Novel, male-produced aggregation pheromone of the cerambycid beetle Rosalia alpina, a priority species of European conservation concern
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
EP-C-15-031
EPA - United States
CEP - Centrální evidence projektů
S10 RR023677
NCRR NIH HHS - United States
PubMed
28827817
PubMed Central
PMC5565183
DOI
10.1371/journal.pone.0183279
PII: PONE-D-17-19260
Knihovny.cz E-zdroje
- MeSH
- biotest MeSH
- brouci metabolismus MeSH
- feromony biosyntéza metabolismus MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- magnetická rezonanční spektroskopie s uhlíkem 13C MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- zachování přírodních zdrojů * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- feromony MeSH
Several recent studies have demonstrated the great potential for exploiting semiochemicals in ecology and conservation studies. The cerambycid beetle Rosalia alpina represents one of the flagship species of saproxylic insect biodiversity in Europe. In recent years its populations appear to have declined substantially, and its range has shrunk considerably as a result of forest management and urbanization. Here, we collected volatile chemicals released by males and females of R. alpina. Analyses of the resulting extracts revealed the presence of a single male-specific compound, identified as a novel alkylated pyrone structure. In field bioassays in Slovenia, traps baited with the synthesized pyrone captured both sexes of R. alpina, indicating that the pyrone functions as an aggregation pheromone. Our results represent the first example of a new structural class of pheromones within the Cerambycidae, and demonstrate that pheromone-baited traps can provide a useful tool for sampling R. alpina. This tool could be particularly useful in the ongoing development of conservation strategies for the iconic but endangered Alpine longicorn.
Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
National Institute of Biology Department of Organisms and Ecosystem Research Ljubljana Slovenia
University of California Department of Entomology Riverside California United States of America
Zobrazit více v PubMed
Thomson DR, Gut LJ, Jenkins JW. Pheromones for insect control In Hall FR, Menn JJ editors. Methods in biotechnology: Biopesticides: use and delivery. Humana Press; 1998. pp 385–412.
Gitau CW, Bashford R, Carnegie AJ, Gurr GM. A review of semiochemicals associated with bark beetle (Coleoptera: Curculionidae: Scolytinae) pests of coniferous trees: A focus on beetle interactions with other pests and their associates. Forest Ecol Manag. 2013; 297: 1–14.
Hoover K, Keena M, Nehme M, Wang S, Meng P, Zhang A. Sex-specific trail pheromone mediates complex mate finding behavior in Anoplophora glabripennis. J Chem Ecol. 2014; 40: 169–180. doi: 10.1007/s10886-014-0385-5 PubMed DOI
Hansen L, Xu T, Wickham J, Chen Y, Hao D, Hanks LM, et al. Identification of a male-produced pheromone component of the citrus longhorned beetle, Anoplophora chinensis. PLoS ONE. 2015; 10: e0134358 doi: 10.1371/journal.pone.0134358 PubMed DOI PMC
Welzel KF, Choe DH. Development of a pheromone-assisted baiting technique for Argentine ants (Hymenoptera: Formicidae). J Econ Entomol. 2016; 109: 1303–1309. PubMed
Larsson MC, Svensson GP. Pheromone monitoring of rare and threatened insects: Exploiting a pheromone-kairomone system to estimate prey and predator abundance. Cons Biol. 2009; 23: 1516–1525. PubMed
Kadej M, Zając K, Ruta R, Gutowski JM, Tarnawski D, Smolis A, et al. Sex pheromones as a tool to overcome the Wallacean shortfall in conservation biology: a case of Elater ferrugineus Linnaeus, 1758 (Coleoptera: Elateridae). J Insect Cons. 2015; 19: 25–32.
Burman J, Westerberg L, Ostrow S, Ryrholm N, Bergman KO, Winde I, et al. Revealing hidden species distribution with pheromones: The case of Synanthedon vespiformis (Lepidoptera: Sesiidae) in Sweden. J Insect Cons. 2016; 20: 11–21.
CECC. Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. 1992. http://eur-lex.europa.eu/.
McDonald LL. Sampling rare populations In: Thompson WL editor. Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters. Island Press; 2004. pp. 11–42.
