Diagnosing peri-implant disease using the tongue as a 24/7 detector
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28811549
PubMed Central
PMC5557808
DOI
10.1038/s41467-017-00340-x
PII: 10.1038/s41467-017-00340-x
Knihovny.cz E-resources
- MeSH
- Taste * MeSH
- Gingivitis diagnosis metabolism MeSH
- Humans MeSH
- Matrix Metalloproteinases metabolism MeSH
- Periodontitis diagnosis metabolism MeSH
- Peptides metabolism MeSH
- Saliva enzymology MeSH
- Dental Implants * MeSH
- Chewing Gum * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Matrix Metalloproteinases MeSH
- Peptides MeSH
- Dental Implants * MeSH
- Chewing Gum * MeSH
Our ability of screening broad communities for clinically asymptomatic diseases critically drives population health. Sensory chewing gums are presented targeting the tongue as 24/7 detector allowing diagnosis by "anyone, anywhere, anytime". The chewing gum contains peptide sensors consisting of a protease cleavable linker in between a bitter substance and a microparticle. Matrix metalloproteinases in the oral cavity, as upregulated in peri-implant disease, specifically target the protease cleavable linker while chewing the gum, thereby generating bitterness for detection by the tongue. The peptide sensors prove significant success in discriminating saliva collected from patients with peri-implant disease versus clinically asymptomatic volunteers. Superior outcome is demonstrated over commercially available protease-based tests in saliva. "Anyone, anywhere, anytime" diagnostics are within reach for oral inflammation. Expanding this platform technology to other diseases in the future features this diagnostic as a massive screening tool potentially maximizing impact on population health.Early detection of gum inflammation caused by dental implants helps prevent tissue damage. Here, the authors present a peptide sensor that generates a bitter taste when cleaved by proteases present in peri-implant disease, embed it in a chewing gum, and compare the probe to existing sensors using patient saliva.
Biomaterials Department Innovent e 5 Prüssingstraße 27B 07745 Jena Germany
Indent International Dental Research and Education srl Via Settembrini 17 o 47923 Rimini Italy
Institute for Pharmaceutics Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
Institute for Pharmacy and Food Chemistry Universität Würzburg Am Hubland 97074 Würzburg Germany
PolyAn GmbH Rudolf Baschant Straße 2 13086 Berlin Germany
Thommen Medical AG Neckarsulmstrasse 28 2540 Grenchen Switzerland
See more in PubMed
Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–1822. doi: 10.1126/science.1095833. PubMed DOI
Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016;116:2826–2885. doi: 10.1021/acs.chemrev.5b00148. PubMed DOI
Drewnowski A. The science and complexity of bitter taste. Nutr. Rev. 2001;59:163–169. doi: 10.1111/j.1753-4887.2001.tb07007.x. PubMed DOI
Glendinning JI. Is the bitter rejection response always adaptive? Physiol. Behav. 1994;56:1217–1227. doi: 10.1016/0031-9384(94)90369-7. PubMed DOI
Brockhoff A, Behrens M, Massarotti A, Appendino G, Meyerhof W. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. J. Agric. Food Chem. 2007;55:6236–6243. doi: 10.1021/jf070503p. PubMed DOI
Warren AD, Kwong GA, Wood DK, Lin KY, Bhatia SN. Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc. Natl Acad. Sci. USA. 2014;111:3671–3676. doi: 10.1073/pnas.1314651111. PubMed DOI PMC
Choi KY, Swierczewska M, Lee S, Chen X. Protease-activated drug development. Theranostics. 2012;2:156–179. doi: 10.7150/thno.4068. PubMed DOI PMC
Gabriel D, Zuluaga MF, van den Bergh H, Gurny R, Lange N. It is all about proteases: from drug delivery to in vivo imaging and photomedicine. Curr. Med. Chem. 2011;18:1785–1805. doi: 10.2174/092986711795496782. PubMed DOI
Sorsa T, Tjaderhane L, Salo T. Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis. 2004;10:311–318. doi: 10.1111/j.1601-0825.2004.01038.x. PubMed DOI
