect female fertility, and that what fertile women should be worried about is not vaccination, but rather COVID-19 infection itself.
Zobrazit více v PubMed
Toth-Manikowski S.M., Swirsky E.S., Gandhi R., Piscitello G. COVID-19 vaccination hesitancy among health care workers, communication, and policy-making. Am. J. Infect. Control. 2021;50:20–25. doi: 10.1016/j.ajic.2021.10.004. PubMed DOI PMC
Schaler L., Wingfield M. COVID-19 vaccine-can it affect fertility? Ir. J. Med. Sci. 2021:1–3. doi: 10.1007/s11845-021-02807-9. PubMed DOI PMC
Hillson K., Clemens S.C., Madhi S.A., Voysey M., Pollard A.J., Minassian A.M. Fertility rates and birth outcomes after ChAdOx1 nCoV-19 (AZD1222) vaccination. Lancet. 2021;398:1683–1684. doi: 10.1016/S0140-6736(21)02282-0. PubMed DOI PMC
Stanovisko České Lékařské Společnosti (ČLS) Jana Evangelisty Purkyně (JEP); České Gynekologické a Porodnické Společnosti ČLS JEP. Očkování Proti Onemocnění COVID-19 u Těhotných a Kojících Žen. 2021. [(accessed on 11 September 2021)]. Available online: https://koronavirus.mzcr.cz/wp-content/uploads/2021/06/Stanovisko-k-očkován%C3%AD-proti-onemocněn%C3%AD-covid-19-u-těhotných-a-koj%C3%ADc%C3%ADch-žen.pdf.
Han A.R., Lee D., Kim S.K., Choo C.W., Park J.C., Lee J.R., Choi W.J., Jun J.H., Rhee J.H., Kim S.H., et al. Effects and safety of COVID-19 vaccination on assisted reproductive technology and pregnancy: A comprehensive review and joint statements of the KSRM, the KSRI, and the KOSAR. Clin. Exp. Reprod. Med. 2022;49:2–8. doi: 10.5653/cerm.2022.05225. PubMed DOI PMC
Statement—COVID-19 Vaccination-Male and Female fertility, treatments to get pregnant, pregnancy. JBRA Assist. Reprod. 2022;26:197–198. PubMed PMC
Gonzalez D.C., Nassau D.E., Khodamoradi K., Ibrahim E., Blachman-Braun R., Ory J., Ramasamy R. Sperm Parameters before and after COVID-19 mRNA Vaccination. JAMA. 2021;326:273–274. doi: 10.1001/jama.2021.9976. PubMed DOI PMC
Chen F., Zhu S., Dai Z., Hao L., Luan C., Guo Q., Meng C., Zhang Y. Effects of COVID-19 and mRNA vaccines on human fertility. Hum. Reprod. 2021;37:5–13. doi: 10.1093/humrep/deab238. PubMed DOI PMC
Braun A.S., Feil K., Reiser E., Weiss G., von Steuben T., Pinggera G.M., Kohn F.M., Toth B. Corona and Reproduction, or Why the Corona Vaccination Does Not Result in Infertility. Geburtshilfe Frauenheilkd. 2022;82:490–500. doi: 10.1055/a-1750-9284. PubMed DOI PMC
Mirza S.A., Sheikh A.A.E., Barbera M., Ijaz Z., Javaid M.A., Shekhar R., Pal S., Sheikh A.B. COVID-19 and the Endocrine System: A Review of the Current Information and Misinformation. Infect. Dis. Rep. 2022;14:184–197. doi: 10.3390/idr14020023. PubMed DOI PMC
Markert U.R., Szekeres-Bartho J., Schleussner E. Adverse effects on female fertility from vaccination against COVID-19 unlikely. J. Reprod. Immunol. 2021;148:103428. doi: 10.1016/j.jri.2021.103428. PubMed DOI PMC
Bentov Y., Beharier O., Moav-Zafrir A., Kabessa M., Godin M., Greenfield C.S., Ketzinel-Gilad M., Ash Broder E., Holzer H.E.G., Wolf D., et al. Ovarian follicular function is not altered by SARS-CoV-2 infection or BNT162b2 mRNA COVID-19 vaccination. Hum. Reprod. 2021;36:2506–2513. doi: 10.1093/humrep/deab182. PubMed DOI PMC
Galanis P., Vraka I., Katsiroumpa A., Siskou O., Konstantakopoulou O., Katsoulas T., Mariolis-Sapsakos T., Kaitelidou D. First COVID-19 Booster Dose in the General Population: A Systematic Review and Meta-Analysis of Willingness and Its Predictors. Vaccines. 2022;10:1097. doi: 10.3390/vaccines10071097. PubMed DOI PMC
Doporučení ČLS JEP (ČVS) ČLS JEP (ČSAKI) a ČLS JEP (SEM) k Přeočkování a Aplikaci Dodatečných (Třetích) Dávek Vakcíny Proti Onemocnění COVID-19. 2021. [(accessed on 11 September 2021)]. Available online: https://www.infekce.cz/zprava21-45.htm.
