• This record comes from PubMed

High resolution IgH repertoire analysis reveals fetal liver as the likely origin of life-long, innate B lymphopoiesis in humans

. 2017 Oct ; 183 () : 8-16. [epub] 20170620

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
MC_UU_12009/14 Medical Research Council - United Kingdom
G0700089 Medical Research Council - United Kingdom
099175/Z/12/Z Wellcome Trust - United Kingdom
MC_PC_15004 Medical Research Council - United Kingdom
Wellcome Trust - United Kingdom
MC_UU_00016/13 Medical Research Council - United Kingdom

Links

PubMed 28645875
PubMed Central PMC5678457
DOI 10.1016/j.clim.2017.06.005
PII: S1521-6616(17)30368-6
Knihovny.cz E-resources

The ontogeny of the natural, public IgM repertoire remains incompletely explored. Here, high-resolution immunogenetic analysis of B cells from (unrelated) fetal, child, and adult samples, shows that although fetal liver (FL) and bone marrow (FBM) IgM repertoires are equally diversified, FL is the main source of IgM natural immunity during the 2nd trimester. Strikingly, 0.25% of all prenatal clonotypes, comprising 18.7% of the expressed repertoire, are shared with the postnatal samples, consistent with persisting fetal IgM+ B cells being a source of natural IgM repertoire in adult life. Further, the origins of specific stereotypic IgM+ B cell receptors associated with chronic lymphocytic leukemia, can be traced back to fetal B cell lymphopoiesis, suggesting that persisting fetal B cells can be subject to malignant transformation late in life. Overall, these novel data provide unique insights into the ontogeny of physiological and malignant B lymphopoiesis that spans the human lifetime.

See more in PubMed

Nunez C., Nishimoto N., Gartland G.L. B cells are generated throughout life in humans. J. Immunol. 1996;156:866–872. PubMed

Roy A., Cowan G., Mead A.J. Perturbation of hematopoietic stem and progenitor cell development by trisomy 21. Proc. Natl. Acad. Sci. U. S. A. 2012;109:17579–17584. PubMed PMC

Tavian M., Biasch K., Sinka L., Vallet J., Peault B. Embryonic origin of human hematopoiesis. Int. J. Dev. Biol. 2010;54:1061–1065. PubMed

Scheeren F.A., Nagasawa M., Weijer K. T cell-independent development and induction of somatic hypermutation in human IgM + IgD + CD27 + B cells. J. Exp. Med. 2008;205:2033–2042. PubMed PMC

Agrawal S., Smith S.A., Tangye S.G., Sewell W.A. Transitional B cell subsets in human bone marrow. Clin. Exp. Immunol. 2013;174:53–59. PubMed PMC

McWilliams L., Su K.Y., Liang X. The human fetal lymphocyte lineage: identification by CD27 and LIN28B expression in B cell progenitors. J. Leukoc. Biol. 2013;94:991–1001. PubMed PMC

Wardemann H., Yurasov S., Schaefer A., Young J.W., Meffre E., Nussenzweig M.C. Predominant autoantibody production by early human B cell precursors. Science. 2003;301:1374–1377. PubMed

Meffre E., Salmon J.E. Autoantibody selection and production in early human life. J. Clin. Invest. 2007;117:598–601. PubMed PMC

Merbl Y., Zucker-Toledano M., Quintana F.J., Cohen I.R. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J. Clin. Invest. 2007;117:712–718. PubMed PMC

Logtenberg T., Young F.M., Van Es J.H., Gmelig-Meyling F.H., Alt F.W. Autoantibodies encoded by the most Jh-proximal human immunoglobulin heavy chain variable region gene. J. Exp. Med. 1989;170:1347–1355. PubMed PMC

Ubelhart R., Jumaa H. Autoreactivity and the positive selection of B cells. Eur. J. Immunol. 2015;45:2971–2977. PubMed

Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 2011;11:34–46. PubMed

Griffin D.O., Holodick N.E., Rothstein T.L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20 + CD27 + CD43 + CD70. J. Exp. Med. 2011;208:67–80. PubMed PMC

Pascual V., Verkruyse L., Casey M.L., Capra J.D. Analysis of Ig H chain gene segment utilization in human fetal liver. Revisiting the "proximal utilization hypothesis". J. Immunol. 1993;151:4164–4172. PubMed

Souto-Carneiro M.M., Sims G.P., Girschik H., Lee J., Lipsky P.E. Developmental changes in the human heavy chain CDR3. J. Immunol. 2005;175:7425–7436. PubMed

Rechavi E., Lev A., Lee Y.N. Timely and spatially regulated maturation of B and T cell repertoire during human fetal development. Sci. Transl. Med. 2015;7:276ra25. PubMed

Bystry V., Reigl T., Krejci A. ARResT/Interrogate: an interactive immunoprofiler for IG/TR NGS data. Bioinformatics. 2016 PubMed

Jost L. Entropy and diversity. Oikos. 2006;113:363–375.

