• This record comes from PubMed

Diagnosing peri-implant disease using the tongue as a 24/7 detector

. 2017 Aug 15 ; 8 (1) : 264. [epub] 20170815

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 28811549
PubMed Central PMC5557808
DOI 10.1038/s41467-017-00340-x
PII: 10.1038/s41467-017-00340-x
Knihovny.cz E-resources

Our ability of screening broad communities for clinically asymptomatic diseases critically drives population health. Sensory chewing gums are presented targeting the tongue as 24/7 detector allowing diagnosis by "anyone, anywhere, anytime". The chewing gum contains peptide sensors consisting of a protease cleavable linker in between a bitter substance and a microparticle. Matrix metalloproteinases in the oral cavity, as upregulated in peri-implant disease, specifically target the protease cleavable linker while chewing the gum, thereby generating bitterness for detection by the tongue. The peptide sensors prove significant success in discriminating saliva collected from patients with peri-implant disease versus clinically asymptomatic volunteers. Superior outcome is demonstrated over commercially available protease-based tests in saliva. "Anyone, anywhere, anytime" diagnostics are within reach for oral inflammation. Expanding this platform technology to other diseases in the future features this diagnostic as a massive screening tool potentially maximizing impact on population health.Early detection of gum inflammation caused by dental implants helps prevent tissue damage. Here, the authors present a peptide sensor that generates a bitter taste when cleaved by proteases present in peri-implant disease, embed it in a chewing gum, and compare the probe to existing sensors using patient saliva.

See more in PubMed

Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–1822. doi: 10.1126/science.1095833. PubMed DOI

Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016;116:2826–2885. doi: 10.1021/acs.chemrev.5b00148. PubMed DOI

Drewnowski A. The science and complexity of bitter taste. Nutr. Rev. 2001;59:163–169. doi: 10.1111/j.1753-4887.2001.tb07007.x. PubMed DOI

Glendinning JI. Is the bitter rejection response always adaptive? Physiol. Behav. 1994;56:1217–1227. doi: 10.1016/0031-9384(94)90369-7. PubMed DOI

Brockhoff A, Behrens M, Massarotti A, Appendino G, Meyerhof W. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. J. Agric. Food Chem. 2007;55:6236–6243. doi: 10.1021/jf070503p. PubMed DOI

Warren AD, Kwong GA, Wood DK, Lin KY, Bhatia SN. Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc. Natl Acad. Sci. USA. 2014;111:3671–3676. doi: 10.1073/pnas.1314651111. PubMed DOI PMC

Choi KY, Swierczewska M, Lee S, Chen X. Protease-activated drug development. Theranostics. 2012;2:156–179. doi: 10.7150/thno.4068. PubMed DOI PMC

Gabriel D, Zuluaga MF, van den Bergh H, Gurny R, Lange N. It is all about proteases: from drug delivery to in vivo imaging and photomedicine. Curr. Med. Chem. 2011;18:1785–1805. doi: 10.2174/092986711795496782. PubMed DOI

Sorsa T, Tjaderhane L, Salo T. Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis. 2004;10:311–318. doi: 10.1111/j.1601-0825.2004.01038.x. PubMed DOI

Ebersole JL, Nagarajan R, Akers D, Miller CS. Targeted salivary biomarkers for discrimination of periodontal health and disease(s) Front. Cell. Infect. Microbiol. 2015;5:62. doi: 10.3389/fcimb.2015.00062. PubMed DOI PMC

Kraft-Neumarker M, et al. Full-mouth profile of active MMP-8 in periodontitis patients. J. Periodontal Res. 2012;47:121–128. doi: 10.1111/j.1600-0765.2011.01416.x. PubMed DOI

Salminen A, et al. Salivary biomarkers of bacterial burden, inflammatory response, and tissue destruction in periodontitis. J. Clin. Periodontol. 2014;41:442–450. doi: 10.1111/jcpe.12234. PubMed DOI

Sorsa T, et al. Cellular source, activation and inhibition of dental plaque collagenase. J. Clin. Periodontol. 1995;22:709–717. doi: 10.1111/j.1600-051X.1995.tb00831.x. PubMed DOI

