Coding and small non-coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28808237
PubMed Central
PMC5556011
DOI
10.1038/s41598-017-06145-8
PII: 10.1038/s41598-017-06145-8
Knihovny.cz E-resources
- MeSH
- Child MeSH
- Adult MeSH
- Epilepsy genetics MeSH
- Transcription, Genetic genetics MeSH
- Tuberous Sclerosis Complex 1 Protein genetics MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- MicroRNAs genetics MeSH
- Adolescent MeSH
- Young Adult MeSH
- Cerebral Cortex physiology MeSH
- Mechanistic Target of Rapamycin Complex 1 genetics MeSH
- Mutation genetics MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Neurons physiology MeSH
- Child, Preschool MeSH
- Signal Transduction genetics MeSH
- Tuberous Sclerosis Complex 2 Protein genetics MeSH
- Tuberous Sclerosis genetics MeSH
- Animals MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Mice MeSH
- Child, Preschool MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Tuberous Sclerosis Complex 1 Protein MeSH
- MicroRNAs MeSH
- MIRN34a microRNA, mouse MeSH Browser
- Mechanistic Target of Rapamycin Complex 1 MeSH
- Tuberous Sclerosis Complex 2 Protein MeSH
Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that results from a mutation in the TSC1 or TSC2 genes leading to constitutive activation of the mechanistic target of rapamycin complex 1 (mTORC1). TSC is associated with autism, intellectual disability and severe epilepsy. Cortical tubers are believed to represent the neuropathological substrates of these disabling manifestations in TSC. In the presented study we used high-throughput RNA sequencing in combination with systems-based computational approaches to investigate the complexity of the TSC molecular network. Overall we detected 438 differentially expressed genes and 991 differentially expressed small non-coding RNAs in cortical tubers compared to autopsy control brain tissue. We observed increased expression of genes associated with inflammatory, innate and adaptive immune responses. In contrast, we observed a down-regulation of genes associated with neurogenesis and glutamate receptor signaling. MicroRNAs represented the largest class of over-expressed small non-coding RNA species in tubers. In particular, our analysis revealed that the miR-34 family (including miR-34a, miR-34b and miR-34c) was significantly over-expressed. Functional studies demonstrated the ability of miR-34b to modulate neurite outgrowth in mouse primary hippocampal neuronal cultures. This study provides new insights into the TSC transcriptomic network along with the identification of potential new treatment targets.
Department of Medicine Brigham and Women's Hospital Boston Massachusetts USA
Department of Neurology University of Maryland School of Medicine Baltimore MD USA
Department of Pathology Academic Medical Center University of Amsterdam Amsterdam The Netherlands
Department of Pathology University Medical Center Utrecht Utrecht The Netherlands
Department of Pediatrics Medical University Vienna Vienna Austria
GenomeScan BV Leiden The Netherlands
Institute of Neurology Medical University Vienna Vienna Austria
Pediatric Neurology Unit UZ Brussel Brussels Belgium
Stichting Epilepsie Instellingen Nederland Heemstede The Netherlands
See more in PubMed
van Slegtenhorst M, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277:805–808. doi: 10.1126/science.277.5327.805. PubMed DOI
Curatolo P, Bombardieri R, Jozwiak S. Tuberous sclerosis. Lancet. 2008;372:657–668. doi: 10.1016/S0140-6736(08)61279-9. PubMed DOI
Curatolo P, Verdecchia M, Bombardieri R. Tuberous sclerosis complex: a review of neurological aspects. European Journal of Paediatric Neurology. 2002;6:15–23. doi: 10.1053/ejpn.2001.0538. PubMed DOI
Bolton PF. Neuroepileptic correlates of autistic symptomatology in tuberous sclerosis. Mental Retardation & Developmental Disabilities Research Reviews. 2004;10:126–131. doi: 10.1002/mrdd.20024. PubMed DOI
Curatolo P, Moavero R, de Vries PJ. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol. 2015;14:733–745. doi: 10.1016/S1474-4422(15)00069-1. PubMed DOI
