• This record comes from PubMed

Conformational dynamics are a key factor in signaling mediated by the receiver domain of a sensor histidine kinase from Arabidopsis thaliana

. 2017 Oct 20 ; 292 (42) : 17525-17540. [epub] 20170831

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 28860196
PubMed Central PMC5655527
DOI 10.1074/jbc.m117.790212
PII: S0021-9258(20)33908-9
Knihovny.cz E-resources

Multistep phosphorelay (MSP) cascades mediate responses to a wide spectrum of stimuli, including plant hormonal signaling, but several aspects of MSP await elucidation. Here, we provide first insight into the key step of MSP-mediated phosphotransfer in a eukaryotic system, the phosphorylation of the receiver domain of the histidine kinase CYTOKININ-INDEPENDENT 1 (CKI1RD) from Arabidopsis thaliana We observed that the crystal structures of free, Mg2+-bound, and beryllofluoridated CKI1RD (a stable analogue of the labile phosphorylated form) were identical and similar to the active state of receiver domains of bacterial response regulators. However, the three CKI1RD variants exhibited different conformational dynamics in solution. NMR studies revealed that Mg2+ binding and beryllofluoridation alter the conformational equilibrium of the β3-α3 loop close to the phosphorylation site. Mutations that perturbed the conformational behavior of the β3-α3 loop while keeping the active-site aspartate intact resulted in suppression of CKI1 function. Mechanistically, homology modeling indicated that the β3-α3 loop directly interacts with the ATP-binding site of the CKI1 histidine kinase domain. The functional relevance of the conformational dynamics observed in the β3-α3 loop of CKI1RD was supported by a comparison with another A. thaliana histidine kinase, ETR1. In contrast to the highly dynamic β3-α3 loop of CKI1RD, the corresponding loop of the ETR1 receiver domain (ETR1RD) exhibited little conformational exchange and adopted a different orientation in crystals. Biochemical data indicated that ETR1RD is involved in phosphorylation-independent signaling, implying a direct link between conformational behavior and the ability of eukaryotic receiver domains to participate in MSP.

See more in PubMed

Schaller G. E., Shiu S. H., and Armitage J. P. (2011) Two-component systems and their co-option for eukaryotic signal transduction. Curr. Biol. 21, R320–R330 PubMed

Pekárová B., Szmitkowska A., Dopitová R., Degtjarik O., Žídek L, Hejátko J. (2016) Structural aspects of multistep phosphorelay-mediated signaling in plants. Mol. Plant 9, 71–85 PubMed

Robinson V. L., Buckler D. R., and Stock A. M. (2000) A tale of two components: a novel kinase and a regulatory switch. Nat. Struct. Biol. 7, 626–633 PubMed

Yan D., Cho H. S., Hastings C. A., Igo M. M., Lee S. Y., Pelton J. G., Stewart V., Wemmer D. E., and Kustu S. (1999) Beryllofluoride mimics phosphorylation of NtrC and other bacterial response regulators. Proc. Natl. Acad. Sci. U.S.A. 96, 14789–14794 PubMed PMC

Kern D., Volkman B. F., Luginbühl P., Nohaile M. J., Kustu S., and Wemmer D. E. (1999) Structure of a transiently phosphorylated switch in bacterial signal transduction. Nature 402, 894–898 PubMed

Wilson D., Pethica R., Zhou Y., Talbot C., Vogel C., Madera M., Chothia C., and Gough J. (2009) Superfamily-sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res. 37, D380–D386 PubMed PMC

Pekárová B., Klumpler T., Třísková O., Horák J., Jansen S., Dopitová R., Borkovcová P., Papoušková V., Nejedlá E., Sklenář V., Marek J., Žídek, Hejátko L. J., and Janda L. (2011) Structure and binding specificity of the receiver domain of sensor histidine kinase CKI1 from Arabidopsis thaliana. Plant J. 67, 827–839 PubMed

Stock A. M., and Guhaniyogi J. (2006) A new perspective on response regulator activation. J. Bacteriol. 188, 7328–7330 PubMed PMC

Dyer C. M., and Dahlquist F. W. (2006) Switched or not?: the structure of unphosphorylated CheY bound to the N terminus of FliM. J. Bacteriol. 188, 7354–7363 PubMed PMC

Korzhnev D. M., Billeter M., Arseniev A. S., and Orekhov V. Y. (2001) NMR studies of Brownian tumbling and internal motions in proteins. Prog. Nucl. Magn. Reson. Spectrosc. 38, 197–266

Lipari G., and Szabo A. (1982) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559

Lipari G., and Szabo A. (1982) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc. 104, 4559–4570