Larsson MC. Pheromones and other semiochemicals for monitoring rare and endangered species. J Chem Ecol. 2016; 42: 853–868. doi: 10.1007/s10886-016-0753-4 PubMed DOI PMC
Larsson MC, Hedin J, Svensson GP, Tolasch T, Francke W. Characteristic odor of Osmoderma eremita identified as a male-released pheromone. J Chem Ecol. 2003; 29: 575–587. PubMed
Tolasch T, von Fragstein M, Steidle JLM. Sex pheromone of Elater ferrugineus L. (Coleoptera: Elateridae). J Chem Ecol. 2007; 33: 2156–2166. doi: 10.1007/s10886-007-9365-3 PubMed DOI
Tolasch T, Konig C, von Fragstein M, Steidle JLM. Identification of the sex pheromone of Idolus picipennis (Bach, 1852) revealed the presence of a cryptic sibling species. J Chem Ecol. 2013; 39: 1433–1440. doi: 10.1007/s10886-013-0360-6 PubMed DOI
Millar JG, McElfresh JS, Romero C, Vila M, Mari-Mena N, Lopez-Vaamonde C. Identification of the sex pheromone of a protected species, the Spanish moon moth Graellsia isabellae. J Chem Ecol. 2010; 36: 923–932. doi: 10.1007/s10886-010-9831-1 PubMed DOI PMC
Levi-Zada A, Ben-Yehuda S, Dunkelblum E, Gindin G, Fefer D, Protasov A, et al. Identification and field bioassays of the sex pheromone of the yellow-legged clearwing Synanthedon vespiformis (Lepidoptera: Sesiidae). Chemoecology. 2011; 21: 227–233.
Ray AM, Barbour JD, McElfresh JS, Moreira JA, Swift I, Wright IM, et al. 2,3-Hexanediols as sex attractants and a female-produced sex pheromone for cerambycid beetles in the genus Tragosoma. J Chem Ecol. 2012; 38: 1151–1158. doi: 10.1007/s10886-012-0181-z PubMed DOI PMC
Gago R, Allison JD, McElfresh JS, Haynes KF, McKenney J, Guerrero A, et al. A tetraene aldehyde as the major sex pheromone component of the promethea moth (Callosamia promethea (Drury)). J Chem Ecol. 2013; 39: 1263–1272. doi: 10.1007/s10886-013-0349-1 PubMed DOI
Yan Q, Kanegae A, Miyachi T, Naka H, Tatsuta H, Ando T. Female sex pheromones of two Japanese saturniid species, Rhodinia fugax and Loepa sakaei: Identification, synthesis, and field evaluation. J Chem Ecol. 2015; 41: 1–8. doi: 10.1007/s10886-014-0538-6 PubMed DOI
Konig C, Szallies A, Steidle JLM, Tolasch T. Sex pheromone of the rare click beetle Betarmon bisbimaculatus. J Chem Ecol. 2016; 42: 55–59. doi: 10.1007/s10886-015-0661-z PubMed DOI
Millar JG, Haynes KF, Dossey AT, McElfresh JS, Allison JD. 2016. Sex attractant pheromone of the luna moth, Actias luna (Linnaeus). J Chem Ecol. 2016; 42: 869–876. doi: 10.1007/s10886-016-0751-6 PubMed DOI
Larsson MC, Svensson GP. Monitoring spatiotemporal variation in abundance and dispersal by a pheromone-kairomone system in the threatened saproxylic beetles Osmoderma eremita and Elater ferrugineus. J Insect Cons. 2011; 15: 891–902.
Gouix N, Brustel H. Emergence trap, a new method to survey Limoniscus violaceus (Coleoptera: Elateridae) from hollow trees. Biodivers Conserv. 2012; 21: 421–436.
Chiari S, Zauli A, Mazziotta A, Luiselli L, Audisio P, Carpaneto GM. Surveying an endangered saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands: A comparison between different capture methods. J Insect Conserv. 2013; 17: 171–181.
Musa N, Andersson K, Burman J, Andersson F, Hedenström E, Jansson N, et al. Using sex pheromone and a multi-scale approach to predict the distribution of a rare saproxylic beetle. PLoS ONE. 2013; 8: e66149 doi: 10.1371/journal.pone.0066149 PubMed DOI PMC
Andersson K, Bergman KO, Andersson F, Hedenström E, Jansson N, Burman J, et al. High-accuracy sampling of saproxylic diversity indicators at regional scales with pheromones: the case of Elater ferrugineus (Coleoptera, Elateridae). Biol Conserv. 2014; 171: 156–166.