Koh S, et al. Epilepsy surgery in children with tuberous sclerosis complex: presurgical evaluation and outcome. Epilepsia. 2000;41:1206–1213. doi: 10.1111/j.1528-1157.2000.tb00327.x. PubMed DOI
Weiner HL, et al. Epilepsy surgery in young children with tuberous sclerosis: results of a novel approach. Pediatrics. 2006;117:1494–1502. doi: 10.1542/peds.2005-1206. PubMed DOI
Bollo RJ, et al. Epilepsy surgery and tuberous sclerosis complex: special considerations. Neurosurgical Focus. 2008;25:E13. doi: 10.3171/FOC/2008/25/9/E13. PubMed DOI
Curatolo P, et al. The Role of mTOR Inhibitors in the Treatment of Patients with Tuberous Sclerosis Complex: Evidence-based and Expert Opinions. Drugs. 2016;76:551–565. doi: 10.1007/s40265-016-0552-9. PubMed DOI
French JA, et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet. 2016;388:2153–2163. doi: 10.1016/S0140-6736(16)31419-2. PubMed DOI
Sahin M, et al. Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. Pediatric Neurology. 2016;60:1–12. doi: 10.1016/j.pediatrneurol.2016.03.015. PubMed DOI PMC
White R, et al. Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Annals of Neurology. 2001;49:67–78. doi: 10.1002/1531-8249(200101)49:1<67::AID-ANA10>3.0.CO;2-L. PubMed DOI
Kyin R, et al. Differential cellular expression of neurotrophins in cortical tubers of the tuberous sclerosis complex. Am J Pathol. 2001;159:1541–1554. doi: 10.1016/S0002-9440(10)62539-4. PubMed DOI PMC
Boer K, et al. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol. 2010;20:704–719. doi: 10.1111/j.1750-3639.2009.00341.x. PubMed DOI PMC
Dombkowski AA, et al. Cortical Tubers: Windows into Dysregulation of Epilepsy Risk and Synaptic Signaling Genes by MicroRNAs. Cerebral Cortex. 2016;26:1059–1071. doi: 10.1093/cercor/bhu276. PubMed DOI PMC
Hitzemann R, et al. Introduction to Sequencing the Brain Transcriptome. Brain Transcriptome. 2014;116:1–19. doi: 10.1016/B978-0-12-801105-8.00001-1. PubMed DOI PMC
Soon, W. W., Hariharan, M. & Snyder, M. P. High-throughput sequencing for biology and medicine. Molecular Systems Biology9, doi:10.1038/msb.2012.61 (2013). PubMed PMC
Parikshak NN, Gandal MJ, Geschwind DH. Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nature Reviews Genetics. 2015;16:441–458. doi: 10.1038/nrg3934. PubMed DOI PMC
Gokoolparsadh A, et al. Searching for convergent pathways in autism spectrum disorders: insights from human brain transcriptome studies. Cellular and Molecular Life Sciences. 2016;73:4517–4530. doi: 10.1007/s00018-016-2304-0. PubMed DOI PMC
Afonso-Grunz F, Muller S. Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cellular and Molecular Life Sciences. 2015;72:3127–3141. doi: 10.1007/s00018-015-1922-2. PubMed DOI PMC
Martens-Uzunova ES, Olvedy M, Jenster G. Beyond microRNA - Novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Letters. 2013;340:201–211. doi: 10.1016/j.canlet.2012.11.058. PubMed DOI
Veneziano D, Nigita G, Ferro A. Computational Approaches for the Analysis of ncRNA through Deep Sequencing Techniques. Front Bioeng Biotechnol. 2015;3:77. doi: 10.3389/fbioe.2015.00077. PubMed DOI PMC
Darmanis S, et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA. 2015;112:7285–7290. doi: 10.1073/pnas.1507125112. PubMed DOI PMC
Dombkowski AA, et al. Cortical Tubers: Windows into Dysregulation of Epilepsy Risk and Synaptic Signaling Genes by MicroRNAs. Cereb Cortex. 2016;26:1059–1071. doi: 10.1093/cercor/bhu276. PubMed DOI PMC
Somel M, et al. MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates. PLoS Biol. 2011;9:e1001214. doi: 10.1371/journal.pbio.1001214. PubMed DOI PMC
Boon RA, et al. MicroRNA-34a regulates cardiac ageing and function. Nature. 2013;495:107–110. doi: 10.1038/nature11919. PubMed DOI
Maetschke SR, Madhamshettiwar PB, Davis MJ, Ragan MA. Supervised, semi-supervised and unsupervised inference of gene regulatory networks. Brief Bioinform. 2014;15:195–211. doi: 10.1093/bib/bbt034. PubMed DOI PMC
Zhao W, et al. Weighted gene coexpression network analysis: state of the art. J Biopharm Stat. 2010;20:281–300. doi: 10.1080/10543400903572753. PubMed DOI
