Marine biorhythms: bridging chronobiology and ecology
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
BB/E000835/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
28993497
PubMed Central
PMC5647280
DOI
10.1098/rstb.2016.0253
PII: rstb.2016.0253
Knihovny.cz E-zdroje
- Klíčová slova
- circadian, invertebrates, lunar, molecular, shorebirds, tidal,
- MeSH
- Charadriiformes fyziologie MeSH
- cirkadiánní hodiny * MeSH
- cirkadiánní rytmus * MeSH
- cizopasní červi fyziologie MeSH
- členovci fyziologie MeSH
- vodní organismy fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Marine organisms adapt to complex temporal environments that include daily, tidal, semi-lunar, lunar and seasonal cycles. However, our understanding of marine biological rhythms and their underlying molecular basis is mainly confined to a few model organisms in rather simplistic laboratory settings. Here, we use new empirical data and recent examples of marine biorhythms to highlight how field ecologists and laboratory chronobiologists can complement each other's efforts. First, with continuous tracking of intertidal shorebirds in the field, we reveal individual differences in tidal and circadian foraging rhythms. Second, we demonstrate that shorebird species that spend 8-10 months in tidal environments rarely maintain such tidal or circadian rhythms during breeding, likely because of other, more pertinent, temporally structured, local ecological pressures such as predation or social environment. Finally, we use examples of initial findings from invertebrates (arthropods and polychaete worms) that are being developed as model species to study the molecular bases of lunar-related rhythms. These examples indicate that canonical circadian clock genes (i.e. the homologous clock genes identified in many higher organisms) may not be involved in lunar/tidal phenotypes. Together, our results and the examples we describe emphasize that linking field and laboratory studies is likely to generate a better ecological appreciation of lunar-related rhythms in the wild.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Zobrazit více v PubMed
Alerstam T. 1990. Bird migration. Cambridge, UK: Cambridge University Press.
Hut RA, Paolucci S, Dor R, Kyriacou CP, Daan S. 2013. Latitudinal clines: an evolutionary view on biological rhythms. Proc. R. Soc. B 280, 20130433 (10.1098/rspb.2013.0433) PubMed DOI PMC
de la Iglesia HO, Johnson CH. 2013. Biological clocks: riding the tides. Curr. Biol. 23, R921–R923. (10.1016/j.cub.2013.09.006) PubMed DOI PMC
Dunlap J. 2004. Chronobiology. Sunderland, MA: Sinauer Associates.
Naylor E. 2010. Chronobiology of marine organisms. Cambridge, UK: Cambridge University Press.
Palmer JD. 2000. The clocks controlling the tide-associated rhythms of intertidal animals. Bioessays 22, 32–37. (10.1002/(SICI)1521-1878(200001)22:1%3C32::AID-BIES7%3E3.0.CO;2-U) PubMed DOI
Kaiser TS, et al. 2016. The genomic basis of circadian and circalunar timing adaptations in a midge. Nature 540, 69–73. (10.1038/nature20151) PubMed DOI PMC
del Hoyo J, Elliott A, Sargatal J. 1996. Handbook of the birds of the world. Barcelona: Lynx Edicions.
van de Kam J, Ens B, Piersma T, Zwart L. 2004. Shorebirds: an illustrated behavioural ecology. Zeist, The Netherlands: KNNV Publishing.
Ens BJ, Underhill LG. 2014. Synthesis of oystercatcher conservation assessments: general lessons and recommendations. Int. Wader Stud. 20, 5–22.
Helm B, Gwinner E, Koolhaas A, Battley P, Schwalb I, Dekinga A, Piersma T. 2012. Avian migration: temporal multitasking and a case study of melatonin cycles in waders. In The neurobiology of circadian timing (eds A Kalsbeek, M Merrow, T Roenneberg, RG Foster), pp. 457–479. Amsterdam: Elsevier. PubMed
Daan S, Koene P. 1981. On the timing of foraging flights by oystercatchers, Haematopus ostralegus, on tidal mudflats. Neth. J. Sea Res. 15, 1–22. (10.1016/0077-7579(81)90002-8) DOI
Hötker H. 1995. [Activity rhythms of shelducks (Tadorna tadorna) and waders (Charadrii) on the North Sea coast]. J. Ornithol. 136, 105–126 (in German with English abstract) (10.1007/BF01651234) DOI
Bulla M, et al. 2016. Defying the 24-h day: unexpected diversity in socially synchronized rhythms of shorebirds Nature 540, 109–113. (10.1038/nature20563) PubMed DOI
Foster RG, Wulff K. 2005. The rhythm of rest and excess. Nat. Rev. Neurosci. 6, 407–414. (10.1038/nrn1670) PubMed DOI
Bulla M, Oudman T, Bijleveld AI. 2017. Supporting information for ‘Marine biorhythms: bridging chronobiology and ecology’ Open Sci. Framework. (10.17605/OSF.IO/XBY9T) PubMed DOI PMC
Zwarts L, Blomert A, Hupkes R. 1990. Increase of feeding time in waders preparing for spring migration from the Banc d'Arguin, Mauritania. Ardea 78, 237–256.