Halle B., Andersson T., Forsén S., and Lindman B. (1981) Protein hydration from water oxygen-17 magnetic-relaxation. J. Am. Chem. Soc. 103, 500–508

Volkman B. F., Lipson D., Wemmer D. E., and Kern D. (2001) Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429–2433 PubMed

McDonald L. R., Boyer J. A., and Lee A. L. (2012) Segmental motions, not a two-state concerted switch, underlie allostery in CheY. Structure 20, 1363–1373 PubMed PMC

Villali J., Pontiggia F., Clarkson M. W., Hagan M. F., and Kern D. (2014) Evidence against the “Y-T coupling” mechanism of activation in the response regulator NtrC. J. Mol. Biol. 426, 1554–1567 PubMed PMC

Loria J. P., Rance M., and Palmer A. G. (1999) A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J. Am. Chem. Soc. 121, 1331–1332

Yip G. N., and Zuiderweg E. R. (2004) A phase cycle scheme that significantly suppresses offset-dependent artifacts in the R2-CPMG 15N relaxation experiment. J. Magn. Reson. 171, 25–36 PubMed

Long D., Liu M., and Yang D. (2008) Accurately probing slow motions on millisecond timescales with a robust NMR relaxation experiment. J. Am. Chem. Soc. 130, 2432–2433 PubMed

Janiak-Spens F., Cook P. F., and West A. H. (2005) Kinetic analysis of YPD1-dependent phosphotransfer reactions in the yeast osmoregulatory phosphorelay system. Biochemistry 44, 377–386 PubMed

Müller-Dieckmann H. J., Grantz A. A., and Kim S. H. (1999) The structure of the signal receiver domain of the Arabidopsis thaliana ethylene receptor ETR1. Structure 7, 1547–1556 PubMed

Hung Y. L., Jiang I., Lee Y. Z., Wen C. K., and Sue S. C. (2016) NMR study reveals the receiver domain of Arabidopsis ETHYLENE RESPONSE1 ethylene receptor as an atypical type response regulator. PLOS ONE 11, e0160598. PubMed PMC

Müller B., and Sheen J. (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453, 1094. PubMed PMC

Hwang I., and Sheen J. (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383–389 PubMed

Hejátko J., Ryu H., Kim G. T., Dobesová R., Choi S., Choi S. M., Soucek P., Horák J., Pekárová B., Palme K., Brzobohaty B., and Hwang I. (2009) The histidine kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 regulate vascular tissue development in Arabidopsis shoots. Plant Cell 21, 2008–2021 PubMed PMC

Volz K. (1993) Structural conservation in the CheY superfamily. Biochemistry 32, 11741–11753 PubMed

Usher K. C., de la Cruz A. F., Dahlquist F. W., Swanson R. V., Simon M. I., and Remington S. J. (1998) Crystal structures of CheY from Thermotoga maritima do not support conventional explanations for the structural basis of enhanced thermostability. Protein Sci. 7, 403–412 PubMed PMC

Casino P., Rubio V., and Marina A. (2009) Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139, 325–336 PubMed

Volz K., and Matsumura P. (1991) Crystal structure of Escherichia coli CheY refined at 1.7-Å resolution. J. Biol. Chem. 266, 15511–15519 PubMed

Simonovic M., and Volz K. (2001) A distinct meta-active conformation in the 1.1-angstrom resolution structure of wild-type apoCheY. J. Biol. Chem. 276, 28637–28640 PubMed

Bauer J., Reiss K., Veerabagu M., Heunemann M., Harter K., and Stehle T. (2013) Structure-function analysis of Arabidopsis thaliana histidine kinase AHK5 bound to its cognate phosphotransfer protein AHP1. Mol. Plant 6, 959–970 PubMed

Feher V. A., and Cavanagh J. (1999) Millisecond-time scale motions contribute to the function of the bacterial response regulator protein Spo0F. Nature 400, 289–293 PubMed

Formaneck M. S., Ma L., and Cui Q. (2006) Reconciling the ”old” and ”new” views of protein allostery: a molecular simulation study of chemotaxis Y protein (CheY). Proteins 63, 846–867 PubMed

Bellsolell L., Prieto J., Serrano L., and Coll M. (1994) Magnesium binding to the bacterial chemotaxis protein CheY results in large conformational-changes involving its functional surface. J. Mol. Biol. 238, 489–495 PubMed

Moy F. J., Lowry D. F., Matsumura P., Dahlquist F. W., Krywko J. E., and Domaille P. J. (1994) Assignments, secondary structure, global fold, and dynamics of chemotaxis-Y protein using three- and four-dimensional heteronuclear (13C,15N) NMR-spectroscopy. Biochemistry 33, 10731–10742 PubMed

