Practical application of genomic selection in a doubled-haploid winter wheat breeding program

. 2017 ; 37 (10) : 117. [epub] 20170903

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28936114

Crop improvement is a long-term, expensive institutional endeavor. Genomic selection (GS), which uses single nucleotide polymorphism (SNP) information to estimate genomic breeding values, has proven efficient to increasing genetic gain by accelerating the breeding process in animal breeding programs. As for crop improvement, with few exceptions, GS applicability remains in the evaluation of algorithm performance. In this study, we examined factors related to GS applicability in line development stage for grain yield using a hard red winter wheat (Triticum aestivum L.) doubled-haploid population. The performance of GS was evaluated in two consecutive years to predict grain yield. In general, the semi-parametric reproducing kernel Hilbert space prediction algorithm outperformed parametric genomic best linear unbiased prediction. For both parametric and semi-parametric algorithms, an upward bias in predictability was apparent in within-year cross-validation, suggesting the prerequisite of cross-year validation for a more reliable prediction. Adjusting the training population's phenotype for genotype by environment effect had a positive impact on GS model's predictive ability. Possibly due to marker redundancy, a selected subset of SNPs at an absolute pairwise correlation coefficient threshold value of 0.4 produced comparable results and reduced the computational burden of considering the full SNP set. Finally, in the context of an ongoing breeding and selection effort, the present study has provided a measure of confidence based on the deviation of line selection from GS results, supporting the implementation of GS in wheat variety development.

Zobrazit více v PubMed

Baenziger PS, & Depauw RM (2009) Wheat breeding: procedures and strategies. In B. F. Carver (Ed.), Wheat science and trade (pp. 273–308). Oxford: Wiley-Blackwell. Retrieved from doi:10.1002/9780813818832.ch13

Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.) Plant Sci. 2016;242:23–36. doi: 10.1016/j.plantsci.2015.08.021. PubMed DOI

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014) Fitting linear mixed-effects models using lme4. arXiv:1406.5823 [Stat]. Retrieved from http://arxiv.org/abs/1406.5823

Bernardo R, Yu J. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 2007;47(3):1082. doi: 10.2135/cropsci2006.11.0690. DOI

Blondel M, Onogi A, Iwata H, Ueda N. A ranking approach to genomic selection. PLoS One. 2015;10(6):e0128570. doi: 10.1371/journal.pone.0128570. PubMed DOI PMC

Burgueño J, de los Campos G, Weigel K, Crossa J. Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci. 2012;52(2):707–719. doi: 10.2135/cropsci2011.06.0299. DOI

Calus MP, Veerkamp RF. Accuracy of multi-trait genomic selection using different methods. Genet Sel Evol. 2011;43(1):26. doi: 10.1186/1297-9686-43-26. PubMed DOI PMC

Crossa J, de los Campos G, Pérez P, Gianola D, Burgueño J, Araus JL, et al. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics. 2010;186(2):713–724. doi: 10.1534/genetics.110.118521. PubMed DOI PMC

Crossa J, Pérez P, de los Campos G, Mahuku G, Dreisigacker S, Magorokosho C. Genomic selection and prediction in plant breeding. J Crop Improv. 2011;25(3):239–261. doi: 10.1080/15427528.2011.558767. DOI

de los Campos G, Gianola D, GJM R, Weigel KA, Crossa J. Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res. 2010;92(4):295–308. doi: 10.1017/S0016672310000285. PubMed DOI

de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, MPL C. Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics. 2013;193(2):327–345. doi: 10.1534/genetics.112.143313. PubMed DOI PMC

de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, et al. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics. 2009;182(1):375–385. doi: 10.1534/genetics.109.101501. PubMed DOI PMC

Edwards JT, Hunger RM, Smith EL, Horn GW, Chen M-S, Yan L, et al. “Duster” wheat: a durable, dual-purpose cultivar adapted to the Southern Great Plains of the USA. J Plant Registr. 2012;6(1):37. doi: 10.3198/jpr2011.04.0195crc. DOI

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379. doi: 10.1371/journal.pone.0019379. PubMed DOI PMC

Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome J. 2011;4(3):250. doi: 10.3835/plantgenome2011.08.0024. DOI

Gianola D, van Kaam JBCHM. Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics. 2008;178(4):2289–2303. doi: 10.1534/genetics.107.084285. PubMed DOI PMC

Graybosch R, Bockelman HE, Garland-Campbell KA, Garvin DF, Regassa T (2014) Wheat. In: Yield gains in major U.S. field crops, CSSA special publ. 459–488. doi:10.2135/cssaspecpub33.c16

Grogan SM, Brown-Guedira G, Haley SD, McMaster GS, Reid SD, Smith J, Byrne PF. Allelic variation in developmental genes and effects on winter wheat heading date in the U.S. Great Plains. PLOS ONE. 2016;11(4):e0152852. doi: 10.1371/journal.pone.0152852. PubMed DOI PMC