Ebersole JL, Nagarajan R, Akers D, Miller CS. Targeted salivary biomarkers for discrimination of periodontal health and disease(s) Front. Cell. Infect. Microbiol. 2015;5:62. doi: 10.3389/fcimb.2015.00062. PubMed DOI PMC
Kraft-Neumarker M, et al. Full-mouth profile of active MMP-8 in periodontitis patients. J. Periodontal Res. 2012;47:121–128. doi: 10.1111/j.1600-0765.2011.01416.x. PubMed DOI
Salminen A, et al. Salivary biomarkers of bacterial burden, inflammatory response, and tissue destruction in periodontitis. J. Clin. Periodontol. 2014;41:442–450. doi: 10.1111/jcpe.12234. PubMed DOI
Sorsa T, et al. Cellular source, activation and inhibition of dental plaque collagenase. J. Clin. Periodontol. 1995;22:709–717. doi: 10.1111/j.1600-051X.1995.tb00831.x. PubMed DOI
Uitto VJ, Overall CM, McCulloch C. Proteolytic host cell enzymes in gingival crevice fluid. Periodontol. 2000. 2003;31:77–104. doi: 10.1034/j.1600-0757.2003.03106.x. PubMed DOI
Nagase H, Fields GB. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers. 1996;40:399–416. doi: 10.1002/(SICI)1097-0282(1996)40:4<399::AID-BIP5>3.0.CO;2-R. PubMed DOI
Turk BE, Huang LL, Piro ET, Cantley LC. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat. Biotechnol. 2001;19:661–667. doi: 10.1038/90273. PubMed DOI
Braun AC, et al. Matrix metalloproteinase responsive delivery of myostatin inhibitors. Pharm. Res. 2017;34:58–72. doi: 10.1007/s11095-016-2038-6. PubMed DOI
Huisgen R, et al. 1,3-dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. Engl. 1963;2:565–598. doi: 10.1002/anie.196305651. DOI
Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 2001;40:2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. PubMed DOI
Luhmann T, et al. Bio-orthogonal immobilization of fibroblast growth factor 2 for spatial controlled cell proliferation. ACS Biomater. Sci. Eng. 2015;1:740–746. doi: 10.1021/acsbiomaterials.5b00236. PubMed DOI
Mantyla P, et al. Gingival crevicular fluid collagenase-2 (MMP-8) test stick for chair-side monitoring of periodontitis. J. Periodontal Res. 2003;38:436–439. doi: 10.1034/j.1600-0765.2003.00677.x. PubMed DOI
Woertz K, Tissen C, Kleinebudde P, Breitkreutz J. Taste sensing systems (electronic tongues) for pharmaceutical applications. Int. J. Pharm. 2011;417:256–271. doi: 10.1016/j.ijpharm.2010.11.028. PubMed DOI
Prescher N, et al. Rapid quantitative chairside test for active MMP-8 in gingival crevicular fluid: first clinical data. Ann. NY Acad. Sci. 2007;1098:493–495. doi: 10.1196/annals.1384.019. PubMed DOI
Heitz-Mayfield LJ, Lang NP. Comparative biology of chronic and aggressive periodontitis vs. peri-implantitis. Periodontol. 2000. 2010;53:167–181. doi: 10.1111/j.1600-0757.2010.00348.x. PubMed DOI
Ma J, et al. Collagenases in different categories of peri-implant vertical bone loss. J. Dent. Res. 2000;79:1870–1873. doi: 10.1177/00220345000790110901. PubMed DOI
Xu L, et al. Characteristics of collagenase-2 from gingival crevicular fluid and peri-implant sulcular fluid in periodontitis and peri-implantitis patients: pilot study. Acta Odontol. Scand. 2008;66:219–224. doi: 10.1080/00016350802183393. PubMed DOI
Hanisch O, Tatakis DN, Boskovic MM, Rohrer MD, Wikesjo UM. Bone formation and reosseointegration in peri-implantitis defects following surgical implantation of rhBMP-2. Int. J. Oral Maxillofac. Implants. 1997;12:604–610. PubMed
Mennella JA, Spector AC, Reed DR, Coldwell SE. The bad taste of medicines: overview of basic research on bitter taste. . Clin. Ther. 2013;35:1225–1246. doi: 10.1016/j.clinthera.2013.06.007. PubMed DOI PMC
Latha RS, Lakshmi PK. Electronic tongue: an analytical gustatory tool. J. Adv. Pharm. Technol. Res. 2012;3:3–8. PubMed PMC
Behrens M, Meyerhof W. Bitter taste receptors and human bitter taste perception. Cell. Mol. Life Sci. 2006;63:1501–1509. doi: 10.1007/s00018-006-6113-8. PubMed DOI PMC
Manka SW, et al. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc. Natl Acad. Sci. USA. 2012;109:12461–12466. doi: 10.1073/pnas.1204991109. PubMed DOI PMC