Ray AM, Arnold RA, Swift I, Schapker PA, McCann S, Marshall CJ, et al. (R)-Desmolactone is a sex pheromone or sex attractant for the endangered valley elderberry longhorn beetle Desmocerus californicus dimorphus and several congeners (Cerambycidae: Lepturinae). PLoS ONE. 2014; 9: e115498 doi: 10.1371/journal.pone.0115498 PubMed DOI PMC
Zauli A, Chiari S, Hedenstrom E, Svensson GP, Carpaneto GM. Using odour traps for population monitoring and dispersal analysis of the threatened saproxylic beetles Osmoderma eremita and Elater ferrugineus in central Italy. J Insect Conserv. 2014; 18: 801–813.
Zauli A, Carpaneto GM, Chiari S, Mancini E, Nyabuga FN, De Zan LR, et al. Assessing the taxonomic status of Osmoderma cristinae (Coleoptera: Scarabaeidae), endemic to Sicily, by genetic, morphological and pheromonal analyses. J Zool Sys Evol Res. 2016; 54: 206–214.
Harvey DJ, Harvey H, Harvey RP, Kadej M, Hedenström E, Gange AC, et al. Use of novel attraction compounds increases monitoring success of a rare beetle, Elater ferrugineus. Insect Conserv Divers. 2017; 10: 161–170.
Mari-Mena N, Lopez-Vaamonde C, Naveira H, Auger-Rozenberg MA, Vila M. Phylogeography of the Spanish moon moth Graellsia isabellae (Lepidoptera, Saturniidae). BMC Evol Biol. 2016; 16: 139 doi: 10.1186/s12862-016-0708-y PubMed DOI PMC
Nieto A, Alexander KNA. European Red List of Saproxylic Beetles. 2010. Publications Office of the European Union, Luxembourg.
Siitonen J. Threatened saproxylic species In: Stokland J.N., Siitonen J, Jonsson BG editors. Biodiversity in Dead Wood. Cambridge University Press; 2012; pp. 356–379.
Lachat T, Ecker K, Duelli P, Wermelinger B. Population trends of Rosalia alpina (L.) in Switzerland: a lasting turnaround? J Insect Conserv. 2013; 17: 653–662.
Ciach M, Michalcewicz J. Correlation between selected biometric traits of adult Rosalia alpina (L.) (Coleoptera: Cerambycidae) and size of their exit holes: new perspectives on insect studies? Pol J Ecol. 2013; 61: 349–355.
Čížek L, Schlaghamerský J, Bořucký J, Hauck D, Helešic J. Range expansion of an endangered beetle: Alpine longhorn Rosalia alpina (Coleoptera: Cerambycidae) spreads to the lowlands of Central Europe. Entomol Fennica. 2009; 20: 200–206.
Annex II. The European Council Directive on the Conservation of Habitats, Flora and Fauna 92/43/EEC (92/43/EEC)-»The Habitat Directive«.
The IUCN Red List of Threatened Species. Version 2016–3. Downloaded on the 21st of December 2016. <http://www.iucnredlist.org>
Ciach M, Michalcewicz J, Fluda M. The first report on development of Rosalia alpina (Linnaeus, 1758) (Coleoptera: Cerambycidae) in wood of Ulmus L. in Poland. Pol J Entomol. 2011; 76: 101–105.
Drag L, Hauck D, Pokluda P, Zimmermann K, Cizek L. Demography and dispersal ability of a threatened saproxylic beetle: a mark-recapture study of the Rosalia longicorn (Rosalia alpina). PlosONE. 2011; 6: e21345. PubMed PMC
Bosso L, Rebelob H, Garonnac AP, Russo D. Modelling geographic distribution and detecting conservation gaps in Italy for the threatened beetle Rosalia alpina. J Nature Conserv. 2013; 21: 72–80.
Michalcewicz J, Ciach M. Current distribution of the Rosalia longicorn Rosalia alpina (Linnaeus, 1758) (Coleoptera: Cerambycidae) in Poland. Pol J Entomol. 2015; 84: 9–20.
Russo D, Cistrone L, Garonna AP. Habitat selection by the highly endangered long-horned beetle Rosalia alpina in Southern Europe: a multiple spatial scale assessment. J Insect Conserv. 2011; 15: 685–693.
Castro A, de Murguia LM, Fernandez J, Casis A, Molino F. Size and quality of wood used by Rosalia alpina (Linnaeus, 1758) (Coleoptera: Cerambycidae) in beech woodlands of Gipuzkoa (northern Spain). Munibe. 2012; 60: 77–100.