Habier D, Fernando RL, Garrick DJ (2013). Genomic BLUP decoded: A look into the black box of genomic prediction. Genetics 194: 597–607 PubMed PMC

Härdle W, Linton O (1994) Chapter 38 applied nonparametric methods. In: B.-H. of Econometrics (Ed.) (Vol. 4, pp. 2295–2339). Elsevier. Retrieved from http://www.sciencedirect.com/science/article/pii/S1573441205800078

He S, Schulthess AW, Mirdita V, Zhao Y, Korzun V, Bothe R, et al. Genomic selection in a commercial winter wheat population. Theor Appl Genet. 2016;129(3):641–651. doi: 10.1007/s00122-015-2655-1. PubMed DOI

Heslot N, Yang H-P, Sorrells ME, Jannink J-L. Genomic selection in plant breeding: a comparison of models. Crop Sci. 2012;52(1):146. doi: 10.2135/cropsci2011.06.0297. DOI

Hofheinz N, Borchardt D, Weissleder K, Frisch M. Genome-based prediction of test cross performance in two subsequent breeding cycles. Theor Appl Genet. 2012;125(8):1639–1645. doi: 10.1007/s00122-012-1940-5. PubMed DOI

Huang M, Cabrera A, Hoffstetter A, Griffey C, Sanford D, Costa J, et al. Genomic selection for wheat traits and trait stability. Theor Appl Genet. 2016;129:1–14. doi: 10.1007/s00122-015-2595-9. PubMed DOI

Hunger RM, Edwards JT, Bowden RL, Yan L, Rayas-Duarte P, Bai G, et al. “Billings” wheat combines early maturity, disease resistance, and desirable grain quality for the Southern Great Plains, USA. J Plant Registr. 2014;8(1):22. doi: 10.3198/jpr2012.11.0053crc. DOI

Kiseleva AA, Shcherban AB, Leonova IN, Frenkel Z, Salina EA. Identification of new heading date determinants in wheat 5B chromosome. BMC Plant Biol. 2016;16(1):35–46. doi: 10.1186/s12870-016-0728-1. PubMed DOI PMC

Li G, Wang Y, Chen M-S, Edae E, Poland J, Akhunov E, et al. Precisely mapping a major gene conferring resistance to Hessian fly in bread wheat using genotyping-by-sequencing. BMC Genomics. 2015;16:108. doi: 10.1186/s12864-015-1297-7. PubMed DOI PMC

Line RF, Konzak CF, & Allan RE (1974) Evaluating resistance to Puccinia striiformis in wheat. In: Induced mutation for disease resistance in crop plants:125-132

Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H. 2 genomic selection in plant breeding: knowledge and prospects. Adv Agron. 2011;110:77. doi: 10.1016/B978-0-12-385531-2.00002-5. DOI

Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157(4):1819–1829. PubMed PMC

Michel S, Ametz C, Gungor H, Epure D, Grausgruber H, Löschenberger F, Buerstmayr H. Genomic selection across multiple breeding cycles in applied bread wheat breeding. Theor Appl Genet. 2016;129:1–11. doi: 10.1007/s00122-016-2694-2. PubMed DOI PMC

Opgen-Rhein R, Strimmer K (2007) Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach. Stat Appl Genet Mol 6(1). Retrieved from http://www.degruyter.com/dg/viewarticle/j$002fsagmb.2007.6.1$002fsagmb.2007.6.1.1252$002fsagmb.2007.6.1.1252.xml PubMed

Pérez-Elizalde S, Cuevas J, Pérez-Rodríguez P, Crossa J. Selection of the bandwidth parameter in a Bayesian kernel regression model for genomic-enabled prediction. J Agr Biol Envir St. 2015;20(4):512–532. doi: 10.1007/s13253-015-0229-y. DOI

Peterson RF, Campbell AB, Hannah AE. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res. 1948;26(5):496–500. doi: 10.1139/cjr48c-033. DOI

Poland JA, Brown PJ, Sorrells ME, Jannink J-L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One. 2012;7(2):e32253. doi: 10.1371/journal.pone.0032253. PubMed DOI PMC

Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, et al. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome J. 2012;5(3):103. doi: 10.3835/plantgenome2012.06.0006. DOI

Saint Pierre C, Burgueño J, Crossa J, Fuentes Dávila G, Figueroa López P, Solís Moya E et al (2016) Genomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones. Sci Rep 6. doi:10.1038/srep27312 PubMed PMC

Schäfer J, Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol. 2005;4(1):1–32. PubMed

United States Department of Agriculture. (2016a). Grain: world markets and trade. Retrieved from https://www.fas.usda.gov/

United States Department of Agriculture. (2016b). World Agricultural supply and demand estimates. Retrieved from http://www.usda.gov/oce/commodity/wasde/

VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91(11):4414–4423. doi: 10.3168/jds.2007-0980. PubMed DOI

Zhang X, Pérez-Rodríguez P, Semagn K, Beyene Y, Babu R, López-Cruz MA, et al. Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity. 2015;114(3):291–299. doi: 10.1038/hdy.2014.99. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...