Lee YJ, Kim V, Muth DC, Witwer KW. Validated MicroRNA Target Databases: An Evaluation. Drug Develop Res. 2015;76:389–396. doi: 10.1002/ddr.21278. PubMed DOI PMC
Boer K, et al. Inflammatory processes in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Epilepsy Res. 2008;78:7–21. doi: 10.1016/j.eplepsyres.2007.10.002. PubMed DOI
Zurolo E, et al. Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain: a journal of neurology. 2011;134:1015–1032. doi: 10.1093/brain/awr032. PubMed DOI
Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nature reviews. Neurology. 2011;7:31–40. doi: 10.1038/nrneurol.2010.178. PubMed DOI PMC
Aronica E, Ravizza T, Zurolo E, Vezzani A. Astrocyte immune responses in epilepsy. Glia. 2012;60:1258–1268. doi: 10.1002/glia.22312. PubMed DOI
Vezzani A, Friedman A, Dingledine RJ. The role of inflammation in epileptogenesis. Neuropharmacology. 2013;69:16–24. doi: 10.1016/j.neuropharm.2012.04.004. PubMed DOI PMC
Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11–21. doi: 10.1016/j.expneurol.2011.09.033. PubMed DOI
Vezzani A, Lang B, Aronica E. Immunity and Inflammation in Epilepsy. Cold Spring Harb Perspect Med. 2016;6:a022699. doi: 10.1101/cshperspect.a022699. PubMed DOI PMC
Aronica E, et al. Complement activation in experimental and human temporal lobe epilepsy. Neurobiology of Disease. 2007;26:497–511. doi: 10.1016/j.nbd.2007.01.015. PubMed DOI
Aronica E, et al. Gene expression profile analysis of epilepsy-associated gangliogliomas. Neuroscience. 2008;151:272–292. doi: 10.1016/j.neuroscience.2007.10.036. PubMed DOI
Pelham CJ, Agrawal DK. Emerging roles for triggering receptor expressed on myeloid cells receptor family signaling in inflammatory diseases. Expert Rev Clin Immu. 2014;10:243–256. doi: 10.1586/1744666x.2014.866519. PubMed DOI
Roe, K., Gibot, S. & Verma, S. Triggering receptor expressed on myeloid cells-1 (TREM-1) a new player in antiviral immunity? Front Microbiol5, doi:10.3389/fmicb.2014.00627 (2014). PubMed PMC
Maroso M, et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med. 2010;16:413–419. doi: 10.1038/nm.2127. PubMed DOI
Iori, V. et al. Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiology of Disease (2016). PubMed
Prabowo AS, et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain pathology. 2013;23:45–59. doi: 10.1111/j.1750-3639.2012.00616.x. PubMed DOI PMC
Araki K, Ellebedy AH, Ahmed R. TOR in the immune system. Curr Opin Cell Biol. 2011;23:707–715. doi: 10.1016/j.ceb.2011.08.006. PubMed DOI PMC
Saleiro D, Platanias LC. Intersection of mTOR and STAT signaling in immunity. Trends Immunol. 2015;36:21–29. doi: 10.1016/j.it.2014.10.006. PubMed DOI PMC
Weichhart T, Hengstschlager M, Linke M. Regulation of innate immune cell function by mTOR. Nat Rev Immunol. 2015;15:599–614. doi: 10.1038/nri3901. PubMed DOI PMC
Zhang B, Zou J, Rensing NR, Yang M, Wong M. Inflammatory mechanisms contribute to the neurological manifestations of tuberous sclerosis complex. Neurobiol Dis. 2015;80:70–79. doi: 10.1016/j.nbd.2015.04.016. PubMed DOI PMC
Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia. 2013;61:71–90. doi: 10.1002/glia.22350. PubMed DOI
Mayo L, et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med. 2014;20:1147–1156. doi: 10.1038/nm.3681. PubMed DOI PMC
Weber MJ. Mammalian small nucleolar RNAs are mobile genetic elements. Plos Genet. 2006;2:1984–1997. doi: 10.1371/journal.pgen.0020205. PubMed DOI PMC
Mattick JS. The central role of RNA in human development and cognition. Febs Lett. 2011;585:1600–1616. doi: 10.1016/j.febslet.2011.05.001. PubMed DOI
Lui LR, Lowe T. Small nucleolar RNAs and RNA-guided post-transcriptional modification. Essays Biochem. 2013;54:53–77. doi: 10.1042/Bse0540053. PubMed DOI
Bratkovic T, Rogelj B. The many faces of small nucleolar RNAs. Bba-Gene Regul Mech. 2014;1839:438–443. doi: 10.1016/j.bbagrm.2014.04.009. PubMed DOI
Falaleeva M, et al. Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing. P Natl Acad Sci USA. 2016;113:E1625–E1634. doi: 10.1073/pnas.1519292113. PubMed DOI PMC
Darzacq X, et al. Cajal body-specific small nuclear RNAs: a novel class of 2 ‘-O-methylation and pseudouridylation guide RNAs. Embo J. 2002;21:2746–2756. doi: 10.1093/emboj/21.11.2746. PubMed DOI PMC