McDonald L. R., Whitley M. J., Boyer J. A., and Lee A. L. (2013) Colocalization of fast and slow time scale dynamics in the allosteric signaling protein CheY. J. Mol. Biol. 425, 2372–2381 PubMed PMC

Otten R., Villali J., Kern D., and Mulder F. A. (2010) Probing microsecond time scale dynamics in proteins by methyl 1H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrCr. J. Am. Chem. Soc. 132, 17004–17014 PubMed PMC

Sheftic S. R., Garcia P. P., White E., Robinson V. L., Gage D. J., and Alexandrescu A. T. (2012) Nuclear magnetic resonance structure and dynamics of the response regulator Sma0114 from Sinorhizobium meliloti. Biochemistry 51, 6932–6941 PubMed PMC

Sheftic S. R., White E., Gage D. J., and Alexandrescu A. T. (2014) NMR structure of the HWE kinase associated response regulator Sma0114 in its activated state. Biochemistry 53, 311–322 PubMed

Gardino A. K., Villali J., Kivenson A., Lei M., Liu C. F., Steindel P., Eisenmesser E. Z., Labeikovsky W., Wolf-Watz M., Clarkson M. W., and Kern D. (2009) Transient non-native hydrogen bonds promote activation of a signaling protein. Cell 139, 1109–1118 PubMed PMC

Vanatta D. K., Shukla D., Lawrenz M., and Pande V. S. (2015) A network of molecular switches controls the activation of the two-component response regulator NtrC. Nat. Commun. 6, 7283. PubMed

Pontiggia F., Pachov D. V., Clarkson M. W., Villali J., Hagan M. F., Pande V. S., and Kern D. (2015) Free energy landscape of activation in a signalling protein at atomic resolution. Nat. Commun. 6, 7284. PubMed PMC

Ma L., and Cui Q. (2007) Activation mechanism of a signaling protein at atomic resolution from advanced computations. J. Am. Chem. Soc. 129, 10261–10268 PubMed PMC

Khalili M., and Wales D. J. (2008) Pathways for conformational change in nitrogen regulatory protein C from discrete path sampling. J. Phys. Chem. B 112, 2456–2465 PubMed

Banerjee R., Yan H., and Cukier R. I. (2015) Conformational transition in signal transduction: metastable states and transition pathways in the activation of a signaling protein. J. Phys. Chem. B 119, 6591–6602 PubMed

Welch M., Chinardet N., Mourey L., Birck C., and Samama J. (1998) Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. Nat. Struct. Biol. 5, 25–29 PubMed

Park S. Y., Beel B. D., Simon M. I., Bilwes A. M., and Crane B. R. (2004) In different organisms, the mode of interaction between two signaling proteins is not necessarily conserved. Proc. Natl. Acad. Sci. U.S.A. 101, 11646–11651 PubMed PMC

Guhaniyogi J., Robinson V. L., and Stock A. M. (2006) Crystal structures of beryllium fluoride-free and beryllium fluoride-bound CheY in complex with the conserved C-terminal peptide of CheZ reveal dual binding modes specific to CheY conformation. J. Mol. Biol. 359, 624–645 PubMed PMC

Zhao X., Copeland D. M., Soares A. S., and West A. H. (2008) Crystal structure of a complex between the phosphorelay protein YPD1 and the response regulator domain of SLN1 bound to a phosphoryl analog. J. Mol. Biol. 375, 1141–1151 PubMed PMC

Klumpler T., Pekárová B., Marek J., Borkovcová P., Janda L., and Hejátko J. (2009) Cloning, purification, crystallization and preliminary X-ray analysis of the receiver domain of the histidine kinase CKI1 from Arabidopsis thaliana. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65, 478–481 PubMed PMC

Barbieri C. M., Mack T. R., Robinson V. L., Miller M. T., and Stock A. M. (2010) Regulation of response regulator autophosphorylation through interdomain contacts. J. Biol. Chem. 285, 32325–32335 PubMed PMC

Mueller U., Darowski N., Fuchs M. R., Förster R., Hellmig M., Paithankar K. S., Pühringer S., Steffien M., Zocher G., and Weiss M. S. (2012) Facilities for macromolecular crystallography at the Helmholtz-Zentrum berlin. J. Synchrotron Radiat. 19, 442–449 PubMed PMC

Kabsch W. (2010) XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 PubMed PMC

Krug M., Weiss M. S., Heinemann U., and Mueller U. (2012) XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS. J. Appl. Crystallogr. 45, 568–572

Winn M. D., Ballard C. C., Cowtan K. D., Dodson E. J., Emsley P., Evans P. R., Keegan R. M., Krissinel E. B., Leslie A. G., McCoy A., McNicholas S. J., Murshudov G. N., Pannu N. S., Potterton E. A., Powell H. R., et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 PubMed PMC