Jing Y., Li R.-Q., Wang H.-R., Chen H.-R., Liu Y.-B., Yang G., Fei C. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol. Hum. Reprod. 2020;26:367–373. doi: 10.1093/molehr/gaaa030. PubMed DOI PMC
Zupin L., Pascolo L., Zito G., Ricci G., Crovella S. SARS-CoV-2 and the next generations: Which impact on reproductive tissues? J. Assist. Reprod. Genet. 2020;37:2399–2403. doi: 10.1007/s10815-020-01917-0. PubMed DOI PMC
Morelli F., Meirelles L.E.F., de Souza M.V.F., Mari N.L., Mesquita C.S.S., Dartibale C.B., Damke G., Damke E., da Silva V.R.S., Souza R.P., et al. COVID-19 Infection in the Human Reproductive Tract of Men and Nonpregnant Women. Am. J. Trop. Med. Hyg. 2021;104:814–825. doi: 10.4269/ajtmh.20-1098. PubMed DOI PMC
Madjunkov M., Dviri M., Librach C. A comprehensive review of the impact of COVID-19 on human reproductive biology, assisted reproduction care and pregnancy: A Canadian perspective. J. Ovarian Res. 2020;13:140. doi: 10.1186/s13048-020-00737-1. PubMed DOI PMC
Song H., Seddighzadeh B., Cooperberg M.R., Huang F.W. Expression of ACE2, the SARS-CoV-2 receptor, and TMPRSS2 in prostate epithelial cells. Eur. Urol. 2020;78:296–298. doi: 10.1016/j.eururo.2020.04.065. PubMed DOI PMC
Dutta S., Sengupta P. SARS-CoV-2 infection, oxidative stress and male reproductive hormones: Can testicular-adrenal crosstalk be ruled-out? J. Basic Clin. Physiol. Pharmacol. 2020;31:20200205. doi: 10.1515/jbcpp-2020-0205. PubMed DOI
Lu M., Qiu L., Jia G., Guo R., Leng Q. Single-cell expression profiles of ACE2 and TMPRSS2 reveals potential vertical transmission and fetus infection of SARS-CoV-2. Aging. 2020;12:19880–19897. doi: 10.18632/aging.104015. PubMed DOI PMC
Stanley K.E., Thomas E., Leaver M., Wells D. Coronavirus disease-19 and fertility: Viral host entry protein expression in male and female reproductive tissues. Fertil. Steril. 2020;114:33–43. doi: 10.1016/j.fertnstert.2020.05.001. PubMed DOI PMC
Mollica V., Rizzo A., Massari F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncol. 2020;16:2029–2033. doi: 10.2217/fon-2020-0571. PubMed DOI PMC
Montopoli M., Zumerle S., Vettor R., Rugge M., Zorzi M., Catapano C.V., Carbone G.M., Cavalli A., Pagano F., Ragazzi E., et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: A population-based study (N = 4532) Ann. Oncol. 2020;31:1040–1045. doi: 10.1016/j.annonc.2020.04.479. PubMed DOI PMC