Castro A, Fernandez J. Tree selection by the endangered beetle Rosalia alpina in a lapsed pollard beech forest. J Insect Conserv. 2016; 20: 201–214.
Vrezec A, Ambrožič Š, Kapla A. An overview of sampling methods test for monitoring schemes of saproxylic beetles in the scope of Natura 2000 in Slovenia In Jurc M editor. Saproxylic beetles in Europe: monitoring, biology and conservation. Silva Slovenica; 2014. pp. 73–89.
Russo D, Di Febbraro M, Cistrone L, Jones G, Smeraldo S, Garonna AP, et al. Protecting one, protecting both? Scale-dependent ecological differences in two species using dead trees, the Rosalia longicorn beetle and the barbastelle bat. J Zool. 2015; 297: 165–175.
Jeppsson T, Lindhe A, Gärdenfors U, Forslund P. The use of historical collections to estimate population trends: A case study using Swedish longhorn beetles (Coleoptera: Cerambycidae). Biol Conserv. 2010; 143: 1940–1950.
Pardo I, Pata MP, Gomez D, Garcıa MB. A novel method to handle the effect of uneven sampling effort in biodiversity databases. PLoS ONE. 2013; 8: e52786 doi: 10.1371/journal.pone.0052786 PubMed DOI PMC
Millar J, Hanks L. Chemical ecology of Cerambycids In: Wang Q editor. Cerambycidae of the World: Biology and Pest Management. CRC Press/Taylor & Francis; 2017. pp. 161–208.
Evans HF, Moraal LG, Pajares JA. Biology, ecology and economic importance of Buprestidae and Cerambycidae In Lieutier F, Day KR, Battisti A, Grégoire JC, Evans HF editors. Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Kluwer; 2004. pp. 447–474.
Hanks LM, Millar JG. Sex and aggregation-sex pheromones of cerambycid beetles: Basic science and practical applications. J Chem Ecol. 2016; 42: 631–654. doi: 10.1007/s10886-016-0733-8 PubMed DOI
Ray AM, Millar JG, McElfresh JS, Swift IP, Barbour JD, Hanks LM. Male-produced aggregation pheromone of the cerambycid beetle Rosalia funebris. J Chem Ecol. 2009; 35: 96–103. doi: 10.1007/s10886-008-9576-2 PubMed DOI
Vrezec A, Kapla A. Naravovarstveno vrednotenje favne hroščev (Coleoptera) Krajinskega parka Boč-Donačka gora v občini Rogaška Slatina: kvantitativna varstveno-favnistična analiza. Varstvo narave. 2007; 20: 61–82.
Katritzky AR, Zhang Y, Singh SK. Efficient conversion of carboxylic acids into N-acylbenzotriazoles. Synthesis. 2003; 18: 2795–2798.
Zhang Z, Kitamura Y, Myers AG. An efficient directed Claisen reaction allows for rapid construction of 5,6-disubstituted-1,3-dioxin-4-ones. Synthesis. 2015; 47: 2709–2712.
Vrezec A, de Groot M, Kobler A, Ambrožič Š, Kapla A. Ecological characteristics of habitats and potential distribution of selected qualification species of beetles (Coleoptera) in the scope of Natura 2000 network in Slovenia: the first modelling approach. Gozdarski vestnik. 2014; 72: 452–471.
Vrezec A. Fenološka ocena pojavljanja imagov štirih vrst varstveno pomembnih saproksilnih hroščev v Sloveniji: Lucanus cervus, Cerambyx cerdo, Rosalia alpina, Morinus funereus (Coleoptera: Lucanidae, Cerambycidae). Acta Entomol Slovenica. 2008; 16: 117–126.
Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001; 4: 1–9.
Sokal RR, Rohlf FJ. Biometry: The Principles and Practice of Statistics in Biological Research. 3rd ed USA: W.H. Freeman and Company; 1995.
Zar JH. Biostatistical Analysis. 5th ed New Jersey: Prentice Hall /Pearson; 2010.
Bach T, Kirsch S. Synthesis of 6-substituted-4-hydroxy-2-pyrones from aldehydes by addition of an acetoacetate equivalent, Dess-Martin oxidation and subsequent cyclization. Synlett. 2001: 1974–1976.