Vagin A., and Teplyakov A. (2010) Molecular replacement with molrep. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 PubMed

Vagin A. A., Steiner R. A., Lebedev A. A., Potterton L., McNicholas S., Long F., and Murshudov G. N. (2004) Refmac5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184–2195 PubMed

Emsley P., Lohkamp B., Scott W. G., and Cowtan K. (2010) Features and development of coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 PubMed PMC

Chen V. B., Arendall W. B. 3rd., Headd J. J., Keedy D. A., Immormino R. M., Kapral G. J., Murray L. W., Richardson J. S., and Richardson D. C. (2010) Molprobity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 PubMed PMC

Bodenhausen G., and Ruben D. J. (1980) Natural abundance N-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185–189

Sklenář V., Piotto M., Leppik R., and Saudek V. (1993) Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. J. Magn. Reson. Ser. A 102, 241–245

Grantz A. A., Müller-Dieckmann H. J., and Kim S.-H. (1998) Subcloning, crystallization and preliminary X-ray analysis of the signal receiver domain of ETR1, an ethylene receptor from Arabidopsis thaliana. Acta Crystallogr. D Biol. Crystallogr. 54, 690–692 PubMed

Vícha J., Babinský M., Demo G., Otrusinová O., Jansen S., Pekárová B., Žídek L, Munzarová M. L. (2016) The influence of Mg2+ coordination on 13C and 15N chemical shifts in CKI1RD protein domain from experiment and molecular dynamics/density functional theory calculations. Proteins 84, 686–699 PubMed

Grzesiek S., and Bax A. (1992) Correlating backbone amide and side-chain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc. 114, 6291–6293

Wittekind M., and Mueller L. (1993) HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the α-carbon and β-carbon resonances in proteins. J. Magn. Reson. Ser. B 101, 201–205

Muhandiram D. R., and Kay L. E. (1994) Gradient-enhanced triple-resonance 3-dimensional NMR experiments with improved sensitivity. J. Magn. Reson. Ser. B 103, 203–216

d'Auvergne E. J., and Gooley P. R. (2008) Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces. J. Biomol. NMR 40, 107–119 PubMed PMC

d'Auvergne E. J., and Gooley P. R. (2008) Optimisation of NMR dynamic models II. A new methodology for the dual optimisation of the model-free parameters and the Brownian rotational diffusion tensor. J. Biomol. NMR 40, 121–133 PubMed PMC

Efron B. (1979) Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1–26

Ferrage F., Cowburn D., and Ghose R. (2009) Accurate sampling of high-frequency motions in proteins by steady-state 15N-1H nuclear Overhauser effect measurements in the presence of cross-correlated relaxation. J. Am. Chem. Soc. 131, 6048–6049 PubMed PMC

Clore G. M., Szabo A., Bax A., Kay L. E., Driscoll P. C., and Gronenborn A. M. (1990) Deviations from the simple 2-parameter model-free approach to the interpretation of N-15 nuclear magnetic-relaxation of proteins. J. Am. Chem. Soc. 112, 4989–4991

Morin S., Linnet T. E., Lescanne M., Schanda P., Thompson G. S., Tollinger M., Teilum K., Gagné S., Marion D., Griesinger C., Blackledge M., and d'Auvergne E. J. (2014) Relax: the analysis of biomolecular kinetics and thermodynamics using NMR relaxation dispersion data. Bioinformatics 30, 2219–2220 PubMed PMC

Luz Z., and Meiboom S. (1963) Nuclear magnetic resonance study of protolysis of trimethylammonium ion in aqueous solution–order of reaction with respect to solvent. J. Chem. Phys. 39, 366

Degtjarik O., Dopitova R., Puehringer S., Nejedla E., Kuty M., Weiss M. S., Hejatko J., Janda L., and Futa Smatanova I. (2013) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of AHP2, a signal transmitter protein from Arabidopsis thaliana. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69, 158–161 PubMed PMC

Yoo S.-D., Cho Y.-H., and Sheen J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 PubMed

Després C., Chubak C., Rochon A., Clark R., Bethune T., Desveaux D., and Fobert P. R. (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15, 2181–2191 PubMed PMC

Podgornaia A. I., Casino P., Marina A., and Laub M. T. (2013) Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling. Structure 21, 1636–1647 PubMed PMC

Sali A, and Blundell T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 PubMed

Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., and Thompson J. D. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497–3500 PubMed PMC

Letunic I., Doerks T., and Bork P. (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 43, D257–D260 PubMed PMC

See more in PubMed

PDB
5N2N, 5LNN, 5LNM, 3MMN, 3MM4, 1DCF, 4EUK, 1TMY, 3TMY, 3DGF, 3GL9, 3DGE, 4JAS

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...