Wang M., Yang Q., Ren X., Hu J., Li Z., Long R., Xi Q., Zhu L., Jin L. Investigating the impact of asymptomatic or mild SARS-CoV-2 infection on female fertility and in vitro fertilization outcomes: A retrospective cohort study. eClinicalMedicine. 2021;38:101013. doi: 10.1016/j.eclinm.2021.101013. PubMed DOI PMC
Singh B., Gornet M., Sims H., Kisanga E., Knight Z., Segars J. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its effect on gametogenesis and early pregnancy. Am. J. Reprod. Immunol. 2020;84:e13351. doi: 10.1111/aji.13351. PubMed DOI PMC
Knizatova N., Massanyi M., Roychoudhury S., Guha P., Greifova H., Tokarova K., Jambor T., Massanyi P., Lukac N. Is there impact of the SARS-CoV-2 pandemic on steroidogenesis and fertility? Physiol. Res. 2021;70((Suppl. 2)):S161–S175. doi: 10.33549/physiolres.934756. PubMed DOI PMC
Freire Santana M., Borba M.G.S., Baia-da-Silva D.C., Val F., Alexandre M.A.A., Brito-Sousa J.D., Melo G.C., Queiroga M.V.O., Leao Farias M.E., Camilo C.C., et al. Case Report: Adrenal Pathology Findings in Severe COVID-19: An Autopsy Study. Am. J. Trop. Med. Hyg. 2020;103:1604–1607. doi: 10.4269/ajtmh.20-0787. PubMed DOI PMC
Orvieto R., Noach-Hirsh M., Segev-Zahav A., Haas J., Nahum R., Aizer A. Does mRNA SARS-CoV-2 vaccine influence patients’ performance during IVF-ET cycle? Reprod. Biol. Endocrinol. 2021;19:69. doi: 10.1186/s12958-021-00757-6. PubMed DOI PMC
Bowman C.J., Bouressam M., Campion S.N., Cappon G.D., Catlin N.R., Cutler M.W., Diekmann J., Rohde C.M., Sellers R.S., Lindemann C. Lack of effects on female fertility and prenatal and postnatal offspring development in rats with BNT162b2, a mRNA-based COVID-19 vaccine. Reprod. Toxicol. 2021;103:28–35. doi: 10.1016/j.reprotox.2021.05.007. PubMed DOI PMC
Stebbings R., Maguire S., Armour G., Jones C., Goodman J., Maguire A.K., Tang C.M., Skellett V., Harris J. Developmental and reproductive safety of AZD1222 (ChAdOx1 nCoV-19) in mice. Reprod. Toxicol. 2021;104:134–142. doi: 10.1016/j.reprotox.2021.07.010. PubMed DOI PMC
Mohr-Sasson A., Haas J., Abuhasira S., Sivan M., Doitch Amdurski H., Dadon T., Blumenfeld S., Derazne E., Hemi R., Orvieto R., et al. The effect of COVID-19 mRNA vaccine on serum anti-Mullerian hormone levels. Hum. Reprod. 2022;37:534–541. doi: 10.1093/humrep/deab282. PubMed DOI
Kolanska K., Hours A., Jonquiere L., Mathieu d’Argent E., Dabi Y., Dupont C., Touboul C., Antoine J.M., Chabbert-Buffet N., Darai E. Mild COVID-19 infection does not alter the ovarian reserve in women treated with ART. Reprod. Biomed. Online. 2021;43:1117–1121. doi: 10.1016/j.rbmo.2021.09.001. PubMed DOI PMC
