• This record comes from PubMed

Modeling Adhesive Anchors in a Discrete Element Framework

. 2017 Aug 08 ; 10 (8) : . [epub] 20170808

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

In recent years, post-installed anchors are widely used to connect structural members and to fix appliances to load-bearing elements. A bonded anchor typically denotes a threaded bar placed into a borehole filled with adhesive mortar. The high complexity of the problem, owing to the multiple materials and failure mechanisms involved, requires a numerical support for the experimental investigation. A reliable model able to reproduce a system's short-term behavior is needed before the development of a more complex framework for the subsequent investigation of the lifetime of fasteners subjected to various deterioration processes can commence. The focus of this contribution is the development and validation of such a model for bonded anchors under pure tension load. Compression, modulus, fracture and splitting tests are performed on standard concrete specimens. These serve for the calibration and validation of the concrete constitutive model. The behavior of the adhesive mortar layer is modeled with a stress-slip law, calibrated on a set of confined pull-out tests. The model validation is performed on tests with different configurations comparing load-displacement curves, crack patterns and concrete cone shapes. A model sensitivity analysis and the evaluation of the bond stress and slippage along the anchor complete the study.

See more in PubMed

Cook R.A. Behavior of chemically bonded anchors. J. Struct. Eng. 1993;119:2744–2762. doi: 10.1061/(ASCE)0733-9445(1993)119:9(2744). DOI

Cook R.A., Kunz J., Fuchs W., Konz R.C. Behavior and Design of Single Adhesive Anchors under Tensile Load in Uncracked Concrete. Struct. J. 1998;95:9–26.

Ashour A., Alqedra M. Concrete breakout strength of single anchors in tension using neural networks. Adv. Eng. Softw. 2005;36:87–97. doi: 10.1016/j.advengsoft.2004.08.001. DOI

Alqedra M., Ashour A. Prediction of shear capacity of single anchors located near a concrete edge using neural networks. Comput. Struct. 2005;83:2495–2502. doi: 10.1016/j.compstruc.2005.03.019. DOI

Sakla S.S., Ashour A.F. Prediction of tensile capacity of single adhesive anchors using neural networks. Comput. Struct. 2005;83:1792–1803. doi: 10.1016/j.compstruc.2005.02.008. DOI

Contrafatto L., Cosenza R. Prediction of the pull-out strength of chemical anchors in natural stone. Frat. Integrità Strutt. 2014;29:196–208.

Červenka V., Jendele L. ATENA Program Documentation Part. Cervenka Consulting s.r.o.; Rague, Czech Republic: 2000.

Bajer M., Barnat J. The glue—Concrete interface of bonded anchors. Constr. Build. Mater. 2012;34:267–274. doi: 10.1016/j.conbuildmat.2012.02.030. DOI

Bažant Z.P., Caner F.C., Cedolin L., Cusatis G., Di Luzio G. Fracturing material models based on micromechanical concepts: Recent advances; Proceedings of the Fracture Mechanics of Concrete and Concrete Structures—FraMCoS-5; Vail, CO, USA. 12–16 April 2004; pp. 83–89.

Ožbolt J., Li Y., Kozar I. Microplane model with relaxed kinematie constraint. [(accessed on 3 August 2017)];38:2683–2711. Available online: http://www.framcos.org/FraMCoS-4/609.pdf.

Caner F.C., Bažant Z.P. Microplane Model M7 for Plain Concrete: I. Formulation. J. Eng. Mech. 2012;139:1714–1723. doi: 10.1061/(ASCE)EM.1943-7889.0000570. DOI

Caner F.C., Bažant Z.P. Microplane Model M7 for Plain Concrete. II: Calibration and Verification. J. Eng. Mech. 2012;139:1724–1735. doi: 10.1061/(ASCE)EM.1943-7889.0000571. DOI

Eligehausen R., Appl J. [(accessed on 3 August 2017)];Behavior and Design of Fastenings with Bonded Anchors: Numerical Analysis and Experimental Verification. 2007 Available online: http://framcos.org/FraMCoS-6/418.pdf.

Li Y.J., Eligehausen R., Lehr B., Ožbolt J. Fracture Analysis of Quadruple Fastenings with Bonded Anchors. [(accessed on 3 August 2017)];2001 Available online: http://framcos.org/FraMCoS-4/991.pdf.

