Simplified Testing of the Bond Strength of Adhesives Used for Bonded Anchors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FV10317
Ministry of Trade of the Czech Republic
TH04020431
Technology Agency of the Czech Republic
2112
Brno University of Technology
PubMed
34203620
PubMed Central
PMC8232176
DOI
10.3390/ma14123298
PII: ma14123298
Knihovny.cz E-zdroje
- Klíčová slova
- adhesive, bond stress, bonded anchor, experiment, fillers, tension force,
- Publikační typ
- časopisecké články MeSH
The analysis presented in this paper is focused on problems of bond strength as an overall bond quality parameter of industrial adhesives for structural anchoring. In the first part, the problem of bond strength as the most important parameter influencing the final anchor resistance to tension load is described. Further in the text, a new methodology of simplified testing of the strength parameters of adhesives is described. Special test specimens made from steel are repeatedly used in this methodology. Additionally, results of these tests on some new recipes for adhesive are presented. Especially, epoxy resins with special fillers, such as carbon fibres, carbon nanotubes or graphene, were tested. The use of these adhesives in temperatures close to zero degrees Celsius was also tested.
Zobrazit více v PubMed
Cook R.A., Kunz J., Fuchs W., Konz R.C. Behavior and design of single adhesive anchors under tensile load in uncracked concrete. ACI Struct. J. 1998;95:9–26.
Epackachi S., Esmaili O., Mirghaderi S.R., Behbahani A.A.T. Behavior of adhesive bonded anchors under tension and shear loads. J. Constr. Steel Res. 2015;114:269–280. doi: 10.1016/j.jcsr.2015.07.022. DOI
Ozbolt J., Eligehausen R., Periskic G., Mayer U. 3D FE analysis of anchor bolts with large embedment depths. Eng. Fract. Mech. 2007;74:168–178. doi: 10.1016/j.engfracmech.2006.01.019. DOI
Ahmed L.T., Braimah A. Tensile behaviour of adhesive anchors under different strain rates. Eng. Struct. 2019;192:113–125. doi: 10.1016/j.engstruct.2019.04.072. DOI
Cook R.A., Doerr G.T., Klingner R.E. Bond stress model for design of adhesive anchors. ACI Struct. J. 1993;90:514–524.
Ceroni F., Di Ludovico M. Traditional and innovative systems for injected anchors in masonry elements: Experimental behavior and theoretical formulations. Constr. Build. Mater. 2020;254:18. doi: 10.1016/j.conbuildmat.2020.119178. DOI
ETAG 001 . Annex A Details Tests. EOTA; Brussels, Belgium: 2013. Guideline for European Technical Approval of Mteal Anchors for Use in Concrete; pp. 1–19.
Fuchs W., Hofmann J., Hulder G. Load bearing behavior of chemical fasteners after installation at decreased temperatures. Beton Stahlbetonbau. 2015;110:394–401. doi: 10.1002/best.201500010. DOI
Barnat J., Bajer M., Vild M. To the Problems of Anchoring Adhesives in High Performance Concrete; Proceedings of the 3rd World Multidisciplinary Civil Engineering, Architecture, Urban Planning Symposium (WMCAUS); Prague, Czech Republic. 18–22 June 2018.
Eligehausen R., Mallée R., Silva J.F. In: Anchorage in Concrete Construction. John R., Eligehausen R., Mallée J., Silva F., editors. John Wiley & Sons; Hoboken, NJ, USA: 2006.
Meszaros J., Eligehausen R. Einfluss der Bohrlochreinigung und von feuchtem Beton auf das Tragvehalten von Injektions-dübeln (Influence of Hole Cleaning and of Humid Concrete on the Load-Bearing Behaviour of Injection Anchors) Institut für Werkstoffe im Bauwesen, Universität Stuttgart; Stuttgart, Germany: 1998. Report No. 98/2-2/2.
Spieth H.A., Eligehausen R. Beton und Stahlebetonbau 97. Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG; Berlin, Germany: 2002. Bewehrungsnschlüsse mit Nachträglich Eingemörtelten Bewehrungstaben (Starter Bars with Post Installed Rebars) pp. 445–459. DOI
Eligehausen R., Cook R.A., Appl J. Behavior and design of adhesive bonded anchors. ACI Struct. J. 2006;103:822.
Fuchs W., Eligehausen R., Breen J. Concrete capacity design (CCD) approach for fastening to concrete. ACI Struct. J. 1995;92:73–94.
ACI 355.4-11 . Qualification of Post-Installed Adhesive Anchors in Concrete and Commentary. American Concrete Institute; Farmington Hills, MI, USA: 2011.
EN 1992-4:2018 . Eurocode 2—Design of Concrete Structures—Part 4: Design of Fastenings for Use in Concrete. CEN; Belgium, Brussels: 2018.
Cook R.A. Behaviour of chemically bonded acnhors. J. Struct. Eng. ASCE. 1993;119:2744–2762. doi: 10.1061/(ASCE)0733-9445(1993)119:9(2744). DOI
Cook R.A., Fagundo F.E., Biller M.H., Richardson D.E. Structure Material Research Report No. 91-3. University of Florida, Engineering and Industrial Experiment Station; Gainesville, FL, USA: 1991. Tensile Behaviour and Design of Single Adhesive Anchors.
Bajer M., Barnat J. The glue-concrete interface of bonded anchors. Constr. Build. Mater. 2012;34:267–274. doi: 10.1016/j.conbuildmat.2012.02.030. DOI
Randl N., Gusella O. Behavior of adhesive anchors in high strength and ultra high performance concrete. Beton Stahlbetonbau. 2011;106:561–573. doi: 10.1002/best.201100045. DOI
Cook R.A., Konz R.C. Factors influencing bond strength of adhesive anchors. ACI Struct. J. 2001;98:76–86.