Cavaliere A.F., Zaami S., Pallottini M., Perelli F., Vidiri A., Marinelli E., Straface G., Signore F., Scambia G., Marchi L. Flu and Tdap Maternal Immunization Hesitancy in Times of COVID-19: An Italian Survey on Multiethnic Sample. Vaccines. 2021;9:1107. doi: 10.3390/vaccines9101107. PubMed DOI PMC
Cavaliere A.F., Marchi L., Aquilini D., Brunelli T., Vasarri P.L. Passive immunity in newborn from SARS-CoV-2-infected mother. J. Med. Virol. 2021;93:1810–1813. doi: 10.1002/jmv.26609. PubMed DOI
Cavaliere A.F., Carabaneanu A.I., Perelli F., Matarrese D., Brunelli T., Casprini P., Vasarri P.L. Universal screening for SARS-CoV-2 in pregnant women admitted for delivery: How to manage antibody testing? J. Mattern. Fetal Neonatal Med. 2022;35:3005–3006. doi: 10.1080/14767058.2020.1793317. PubMed DOI
Castiglione Morelli M.A., Iuliano A., Schettini S.C.A., Ferri A., Colucci P., Viggiani L., Matera I., Ostuni A. Are the Follicular Fluid Characteristics of Recovered Coronavirus Disease 2019 Patients Different from Those of Vaccinated Women Approaching in vitro Fertilization? Front. Physiol. 2022;13:840109. doi: 10.3389/fphys.2022.840109. PubMed DOI PMC
Odeh-Natour R., Shapira M., Estrada D., Freimann S., Tal Y., Atzmon Y., Bilgory A., Aslih N., Abu-Raya Y.S., Shalom-Paz E. Does mRNA SARS-CoV-2 vaccine in the follicular fluid impact follicle and oocyte performance in IVF treatments? Am. J. Reprod. Immunol. 2022;87:e13530. doi: 10.1111/aji.13530. PubMed DOI PMC
Cui J., Shen Y., Li R. Estrogen synthesis and signaling pathways during aging: From periphery to brain. Trends Mol. Med. 2013;19:197–209. doi: 10.1016/j.molmed.2012.12.007. PubMed DOI PMC
Findlay J.K., Liew S.H., Simpson E.R., Korach K.S. Estrogen signaling in the regulation of female reproductive functions. Handb. Exp. Pharmacol. 2010;198:29–35. PubMed PMC
Li K., Chen G., Hou H., Liao Q., Chen J., Bai H., Lee S., Wang C., Li H., Cheng L., et al. Analysis of sex hormones and menstruation in COVID-19 women of child-bearing age. Reprod. Biomed. Online. 2021;42:260–267. doi: 10.1016/j.rbmo.2020.09.020. PubMed DOI PMC
Cattrini C., Bersanelli M., Latocca M.M., Conte B., Vallome G., Boccardo F. Sex Hormones and Hormone Therapy during COVID-19 Pandemic: Implications for Patients with Cancer. Cancers. 2020;12:2325. doi: 10.3390/cancers12082325. PubMed DOI PMC
Traish A.M. Sex steroids and COVID-19 mortality in women. Trends Endocrinol. Metab. 2021;32:533–536. doi: 10.1016/j.tem.2021.04.006. PubMed DOI PMC
Smetana K., Jakubek M., Drábek J. Chrání estrogeny před těžkým průběhem COVID-19? Vesmír. 2021;100:596.
