Isl1 Controls Patterning and Mineralization of Enamel in the Continuously Renewing Mouse Incisor

. 2017 Nov ; 32 (11) : 2219-2231. [epub] 20170731

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28650075

Grantová podpora
R00 DE022059 NIDCR NIH HHS - United States
R35 DE026602 NIDCR NIH HHS - United States
S10 RR026645 NCRR NIH HHS - United States
K99 DE022059 NIDCR NIH HHS - United States
R01 DE021420 NIDCR NIH HHS - United States

Rodents are characterized by continuously renewing incisors whose growth is fueled by epithelial and mesenchymal stem cells housed in the proximal compartments of the tooth. The epithelial stem cells reside in structures known as the labial (toward the lip) and lingual (toward the tongue) cervical loops (laCL and liCL, respectively). An important feature of the rodent incisor is that enamel, the outer, highly mineralized layer, is asymmetrically distributed, because it is normally generated by the laCL but not the liCL. Here, we show that epithelial-specific deletion of the transcription factor Islet1 (Isl1) is sufficient to drive formation of ectopic enamel by the liCL stem cells, and also that it leads to production of altered enamel on the labial surface. Molecular analyses of developing and adult incisors revealed that epithelial deletion of Isl1 affected multiple, major pathways: Bmp (bone morphogenetic protein), Hh (hedgehog), Fgf (fibroblast growth factor), and Notch signaling were upregulated and associated with liCL-generated ectopic enamel; on the labial side, upregulation of Bmp and Fgf signaling, and downregulation of Shh were associated with premature enamel formation. Transcriptome profiling studies identified a suite of differentially regulated genes in developing Isl1 mutant incisors. Our studies demonstrate that ISL1 plays a central role in proper patterning of stem cell-derived enamel in the incisor and indicate that this factor is an important upstream regulator of signaling pathways during tooth development and renewal. © 2017 American Society for Bone and Mineral Research.

Zobrazit více v PubMed

Jheon AH, Seidel K, Biehs B, Klein OD. From molecules to mastication: the development and evolution of teeth. Wiley Interdiscip Rev Dev Biol Mar-Apr. 2013;2(2):165–82. Epub 2013/09/07. PubMed PMC

Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol. 1999 Oct 4;147(1):105–20. Epub 1999/10/06. PubMed PMC

Seidel K, Ahn CP, Lyons D, Nee A, Ting K, Brownell I, et al. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development. 2010 Nov;137(22):3753–61. Epub 2010/10/28. PubMed PMC

Li CY, Cha W, Luder HU, Charles RP, McMahon M, Mitsiadis TA, et al. E-cadherin regulates the behavior and fate of epithelial stem cells and their progeny in the mouse incisor. Dev Biol. 2012 Jun 15;366(2):357–66. Epub 2012/04/28. PubMed PMC

Juuri E, Saito K, Ahtiainen L, Seidel K, Tummers M, Hochedlinger K, et al. Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Dev Cell. 2012 Aug 14;23(2):317–28. Epub 2012/07/24. PubMed PMC

Biehs B, Hu JK, Strauli NB, Sangiorgi E, Jung H, Heber RP, et al. BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nat Cell Biol. 2013 Jul;15(7):846–52. Epub 2013/06/04. PubMed PMC

Smith CE, Warshawsky H. Cellular renewal in the enamel organ and the odontoblast layer of the rat incisor as followed by radioautography using 3H-thymidine. Anat Rec. 1975 Dec;183(4):523–61. PubMed

Smith CE, Warshawsky H. Histological and three dimensional organization of the odontogenic organ in the lower incisor of 100 gram rats. Am J Anat. 1975 Apr;142(4):403–29. PubMed

Warshawsky H, Smith CE. Morphological classification of rat incisor ameloblasts. Anat Rec. 1974 Aug;179(4):423–46. Epub 1974/08/01. PubMed

Bei M, Maas R. FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development. 1998 Nov;125(21):4325–33. Epub 1998/10/01. PubMed