Unterweger A., Spyridis P., Mihala R., Bergmeister K. Randnahe Vierfachbefestigungen unter Querlast: Experimentelle und numerische Untersuchung. Beton Stahlbetonbau. 2008;103:741–747. doi: 10.1002/best.200800644. DOI

McVay M., Cook R.A., Krishnamurthy K. Pullout simulation of postinstalled chemically bonded anchors. J. Struct. Eng. 1996;122:1016–1024. doi: 10.1061/(ASCE)0733-9445(1996)122:9(1016). DOI

Cusatis G., Pelessone D., Mencarelli A. Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. I: Theory. Cem. Concr. Compos. 2011;33:881–890. doi: 10.1016/j.cemconcomp.2011.02.011. DOI

Cusatis G., Mencarelli A., Pelessone D., Baylot J. Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. II: Calibration and validation. Cem. Concr. Compos. 2011;33:891–905. doi: 10.1016/j.cemconcomp.2011.02.010. DOI

Abdellatef M., Alnaggar M., Boumakis G., Cusatis G., Di-Luzio G., Wendner R. Lattice discrete particle modeling for coupled concrete creep and shrinkage using the solidification microprestress theory; Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures (CONCREEP 10); Vienna, Austria. 21–23 September 2015; pp. 184–193.

Alnaggar M., Cusatis G., Di Luzio G. Lattice Discrete Particle Modeling (LDPM) of Alkali Silica Reaction (ASR) deterioration of concrete structures. Cem. Concr. Compos. 2013;41:45–59. doi: 10.1016/j.cemconcomp.2013.04.015. DOI

Wendner R., Ninčević K., Boumakis I., Wan L. Key Engineering Materials. Volume 711. Trans Tech Publications; Stafa-Zurich, Switzerland: 2016. Age-Dependent Lattice Discrete Particle Model for Quasi-Static Simulations; pp. 1090–1097.

Pukl R., Jansta M., Červenka J., Vořechovský M., Novák D., Rusina R. Computational Modelling of Concrete Structures. 2006. [(accessed on 3 August 2017)]. Spatial variability of material properties in nonlinear computer simulation; pp. 891–896. Available online: http://www.fce.vutbr.cz/STM/vorechovsky.m/papers/27z.pdf.

Amadio C., Bedon C., Fasan M., Pecce M.R. Refined numerical modelling for the structural assessment of steel-concrete composite beam-to-column joints under seismic loads. Eng. Struct. 2017;138:394–409. doi: 10.1016/j.engstruct.2017.02.037. DOI

Bažant Z.P., Tabbara M.R., Kazemi M.T., Pijaudier-Cabot G. Random particle model for fracture of aggregate or fiber composites. J. Eng. Mech. 1990;116:1686–1705.

Cusatis G., Bažant Z.P., Cedolin L. Confinement-shear lattice model for concrete damage in tension and compression: I. Theory. J. Eng. Mech. 2003;129:1439–1448. doi: 10.1061/(ASCE)0733-9399(2003)129:12(1439). DOI

Di Luzio G., Cusatis G. Solidification-microprestress–microplane (SMM) theory for concrete at early age: Theory, validation and application. Int. J. Solids Struct. 2013;50:957–975. doi: 10.1016/j.ijsolstr.2012.11.022. DOI

Abdellatef M., Salem E., Lau D., Stenroos L., Alnaggar M. Bond Degradation of Corroded Reinforcement: An Experimental and Numerical Study; Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures (IA-FraMCoS); Berkeley, CA, USA. 22–25 May 2016.

Drucker D.C., Prager W. Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 1952;10:157–165. doi: 10.1090/qam/48291. DOI

Schauffert E., Cusatis G. Lattice Discrete Particle Model for Fiber-Reinforced Concrete. I: Theory. J. Eng. Mech. 2011;138:826–833. doi: 10.1061/(ASCE)EM.1943-7889.0000387. DOI

Schauffert E., Cusatis G., Pelessone D., O’Daniel J., Baylot J. Lattice Discrete Particle Model for Fiber-Reinforced Concrete. II: Tensile Fracture and Multiaxial Loading Behavior. J. Eng. Mech. 2011;138:834–841. doi: 10.1061/(ASCE)EM.1943-7889.0000392. DOI

ASTM . Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. Volume C496/C496M-11 ASTM International; West Conshohocken, PA, USA: 2011.

CEN . Eurocode 2: Design of Concrete Structures, Part 1-1: General Rules and Rules for Buildings. British Standards Institution; London, UK: 2004.

Podroužek J., Vorel J., Boumakis I., Cusatis G., Wendner R. Implications of spatial variability characterization in discrete particle models; Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures (IA-FraMCoS); Berkeley, CA, USA. 22–25 May 2016.

Podroužek J., Vorel J., Cusatis G., Wendner R. Imposed Correlation Between Random Field and Discrete Particle Placement; Proceedings of the 14th International Probabilistic Workshop; Ghent, Belgium. 5–7 December 2016; pp. 245–252.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...