Sundstrom-Poromaa I., Comasco E., Sumner R., Luders E. Progesterone-Friend or foe? Front. Neuroendocrinol. 2020;59:100856. doi: 10.1016/j.yfrne.2020.100856. PubMed DOI
Zhang Y., Nadeau M., Faucher F., Lescelleur O., Biron S., Daris M., Rheaume C., Luu-The V., Tchernof A. Progesterone metabolism in adipose cells. Mol. Cell. Endocrinol. 2009;298:76–83. doi: 10.1016/j.mce.2008.09.034. PubMed DOI
Rossato M., Nogara A., Merico M., Ferlin A., Foresta C. Identification of functional binding sites for progesterone in rat Leydig cell plasma membrane. Steroids. 1999;64:168–175. doi: 10.1016/S0039-128X(98)00104-4. PubMed DOI
Anderson G.D., Odegard P.S. Pharmacokinetics of estrogen and progesterone in chronic kidney disease. Adv. Chronic Kidney Dis. 2004;11:357–360. doi: 10.1053/j.ackd.2004.07.001. PubMed DOI
Kancheva R., Hill M., Cibula D., Vcelakova H., Kancheva L., Vrbikova J., Fait T., Parizek A., Starka L. Relationships of circulating pregnanolone isomers and their polar conjugates to the status of sex, menstrual cycle, and pregnancy. J. Endocrinol. 2007;195:67–78. doi: 10.1677/JOE-06-0192. PubMed DOI
Hill M., Cibula D., Havlikova H., Kancheva L., Fait T., Kancheva R., Parizek A., Starka L. Circulating levels of pregnanolone isomers during the third trimester of human pregnancy. J. Steroid Biochem. Mol. Biol. 2007;105:166–175. doi: 10.1016/j.jsbmb.2006.10.010. PubMed DOI
Hirst J.J., Kelleher M.A., Walker D.W., Palliser H.K. Neuroactive steroids in pregnancy: Key regulatory and protective roles in the foetal brain. J. Steroid Biochem. Mol. Biol. 2014;139:144–153. doi: 10.1016/j.jsbmb.2013.04.002. PubMed DOI
Duarte-Neto A.N., Monteiro R.A.A., da Silva L.F.F., Malheiros D., de Oliveira E.P., Theodoro-Filho J., Pinho J.R.R., Gomes-Gouvea M.S., Salles A.P.M., de Oliveira I.R.S., et al. Pulmonary and systemic involvement in COVID-19 patients assessed with ultrasound-guided minimally invasive autopsy. Histopathology. 2020;77:186–197. doi: 10.1111/his.14160. PubMed DOI PMC
Stárka L., Dušková M. Androgeny v nákaze koronavirem SARS-CoV-2. Diabetol. Metab. Endokrinol. Vyziv. 2021;2:74–77.
Male V. Menstrual changes after COVID-19 vaccination. BMJ. 2021;374:n2211. doi: 10.1136/bmj.n2211. PubMed DOI
Suzuki S., Hosono A. No association between HPV vaccine and reported post-vaccination symptoms in Japanese young women: Results of the Nagoya study. Papillomavirus Res. 2018;5:96–103. doi: 10.1016/j.pvr.2018.02.002. PubMed DOI PMC
Monin L., Whettlock E.M., Male V. Immune responses in the human female reproductive tract. Immunology. 2020;160:106–115. doi: 10.1111/imm.13136. PubMed DOI PMC
Khan S.M., Shilen A., Heslin K.M., Ishimwe P., Allen A.M., Jacobs E.T., Farland L.V. SARS-CoV-2 infection and subsequent changes in the menstrual cycle among participants in the Arizona CoVHORT study. Am. J. Obstet. Gynecol. 2022;226:270–273. doi: 10.1016/j.ajog.2021.09.016. PubMed DOI PMC
Kolatorova Sosvorova L., Chlupacova T., Vitku J., Vlk M., Heracek J., Starka L., Saman D., Simkova M., Hampl R. Determination of selected bisphenols, parabens and estrogens in human plasma using LC-MS/MS. Talanta. 2017;174:21–28. doi: 10.1016/j.talanta.2017.05.070. PubMed DOI
Simkova M., Kolatorova L., Drasar P., Vitku J. An LC-MS/MS method for the simultaneous quantification of 32 steroids in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022;1201–1202:123294. doi: 10.1016/j.jchromb.2022.123294. PubMed DOI
Vitku J., Chlupacova T., Sosvorova L., Hampl R., Hill M., Heracek J., Bicikova M., Starka L. Development and validation of LC-MS/MS method for quantification of bisphenol A and estrogens in human plasma and seminal fluid. Talanta. 2015;140:62–67. doi: 10.1016/j.talanta.2015.03.013. PubMed DOI
Hornung R.W., Reed L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990;5:46–51. doi: 10.1080/1047322X.1990.10389587. DOI