Bystry V., Agathangelidis A., Bikos V. ARResT/AssignSubsets: a novel application for robust subclassification of chronic lymphocytic leukemia based on B cell receptor IG stereotypy. Bioinformatics. 2015;31:3844–3846. PubMed

Perez-Andres M., Paiva B., Nieto W.G. Human peripheral blood B-cell compartments: a crossroad in B-cell traffic. Cytometry B Clin. Cytom. 2010;78(Suppl. 1):S47–S60. PubMed

Venturi V., Kedzierska K., Price D.A. Sharing of T cell receptors in antigen-specific responses is driven by convergent recombination. Proc. Natl. Acad. Sci. U. S. A. 2006;103:18691–18696. PubMed PMC

Venturi V., Price D.A., Douek D.C., Davenport M.P. The molecular basis for public T-cell responses? Nat. Rev. Immunol. 2008;8:231–238. PubMed

Yang Y., Wang C., Yang Q. Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires. elife. 2015;4:e09083. PubMed PMC

Venturi V., Quigley M.F., Greenaway H.Y. A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing. J. Immunol. 2011;186:4285–4294. PubMed

Berman J.E., Nickerson K.G., Pollock R.R. VH gene usage in humans: biased usage of the VH6 gene in immature B lymphoid cells. Eur. J. Immunol. 1991;21:1311–1314. PubMed

Van Es J.H., Raaphorst F.M., van Tol M.J., Meyling F.H., Logtenberg T. Expression pattern of the most JH-proximal human VH gene segment (VH6) in the B cell and antibody repertoire suggests a role of VH6-encoded IgM antibodies in early ontogeny. J. Immunol. 1993;150:161–168. PubMed

Schroeder H.W., Jr., Wang J.Y. Preferential utilization of conserved immunoglobulin heavy chain variable gene segments during human fetal life. Proc. Natl. Acad. Sci. U. S. A. 1990;87:6146–6150. PubMed PMC

LeBien T.W. Fates of human B-cell precursors. Blood. 2000;96:9–23. PubMed

Rother M.B., Jensen K., van der Burg M. Decreased IL7Ralpha and TdT expression underlie the skewed immunoglobulin repertoire of human B-cell precursors from fetal origin. Sci Rep. 2016;6:33924. PubMed PMC

Vossenkamper A., Lutalo P.M., Spencer J. Translational mini-review series on B cell subsets in disease. Transitional B cells in systemic lupus erythematosus and Sjogren's syndrome: clinical implications and effects of B cell-targeted therapies. Clin. Exp. Immunol. 2012;167:7–14. PubMed PMC

Bueno C., van Roon E.H., Munoz-Lopez A. Immunophenotypic analysis and quantification of B-1 and B-2 B cells during human fetal hematopoietic development. Leukemia. 2016;30:1603–1606. PubMed

Seifert M., Sellmann L., Bloehdorn J. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J. Exp. Med. 2012;209:2183–2198. PubMed PMC

Agathangelidis A., Darzentas N., Hadzidimitriou A. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood. 2012;119:4467–4475. PubMed PMC

Baliakas P., Hadzidimitriou A., Sutton L.A. Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematol. 2014;1:e74–e84. PubMed

Burger J.A., Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol. 2013;34:592–601. PubMed PMC

Darzentas N., Stamatopoulos K. The significance of stereotyped B-cell receptors in chronic lymphocytic leukemia. Hematol. Oncol. Clin. North Am. 2013;27:237–250. PubMed

Chou M.Y., Fogelstrand L., Hartvigsen K. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Invest. 2009;119:1335–1349. PubMed PMC

Kim J. Identification of a human monoclonal natural IgM antibody that recognizes early apoptotic cells and promotes phagocytosis. Hybridoma (Larchmt) 2010;29:275–281. PubMed

Chen Y., Park Y.B., Patel E., Silverman G.J. IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J. Immunol. 2009;182:6031–6043. PubMed PMC

Lobo P.I. Role of natural autoantibodies and natural IgM anti-leucocyte autoantibodies in Health and disease. Front. Immunol. 2016;7:198. PubMed PMC

Schelonka R.L., Szymanska E., Vale A.M., Zhuang Y., Gartland G.L., Schroeder H.W., Jr. DH and JH usage in murine fetal liver mirrors that of human fetal liver. Immunogenetics. 2010;62:653–666. PubMed PMC

Jackson K.J., Liu Y., Roskin K.M. Human responses to influenza vaccination show seroconversion signatures and convergent antibody rearrangements. Cell Host Microbe. 2014;16:105–114. PubMed PMC

Wrammert J., Koutsonanos D., Li G.M. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 2011;208:181–193. PubMed PMC

Krause J.C., Tsibane T., Tumpey T.M. Epitope-specific human influenza antibody repertoires diversify by B cell intraclonal sequence divergence and interclonal convergence. J. Immunol. 2011;187:3704–3711. PubMed PMC

Lee J., Kuchen S., Fischer R., Chang S., Lipsky P.E. Identification and characterization of a human CD5 + pre-naive B cell population. J. Immunol. 2009;182:4116–4126. PubMed

Hardy R.R. B-1 B cells: development, selection, natural autoantibody and leukemia. Curr. Opin. Immunol. 2006;18:547–555. PubMed

Darzentas N., Hadzidimitriou A., Murray F. A different ontogenesis for chronic lymphocytic leukemia cases carrying stereotyped antigen receptors: molecular and computational evidence. Leukemia. 2010;24:125–132. PubMed

Garcia-Munoz R., Llorente L. Chronic lymphocytic leukaemia: could immunological tolerance mechanisms be the origin of lymphoid neoplasms? Immunology. 2014;142:536–550. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...