Deryusheva S, Gall JG. Novel small Cajal-body-specific RNAs identified in Drosophila: probing guide RNA function. Rna. 2013;19:1802–1814. doi: 10.1261/rna.042028.113. PubMed DOI PMC
Ander BP, Barger N, Stamova B, Sharp FR, Schumann CM. Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders. Mol Autism. 2015;6:37. doi: 10.1186/s13229-015-0029-9. PubMed DOI PMC
Galiveti CR, Raabe CA, Konthur Z, Rozhdestvensky TS. Differential regulation of non-protein coding RNAs from Prader-Willi Syndrome locus. Sci Rep. 2014;4:6445. doi: 10.1038/srep06445. PubMed DOI PMC
Kristensen VN, et al. Principles and methods of integrative genomic analyses in cancer. Nat Rev Cancer. 2014;14:299–313. doi: 10.1038/nrc3721. PubMed DOI
Eisch AJ, Petrik D. Depression and hippocampal neurogenesis: a road to remission? Science. 2012;338:72–75. doi: 10.1126/science.1222941. PubMed DOI PMC
Christian KM, Song H, Ming GL. Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci. 2014;37:243–262. doi: 10.1146/annurev-neuro-071013-014134. PubMed DOI PMC
Glass M, Dragunow M. Neurochemical and morphological changes associated with human epilepsy. Brain Res Brain Res Rev. 1995;21:29–41. doi: 10.1016/0165-0173(95)00005-N. PubMed DOI
Moon J, et al. Unique behavioral characteristics and microRNA signatures in a drug resistant epilepsy model. PLoS One. 2014;9:e85617. doi: 10.1371/journal.pone.0085617. PubMed DOI PMC
Rasgado LA, Reyes GC, Diaz FV. Modulation of brain glutamate dehydrogenase as a tool for controlling seizures. Acta Pharm. 2015;65:443–452. doi: 10.1515/acph-2015-0033. PubMed DOI
Wong MYW, Yu Y, Walsh WR, Yang J. L. microRNA-34 family and treatment of cancers with mutant or wild-type p53 (Review) Int J Oncol. 2011;38:1189–1195. doi: 10.3892/ijo.2011.970. PubMed DOI
Agostini M, Knight R. A. miR-34: from bench to bedside. Oncotarget. 2014;5:872–881. doi: 10.18632/oncotarget.1825. PubMed DOI PMC
de Antonellis, P. et al. MiR-34a Targeting of Notch Ligand Delta-Like 1 Impairs CD15(+)/CD133(+) Tumor-Propagating Cells and Supports Neural Differentiation in Medulloblastoma. Plos One6, doi:10.1371/journal.pone.0024584 (2011). PubMed PMC
Bernardo BC, et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. P Natl Acad Sci USA. 2012;109:17615–17620. doi: 10.1073/pnas.1206432109. PubMed DOI PMC
Bae YJ, et al. miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet. 2012;21:2991–3000. doi: 10.1093/hmg/dds129. PubMed DOI PMC
Kim, N. H. et al. p53 and MicroRNA-34 Are Suppressors of Canonical Wnt Signaling. Sci Signal4, doi:10.1126/scisignal.2001744 (2011). PubMed PMC
Cha YH, et al. miRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling. Cell Cycle. 2012;11:1273–1281. doi: 10.4161/cc.11.7.19618. PubMed DOI
Tarantino C, et al. miRNA 34a, 100, and 137 modulate differentiation of mouse embryonic stem cells. Faseb J. 2010;24:3255–3263. doi: 10.1096/fj.09-152207. PubMed DOI
Aranha, M. M. et al. Apoptosis-associated microRNAs are modulated in mouse, rat and human neural differentiation. Bmc Genomics11, doi:10.1186/1471-2164-11-514 (2010). PubMed PMC
Agostini M, et al. Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets. P Natl Acad Sci USA. 2011;108:21093–21098. doi: 10.1073/pnas.1112061109. PubMed DOI PMC
Agostini M, et al. microRNA-34a regulates neurite outgrowth, spinal morphology, and function. P Natl Acad Sci USA. 2011;108:21099–21104. doi: 10.1073/pnas.1112063108. PubMed DOI PMC
Aranha, M. M., Santos, D. M., Sola, S., Steer, C. J. & Rodrigues, C. M. P. miR-34a Regulates Mouse Neural Stem Cell Differentiation. Plos One6, doi:10.1371/journal.pone.0021396 (2011). PubMed PMC
Morgado AL, et al. MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins. Mol Neurobiol. 2015;51:1168–1183. doi: 10.1007/s12035-014-8794-6. PubMed DOI
Fededa JP, et al. MicroRNA-34/449 controls mitotic spindle orientation during mammalian cortex development. Embo J. 2016;35:2386–2398. doi: 10.15252/embj.201694056. PubMed DOI PMC
Gomez, M., Sampson, J. & Whittemore, V. The Tuberous Sclerosis Complex (Oxford University Press., 1999).