Acocella MR, De Rosa M, Massa A, Palombi L, Villano R, Scettri A. Silicon tetrachloride in organic synthesis: new applications for the vinylogous aldol reaction. Tetrahedron. 2005; 61: 4091–4097.
Prantz K, Mulzer J. 2010. Synthesis of (Z)-trisubstituted olefins by decarboxylative Grob-type fragmentations: Epothilone D, discodermolide, and peloruside A. Chem Eur J. 2010; 16: 485–506. doi: 10.1002/chem.200901567 PubMed DOI
Dong Y, Nakagawa-Goto K, Lai C-Y, Morris-Natschke SL, Bastow KF, Lee K-H. Antitumor agents 287. Substituted 4-amino-2H-pyran-2-one (APO) analogs reveal a new scaffold from neo-tanshinlactone with in vitro anticancer activity. Bioorg Med Chem Lett. 2011; 21: 2341–2344. doi: 10.1016/j.bmcl.2011.02.084 PubMed DOI PMC
Rentsch A, Kalesse M. The total synthesis of corallopyronin A and myxopyronin B. Angew Chem Int Ed. 2012; 51: 11381–11384. PubMed
Zhao Y-M, Maimone TJ. Short, enantioselective total synthesis of chatancin. Angew Chem Int Ed. 2015; 54: 1223–1226. PubMed PMC
Seiple IB, Zhang Z, Jakubec P, Langlois-Mercier A, Wright PM, Hog DT, et al. A platform for the discovery of new macrolide antibiotics. Nature 2016; 533: 338–345. doi: 10.1038/nature17967 PubMed DOI PMC
Katritzky AR, Wang Z, Wang M, Hall CD, Suzuki K. Facile syntheses of 2,2-dimethyl-6-(2-oxoalkyl)-1,3-dioxin-4-ones and the corresponding 6-substituted-4-hydroxy-2-pyrones. J Org Chem. 2005; 70: 4854–4856 doi: 10.1021/jo050307m PubMed DOI
Fuse S, Ikebe A, Oosumi K, Karasawa T, Matsumura K, Izumikawa M, et al. Asymmetric total synthesis of ent-pyripyropene A. Chem Eur J. 2015; 21: 9454–9460. doi: 10.1002/chem.201500703 PubMed DOI
Sato M, Sakaki J, Sugita Y, Yasuda S, Sakoda H, Kaneko C. Two lactone formation reactions from 1,3-dioxin-4-ones having hydroxyalkyl group at the 6-position: Difference in ring opening and closure. Tetrahedron. 1991; 47: 5689–5708.
Boeckman RK Jr, Pruitt JR. A new, highly efficient selective methodology for formation of medium-ring and macrocyclic lactones via intramolecular ketene trapping: An application to a convergent synthesis of (-)-kromycin. J Am Chem Soc. 1989; 111: 8286–8288.
Shimamura H, Sunazuka T, Izuhara T, Hirose T, Shiomi K, Omura S. Total synthesis and biological evaluation of verticipyrone and analogues. Org Lett. 2007; 9: 65–67. doi: 10.1021/ol0626140 PubMed DOI
Song D, McDonald R, West FG. Facial diastereoselectivity in [4+4]-photocycloadditions of pyran-2-ones: Surprising effect of an adjacent chiral center. Org Lett. 2006; 8: 4075–4078. doi: 10.1021/ol061576h PubMed DOI
Sun CL, Fürstner A. Formal ring-opening/cross-coupling reactions of 2-pyrones: Iron-catalyzed entry into stereodefined dienyl carboxylates. Angew Chem Int Ed. 2013; 52: 13071–13075. PubMed
Khatri BB, Sieburth S McN. 2015. Enyne-2-pyrone [4 + 4]-photocycloaddition: Sesquiterpene synthesis and a low-temperature Cope rearrangement. Org Lett. 2015; 17: 4360–4363. doi: 10.1021/acs.orglett.5b02207 PubMed DOI
Fairlamb IJS, Lu FJ, Schmidt JP. Palladium-catalysed alkynylations of 2-pyrone (pyran-2-one) halides. Synthesis. 2003; 16: 2564–2570.
Menu F. Strategies of emergence in the chestnut weevil Curculio elephas (Coleoptera, Curculionidae). Oecologia. 1993; 96: 383–390. doi: 10.1007/BF00317509 PubMed DOI
Stoks R. Male-biased sex ratios in mature damselfly populations: real or artefact? Ecol Entomol. 2001; 26: 181–187.