Uitto VJ, Overall CM, McCulloch C. Proteolytic host cell enzymes in gingival crevice fluid. Periodontol. 2000. 2003;31:77–104. doi: 10.1034/j.1600-0757.2003.03106.x. PubMed DOI

Nagase H, Fields GB. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers. 1996;40:399–416. doi: 10.1002/(SICI)1097-0282(1996)40:4<399::AID-BIP5>3.0.CO;2-R. PubMed DOI

Turk BE, Huang LL, Piro ET, Cantley LC. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat. Biotechnol. 2001;19:661–667. doi: 10.1038/90273. PubMed DOI

Braun AC, et al. Matrix metalloproteinase responsive delivery of myostatin inhibitors. Pharm. Res. 2017;34:58–72. doi: 10.1007/s11095-016-2038-6. PubMed DOI

Huisgen R, et al. 1,3-dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. Engl. 1963;2:565–598. doi: 10.1002/anie.196305651. DOI

Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 2001;40:2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. PubMed DOI

Luhmann T, et al. Bio-orthogonal immobilization of fibroblast growth factor 2 for spatial controlled cell proliferation. ACS Biomater. Sci. Eng. 2015;1:740–746. doi: 10.1021/acsbiomaterials.5b00236. PubMed DOI

Mantyla P, et al. Gingival crevicular fluid collagenase-2 (MMP-8) test stick for chair-side monitoring of periodontitis. J. Periodontal Res. 2003;38:436–439. doi: 10.1034/j.1600-0765.2003.00677.x. PubMed DOI

Woertz K, Tissen C, Kleinebudde P, Breitkreutz J. Taste sensing systems (electronic tongues) for pharmaceutical applications. Int. J. Pharm. 2011;417:256–271. doi: 10.1016/j.ijpharm.2010.11.028. PubMed DOI

Prescher N, et al. Rapid quantitative chairside test for active MMP-8 in gingival crevicular fluid: first clinical data. Ann. NY Acad. Sci. 2007;1098:493–495. doi: 10.1196/annals.1384.019. PubMed DOI

Heitz-Mayfield LJ, Lang NP. Comparative biology of chronic and aggressive periodontitis vs. peri-implantitis. Periodontol. 2000. 2010;53:167–181. doi: 10.1111/j.1600-0757.2010.00348.x. PubMed DOI

Ma J, et al. Collagenases in different categories of peri-implant vertical bone loss. J. Dent. Res. 2000;79:1870–1873. doi: 10.1177/00220345000790110901. PubMed DOI

Xu L, et al. Characteristics of collagenase-2 from gingival crevicular fluid and peri-implant sulcular fluid in periodontitis and peri-implantitis patients: pilot study. Acta Odontol. Scand. 2008;66:219–224. doi: 10.1080/00016350802183393. PubMed DOI

Hanisch O, Tatakis DN, Boskovic MM, Rohrer MD, Wikesjo UM. Bone formation and reosseointegration in peri-implantitis defects following surgical implantation of rhBMP-2. Int. J. Oral Maxillofac. Implants. 1997;12:604–610. PubMed

Mennella JA, Spector AC, Reed DR, Coldwell SE. The bad taste of medicines: overview of basic research on bitter taste. ‎. Clin. Ther. 2013;35:1225–1246. doi: 10.1016/j.clinthera.2013.06.007. PubMed DOI PMC

Latha RS, Lakshmi PK. Electronic tongue: an analytical gustatory tool. J. Adv. Pharm. Technol. Res. 2012;3:3–8. PubMed PMC

Behrens M, Meyerhof W. Bitter taste receptors and human bitter taste perception. Cell. Mol. Life Sci. 2006;63:1501–1509. doi: 10.1007/s00018-006-6113-8. PubMed DOI PMC

Manka SW, et al. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc. Natl Acad. Sci. USA. 2012;109:12461–12466. doi: 10.1073/pnas.1204991109. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...