Mitsiadis TA, Hirsinger E, Lendahl U, Goridis C. Delta-notch signaling in odontogenesis: correlation with cytodifferentiation and evidence for feedback regulation. Dev Biol. 1998 Dec 15;204(2):420–31. Epub 1999/01/12. PubMed

Harada H, Toyono T, Toyoshima K, Yamasaki M, Itoh N, Kato S, et al. FGF10 maintains stem cell compartment in developing mouse incisors. Development. 2002 Mar;129(6):1533–41. Epub 2002/03/07. PubMed

Millar SE, Koyama E, Reddy ST, Andl T, Gaddapara T, Piddington R, et al. Over- and ectopic expression of Wnt3 causes progressive loss of ameloblasts in postnatal mouse incisor teeth. Connect Tissue Res. 2003;44(Suppl 1):124–9. Epub 2003/09/04. PubMed

Wang XP, Suomalainen M, Jorgez CJ, Matzuk MM, Werner S, Thesleff I. Follistatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting BMP signaling and ameloblast differentiation. Dev Cell. 2004 Nov;7(5):719–30. Epub 2004/11/05. PubMed

Wang XP, Suomalainen M, Felszeghy S, Zelarayan LC, Alonso MT, Plikus MV, et al. An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol. 2007 Jun;5(6):e159. Epub 2007/06/15. PubMed PMC

Felszeghy S, Suomalainen M, Thesleff I. Notch signalling is required for the survival of epithelial stem cells in the continuously growing mouse incisor. Differentiation. 2010 Nov-Dec;80(4-5):241–8. Epub 2010/08/10. PubMed

Liu F, Dangaria S, Andl T, Zhang Y, Wright AC, Damek-Poprawa M, et al. beta-Catenin initiates tooth neogenesis in adult rodent incisors. J Dent Res. 2010 Sep;89(9):909–14. Epub 2010/06/10. PubMed PMC

Klein OD, Lyons DB, Balooch G, Marshall GW, Basson MA, Peterka M, et al. An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development. 2008 Jan;135(2):377–85. Epub 2007/12/14. PubMed PMC

Kyrylkova K, Kyryachenko S, Biehs B, Klein O, Kioussi C, Leid M. BCL11B regulates epithelial proliferation and asymmetric development of the mouse mandibular incisor. PLoS One. 2012;7(5):e37670. Epub 2012/05/26. PubMed PMC

Karlsson O, Thor S, Norberg T, Ohlsson H, Edlund T. Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature. 1990 Apr 26;344(6269):879–82. Epub 1990/04/26. PubMed

Pfaff SL, Mendelsohn M, Stewart CL, Edlund T, Jessell TM. Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell. 1996 Jan 26;84(2):309–20. Epub 1996/01/26. PubMed

Ericson J, Norlin S, Jessell TM, Edlund T. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development. 1998 Mar;125(6):1005–15. Epub 1998/05/09. PubMed

Hunter CS, Dixit S, Cohen T, Ediger B, Wilcox C, Ferreira M, et al. Islet alpha-, beta-, and delta-cell development is controlled by the Ldb1 coregulator, acting primarily with the islet-1 transcription factor. Diabetes. 2013 Mar;62(3):875–86. Epub 2012/11/30. PubMed PMC

Witzel HR, Jungblut B, Choe CP, Crump JG, Braun T, Dobreva G. The LIM protein Ajuba restricts the second heart field progenitor pool by regulating Isl1 activity. Dev Cell. 2012 Jul 17;23(1):58–70. Epub 2012/07/10. PubMed PMC

Kawakami Y, Marti M, Kawakami H, Itou J, Quach T, Johnson A, et al. Islet1-mediated activation of the beta-catenin pathway is necessary for hindlimb initiation in mice. Development. 2011 Oct;138(20):4465–73. Epub 2011/09/23. PubMed PMC

Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 2005 Feb 10;433(7026):647–53. Epub 2005/02/11. PubMed PMC

Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006 Dec 15;127(6):1151–65. Epub 2006/11/25. PubMed

Bu L, Jiang X, Martin-Puig S, Caron L, Zhu S, Shao Y, et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature. 2009 Jul 2;460(7251):113–7. Epub 2009/07/03. PubMed

Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell Dec. 2003;5(6):877–89. Epub 2003/12/12. PubMed PMC

Caputo L, Witzel HR, Kolovos P, Cheedipudi S, Looso M, Mylona A, et al. The Isl1/Ldb1 Complex Orchestrates Genome-wide Chromatin Organization to Instruct Differentiation of Multipotent Cardiac Progenitors. Cell Stem Cell. 2015 Sep 3;17(3):287–99. Epub 2015/09/01. PubMed PMC

Heikinheimo K, Kurppa KJ, Laiho A, Peltonen S, Berdal A, Bouattour A, et al. Early dental epithelial transcription factors distinguish ameloblastoma from keratocystic odontogenic tumor. J Dent Res. 2015 Jan;94(1):101–11. Epub 2014/11/16. PubMed

Wang X, Shaffer JR, Zeng Z, Begum F, Vieira AR, Noel J, et al. Genome-wide association scan of dental caries in the permanent dentition. BMC Oral Health. 2012;12:57. Epub 2012/12/25. PubMed PMC

Mitsiadis TA, Angeli I, James C, Lendahl U, Sharpe PT. Role of Islet1 in the patterning of murine dentition. Development. 2003 Sep;130(18):4451–60. Epub 2003/08/06. PubMed

Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell. 1993 Dec 31;75(7):1417–30. Epub 1993/12/31. PubMed

Huang Z, Hu X, Lin C, Chen S, Huang F, Zhang Y. Genome-wide analysis of gene expression in human embryonic tooth germ. J Mol Histol. 2014 Dec;45(6):609–17. Epub 2014/08/06. PubMed

Dassule HR, Lewis P, Bei M, Maas R, McMahon AP. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development. 2000 Nov;127(22):4775–85. PubMed

Pan L, Deng M, Xie X, Gan L. ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells. Development. 2008 Jun;135(11):1981–90. PubMed PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012 Apr;9(4):357–9. PubMed PMC

Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009 May 1;25(9):1105–11. PubMed PMC

Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al. Ensembl 2014. Nucleic Acids Res. 2014 Jan;42(Database issue):D749–55. PubMed PMC

Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. PubMed PMC

Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. PubMed

Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009 Jan;37(1):1–13. PubMed PMC

Roehl H, Nusslein-Volhard C. Zebrafish pea3 and erm are general targets of FGF8 signaling. Curr Biol. 2001 Apr 3;11(7):503–7. Epub 2001/06/20. PubMed

Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, et al. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell. 2006 Aug;11(2):181–90. PubMed PMC

Nakamura T, Hasegawa Y, Sugino K, Kogawa K, Titani K, Sugino H. Follistatin inhibits activin-induced differentiation of rat follicular granulosa cells in vitro. Biochim Biophys Acta. 1992 Apr 30;1135(1):103–9. Epub 1992/04/30. PubMed

Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop DR, Bradley A. Multiple defects and perinatal death in mice deficient in follistatin. Nature. 1995 Mar 23;374(6520):360–3. Epub 1995/03/23. PubMed

Rodriguez-Boulan E, Nelson WJ. Morphogenesis of the polarized epithelial cell phenotype. Science. 1989 Aug 18;245(4919):718–25. Epub 1989/08/18. PubMed

Inai T, Sengoku A, Hirose E, Iida H, Shibata Y. Differential expression of the tight junction proteins, claudin-1, claudin-4, occludin, ZO-1, and PAR3, in the ameloblasts of rat upper incisors. Anat Rec (Hoboken) 2008 May;291(5):577–85. PubMed