Ceroni F., Bonati A., Galimberti V., Occhiuzzi A. Effects of Environmental Conditioning on the Bond Behavior of FRP and FRCM Systems Applied to Concrete Elements. J. Eng. Mech. 2018;144:15. doi: 10.1061/(ASCE)EM.1943-7889.0001375. DOI
De Domenico D., Urso S., Borsellino C., Spinella N., Recupero A. Bond behavior and ultimate capacity of notched concrete beams with externally-bonded FRP and PBO-FRCM systems under different environmental conditions. Constr. Build. Mater. 2020;265 doi: 10.1016/j.conbuildmat.2020.121208. DOI
Lahouar M.A., Caron J.F., Pinoteau N., Forêt G., Benzarti K. Mechanical behavior of adhesive anchors under high temperature exposure: Experimental investigation. Int. J. Adhes. Adhes. 2017;78:200–211. doi: 10.1016/j.ijadhadh.2017.07.004. DOI
Marcon M., Vorel J., Ninčević K., Wan-Wendner R. Modeling Adhesive Anchors in a Discrete Element Framework. Materials. 2017;10:917. doi: 10.3390/ma10080917. PubMed DOI PMC
Hou W.X., Gao Y., Wang J., Blackwood D.J., Teo S. Recent advances and future perspectives for graphene oxide reinforced epoxy resins. Mater. Today Commun. 2020;23:13. doi: 10.1016/j.mtcomm.2019.100883. DOI
Frigione M., Lettieri M. Recent Advances and Trends of Nanofilled/Nanostructured Epoxies. Materials. 2020;13:24. doi: 10.3390/ma13153415. PubMed DOI PMC
Kavimani V., Prakash K.S., Thankachan T., Udayakumar R. Synergistic improvement of epoxy derived polymer composites reinforced with Graphene Oxide (GO) plus Titanium di oxide(TiO2) Compos. Part B Eng. 2020;191:7. doi: 10.1016/j.compositesb.2020.107911. DOI
Xie Y.K., Liu C.H., Liu W.Q., Liang L.Y., Wang S., Zhang F.Y., Shi H.Y., Yang M.P. A novel approach to fabricate polyacrylate modified graphene oxide for improving the corrosion resistance of epoxy coatings. Colloids Surf. A Physicochem. Eng. Asp. 2020;593:10. doi: 10.1016/j.colsurfa.2020.124627. DOI
Wolk A., Rosenthal M., Weiss J., Voigt M., Wesendahl J.N., Hartmann M., Grundmeier G., Wilhelm R., Meschut G., Tiemann M., et al. Graphene oxide as flexibilizer for epoxy amine resins. Prog. Org. Coat. 2018;122:280–289. doi: 10.1016/j.porgcoat.2018.05.028. DOI
Zamal H.H., Barba D., Aissa B., Haddad E., Rosei F. Failure analysis of self-healing epoxy resins using microencapsulated 5E2N and carbon nanotubes. Smart Mater. Struct. 2021;30:12. doi: 10.1088/1361-665X/abd005. DOI
Wang E.L., Dong Y.B., Islam M.Z., Yu L.M., Liu F.Y., Chen S.J., Qi X.M., Zhu Y.F., Fu Y.Q., Xu Z.H., et al. Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites. Compos. Sci. Technol. 2019;169:209–216. doi: 10.1016/j.compscitech.2018.11.022. DOI
Wang M., Fan X.S., Thitsartarn W., He C.B. Rheological and mechanical properties of epoxy/clay nanocomposites with enhanced tensile and fracture toughnesses. Polymer. 2015;58:43–52. doi: 10.1016/j.polymer.2014.12.042. DOI
Basri A.B.A., Chae D.W., Lee H. Investigation of the dynamic characteristics of a carbon -fiber -reinforced epoxy with adhesive -jointed structure. Compos. Struct. 2020;247:16. doi: 10.1016/j.compstruct.2020.112499. DOI
Moussa O., Vassilopoulos A.P., de Castro J., Keller T. Early-age tensile properties of structural epoxy adhesives subjected to low-temperature curing. Int. J. Adhes. Adhes. 2012;35:9–16. doi: 10.1016/j.ijadhadh.2012.01.023. DOI
Moussa O., Vassilopoulos A.P., Keller T. Effects of low-temperature curing on physical behavior of cold-curing epoxy adhesives in bridge construction. Int. J. Adhes. Adhes. 2012;32:15–22. doi: 10.1016/j.ijadhadh.2011.09.001. DOI
Satoh A., Takeda K., Murakami K. FEM analysis on combined bond-cone fracture of a post-installed adhesive anchor filled with UHPFRC. Theor. Appl. Fract. Mech. 2019;100:46–54. doi: 10.1016/j.tafmec.2018.12.012. DOI
Barnat J., Bajer M. Recent Research in Geography Geology, Energy, Environment and Biomedicine, Proceedings of the 4th WSEAS International Conference on Engineering Mechanics, Structures, Corfu Island, Greece, 14–16 July 2011. Engineering geology; EMESEG 2011; WSEAS Press; Corfu, Greece: 2011. Analysis of Bonded Anchor in Combined Concrete-Bond Failure Mode.
Cook R.A., Bishop M.C., Hagedoorn H.S., Sikes D., Richardson D.S., Adams T.L., De Zee C.T. Adhesive Bonded Anchors: Bond Properties and Effects of in Service and Installation Conditions. University of Florida, Department of Civil Engineering, College of Engineering; Gainesville, FL, USA: 1994. Report No. 94-2A.