Northrup H, Krueger DA. & International Tuberous Sclerosis Complex Consensus, G. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 Iinternational Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49:243–254. doi: 10.1016/j.pediatrneurol.2013.08.001. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol14, doi:10.1186/gb-2013-14-4-r36 (2013). PubMed PMC
Trapnell C, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols. 2012;7:562–578. doi: 10.1038/nprot.2012.016. PubMed DOI PMC
Harrow J, et al. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 2012;22:1760–1774. doi: 10.1101/gr.135350.111. PubMed DOI PMC
Smyth, G. K. In Bioinformatics and Computational Biology Solutions using R and Bioconductor (eds C. V.J. G. R., W. H., I. R.A., D. S., Eds (Springer, 2005)) 397–420 (2005).
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological. 1995;57:289–300.
Shannon, P. T., Grimes, M., Kutlu, B., Bot, J. J. & Galas, D. J. RCytoscape: tools for exploratory network analysis. Bmc Bioinformatics14, doi:10.1186/1471-2105-14-217 (2013). PubMed PMC
Scicluna BP, van Lieshout MH, Blok DC, Florquin S, van der Poll T. Modular Transcriptional Networks of the Host Pulmonary Response during Early and Late Pneumococcal Pneumonia. Molecular Medicine. 2015;21:430–441. doi: 10.2119/molmed.2014.00263. PubMed DOI PMC
Bulgakov VP, Tsitsiashvili GS. Bioinformatics analysis of protein interaction networks: Statistics, topologies, and meeting the standards of experimental biologists. Biochemistry-Moscow. 2013;78:1098–1103. doi: 10.1134/S0006297913100039. PubMed DOI
Dong, J. & Horvath, S. Understanding network concepts in modules. Bmc Systems Biology1, doi:10.1186/1752-0509-1-24 (2007). PubMed PMC
Song, L., Langfelder, P. & Horvath, S. Comparison of co-expression measures: mutual information, correlation, and model based indices. Bmc Bioinformatics13, doi:10.1186/1471-2105-13-328 (2012). PubMed PMC
Dweep H, Sticht C, Pandey P, Gretz N. miRWalk - Database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. Journal of Biomedical Informatics. 2011;44:839–847. doi: 10.1016/j.jbi.2011.05.002. PubMed DOI
Darmanis S, et al. A survey of human brain transcriptome diversity at the single cell level. P Natl Acad Sci USA. 2015;112:7285–7290. doi: 10.1073/pnas.1507125112. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol15, doi:10.1186/s13059-014-0550-8 (2014). PubMed PMC
Hoogeveen-Westerveld M, et al. Functional Assessment of Variants in the TSC1 and TSC2 Genes Identified in Individuals with Tuberous Sclerosis Complex. Human Mutation. 2011;32:424–435. doi: 10.1002/humu.21451. PubMed DOI
Prabowo AS, et al. Differential expression and clinical significance of three inflammation-related microRNAs in gangliogliomas. J Neuroinflammation. 2015;12:97. doi: 10.1186/s12974-015-0315-7. PubMed DOI PMC
van Scheppingen, J. et al. Expression of microRNAs miR21, miR146a and miR155 in tuberous sclerosis complex cortical tubers and their regulation in human astrocytes and SEGA-derived cell cultures. Glia in press (2016). PubMed
Ramakers C, Ruijter JM, Deprez RH, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters. 2003;339:62–66. doi: 10.1016/S0304-3940(02)01423-4. PubMed DOI
Ruijter JM, et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic acids research. 2009;37:e45. doi: 10.1093/nar/gkp045. PubMed DOI PMC
The coding and non-coding transcriptional landscape of subependymal giant cell astrocytomas