Bello IO, Soini Y, Slootweg PJ, Salo T. Claudins 1, 4, 5, 7 and occludin in ameloblastomas and developing human teeth. J Oral Pathol Med. 2007 Jan;36(1):48–54. PubMed

Morsli H, Tuorto F, Choo D, Postiglione MP, Simeone A, Wu DK. Otx1 and Otx2 activities are required for the normal development of the mouse inner ear. Development. 1999 Jun;126(11):2335–43. Epub 1999/05/05. PubMed

Yoon H, Lee DJ, Kim MH, Bok J. Identification of genes concordantly expressed with Atoh1 during inner ear development. Anat Cell Biol. 2011 Mar;44(1):69–78. Epub 2011/04/27. PubMed PMC

Shyu WC, Lin SZ, Chiang MF, Chen DC, Su CY, Wang HJ, et al. Secretoneurin promotes neuroprotection and neuronal plasticity via the Jak2/Stat3 pathway in murine models of stroke. J Clin Invest. 2008 Jan;118(1):133–48. Epub 2007/12/15. PubMed PMC

Hao A, Novotny-Diermayr V, Bian W, Lin B, Lim CP, Jing N, et al. The LIM/homeodomain protein Islet1 recruits Janus tyrosine kinases and signal transducer and activator of transcription 3 and stimulates their activities. Mol Biol Cell. 2005 Apr;16(4):1569–83. Epub 2005/01/22. PubMed PMC

Kassi E, Papavassiliou AG. A possible role of osteocalcin in the regulation of insulin secretion: human in vivo evidence? J Endocrinol. 2008 Nov;199(2):151–3. Epub 2008/07/23. PubMed

Doumont G, Martoriati A, Marine JC. PTPRV is a key mediator of p53-induced cell cycle exit. Cell Cycle. 2005 Dec;4(12):1703–5. Epub 2005/11/01. PubMed

Hayashi M, Nimura K, Kashiwagi K, Harada T, Takaoka K, Kato H, et al. Comparative roles of Twist-1 and Id1 in transcriptional regulation by BMP signaling. J Cell Sci. 2007 Apr 15;120(Pt 8):1350–7. PubMed

Lundberg KC, Fritz Y, Johnston A, Foster AM, Baliwag J, Gudjonsson JE, et al. Proteomics of skin proteins in psoriasis: from discovery and verification in a mouse model to confirmation in humans. Mol Cell Proteomics. 2015 Jan;14(1):109–19. Epub 2014/10/30. PubMed PMC

Jheon AH, Prochazkova M, Meng B, Wen T, Lim YJ, Naveau A, et al. Inhibition of Notch Signaling During Mouse Incisor Renewal Leads to Enamel Defects. J Bone Miner Res. 2015 Jul 14; PubMed PMC

Harada H, Ichimori Y, Yokohama-Tamaki T, Ohshima H, Kawano S, Katsube K, et al. Stratum intermedium lineage diverges from ameloblast lineage via Notch signaling. Biochem Biophys Res Commun. 2006 Feb 10;340(2):611–6. PubMed

Ohazama A, Sharpe PT. Expression of claudins in murine tooth development. Dev Dyn. 2007 Jan;236(1):290–4. PubMed

Hoshino M, Hashimoto S, Muramatsu T, Matsuki M, Ogiuchi H, Shimono M. Claudin rather than occludin is essential for differentiation in rat incisor odontoblasts. Oral Dis Oct. 2008;14(7):606–12. PubMed

Bardet C, Courson F, Wu Y, Khaddam M, Salmon B, Ribes S, et al. Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation. J Bone Miner Res. 2015 Oct 1; PubMed

Skobe Z. The secretory stage of amelogenesis in rat mandibular incisor teeth observed by scanning electron microscopy. Calcif Tissue Res. 1976 Oct 12;21(2):83–103. PubMed

Seidel K, Marangoni P, Tang C, Houshmand B, Du W, Maas RL, et al. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis. Elife. 2017 May 05;:6. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...