Larsson MC, Hedin J, Svensson GP, Tolasch T, Francke W. Characteristic odor of Osmoderma eremita identified as a male-released pheromone. J Chem Ecol. 2003; 29: 575–587. PubMed
Cardé RT. Defining attraction and aggregation pheromones: teleological versus functional perspectives. J Chem Ecol. 2015; 40: 519–520. PubMed
Prikryl ZB, Turcani M, Horak J. Sharing the same space: foraging behaviour of saproxylic beetles in relation to dietary components of morphologically similar larvae. Ecol Entomol. 2012; 37: 117–123.
Schäberle TF. Biosynthesis of α-pyrones. Beilstein J Org Chem. 2016; 12: 571–588. doi: 10.3762/bjoc.12.56 PubMed DOI PMC
Charlton RE, Webster FX, Zhang A, Schal C, Liang D, Sreng I, et al. Sex pheromone for the brownbanded cockroach is an unusual dialkyl-substituted alpha-pyrone. Proc Nat Acad Sci USA. 1993; 90: 10202–10205. PubMed PMC
Brachmann AO, Brameyer S, Kresovic D, Hitkova I, Kopp Y, Manske C et al. Pyrones as bacterial signaling molecules. Nat Cheml Biol. 2013; 9: 573–578. PubMed
Hanks LM, Millar JG. Field bioassays of cerambycid pheromones reveal widespread parsimony of pheromone structures, enhancement by host plant volatiles, and antagonism by components from heterospecifics. Chemoecology. 2013; 23: 21–44.
Graham EER, Mitchell F, Reagel PF, Barbour JD, Millar JG, Hanks LM. Treating panel traps with a fluoropolymer enhances their efficiency in capturing cerambycid beetles. J Econ Entomol. 2010; 103: 641–647. PubMed
Graham EET, Poland TM. Efficacy of fluon conditioning for capturing cerambycid beetles in different trap designs and persistence on panel traps over time. J Econ Entomol. 2012; 105: 395–401. PubMed
Allison JD, Johnson CW, Meeker JR, Strom RL, Butler SM. Effect of aerosol surface lubricants on the abundance and richness of selected forest insects captured in multiple-funnel and panel traps. J Econ Entomol. 2011; 104: 1258–1264. PubMed
Allison JD, Bhandari BD, McKenney JL, Millar JG. Design factors that influence the performance of flight intercept traps for the capture of longhorned beetles (Coleoptera: Cerambycidae) from the subfamilies Lamiinae and Cerambycinae. PlosONE 2014; 9: e93203. PubMed PMC
Drag L, Hauck D, Pokluda P, Zimmermann K, Cizek L. Demography and dispersal ability of a threatened saproxylic beetle: A mark-recapture study of the Rosalia Longicorn (Rosalia alpina). PLoS ONE; 2011; 6: e21345 doi: 10.1371/journal.pone.0021345 PubMed DOI PMC
Ginzel MD, Hanks LM. Role of host plant volatiles in mate location for three species of longhorned beetles. J Chem Ecol. 2005; 31: 21–37. PubMed
Silk PJ, Sweeney J, Wu J, Price J, Gutowski JM, Kettela EG. Evidence for a male-produced pheromone in Tetropium fuscum (F.) and Tetropium cinnamopterum (Kirby) (Coleoptera: Cerambycidae). Naturwissenschaften. 2007; 94: 697–701. doi: 10.1007/s00114-007-0244-0 PubMed DOI
Teale SA, Wickham JD, Zhang F, Su J, Chen Y, Xiao W, et al. Male-produced aggregation pheromone of Monochamus alternatus (Coleoptera: Cerambycidae), a major vector of pine wood nematode. J Econ Entomol. 2011; 104: 1592–1598 PubMed
Collignon RM, Swift IP, Zou Y, McElfresh JS, Hanks LM, Millar JG. The influence of host plant volatiles on the attraction of longhorn beetles to pheromones. J Chem Ecol. 2016; 42: 215–229. doi: 10.1007/s10886-016-0679-x PubMed DOI
Miller DR. Ethanol and (−)-α-pinene: attractant kairomones for some large wood-boring beetles in southeastern USA. J Chem Ecol. 2006; 32: 779–794. doi: 10.1007/s10886-006-9037-8 PubMed DOI