Bulla M, et al. 2016. Supplementary data 3 – study sites: location, population wing length, monitoring method, tide. Version 11. figshare (10.6084/m9.figshare.1536260.v11) DOI
Piersma T. 2007. Using the power of comparison to explain habitat use and migration strategies of shorebirds worldwide. J. Ornithol. 148(Suppl. 1), S45–S59. (10.1007/s10336-007-0240-3) DOI
Buehler DM, Piersma T. 2008. Travelling on a budget: predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Phil. Trans. R. Soc. B 363, 247–266. (10.1098/rstb.2007.2138) PubMed DOI PMC
van Gils JA, Piersma T, Dekinga A, Battley PF. 2006. Modelling phenotypic flexibility: an optimality analysis of gizzard size in red knots (Calidris canutus). Ardea 94, 409–420.
Piersma T, Hoekstra R, Dekinga A, Koolhaas A, Wolf P, Battley PF, Wiersma P. 1993. Scale and intensity of intertidal habitat use by knots Calidris canutus in the western Wadden Sea in relation to food, friends and foes. Neth. J. Sea Res. 31, 331–357. (10.1016/0077-7579(93)90052-T) DOI
Piersma T, van Aelst R, Kurk K, Berkhoudt H, Maas LRM. 1998. A new pressure sensory mechanism for prey detection in birds: the use of principles of seabed dynamics? Proc. R. Soc. Lond. B 265, 1377–1383. (10.1098/rspb.1998.0445) DOI
Bijlsma RG. 1990. Predation by large falcons on wintering waders on the Banc d'Arguin, Mauritania. Ardea 78, 82.
van den Hout PJ, van Gils JA, Robin F, van der Geest M, Dekinga A, Piersma T. 2014. Interference from adults forces young red knots to forage for longer and in dangerous places. Anim. Behav. 88, 137–146. (10.1016/j.anbehav.2013.11.020) DOI
Sitters HP, Gonzalez PM, Piersma T, Baker AJ, Price DJ. 2001. Day and night feeding habitat of Red Knots in Patagonia: profitability versus safety? J. Field Ornithol. 72, 86–95. (10.1648/0273-8570-72.1.86) DOI
Rogers DI, Battley PF, Piersma T, Van Gils JA, Rogers KG. 2006. High-tide habitat choice: insights from modelling roost selection by shorebirds around a tropical bay. Anim. Behav. 72, 563–575. (10.1016/j.anbehav.2005.10.029) DOI
Piersma T, Gill REJ, de Goeij P, Dekinga A, Shepherd ML, Ruthrauff D, Tibbitts L. 2006. Shorebird avoidance of nearshore feeding and roosting areas at night correlates with presence of a nocturnal avian predator. Wader Study Group Bull. 109, 73–76.
Laundré JW, Hernández L, Ripple WJ. 2010. The landscape of fear: ecological implications of being afraid. Open Ecol. J. 3, 1–7. (10.2174/1874213001003030001) DOI
Steiger SS, Valcu M, Spoelstra K, Helm B, Wikelski M, Kempenaers B. 2013. When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds. Proc. R. Soc. B 280, 20131016 (10.1098/rspb.2013.1016) PubMed DOI PMC
Beason RC, Wiltschko W. 2015. Cues indicating location in pigeon navigation. J. Comp. Physiol. A Neuroethol Sens. Neural Behav. Physiol. 201, 961–967. (10.1007/s00359-015-1027-2) PubMed DOI
Ozkaya O, Rosato E. 2012. The circadian clock of the fly: a neurogenetics journey through time. Adv. Genet. 77, 79–123. (10.1016/B978-0-12-387687-4.00004-0) PubMed DOI
Wilcockson D, Zhang L. 2008. Circatidal clocks. Curr. Biol. 18, R753–R755. (10.1016/j.cub.2008.06.041) PubMed DOI
Takekata H, Numata H, Shiga S. 2014. The circatidal rhythm persists without the optic lobe in the mangrove cricket Apteronemobius asahinai. J. Biol. Rhythms 29, 28–37. (10.1177/0748730413516309) PubMed DOI
Weber F, Hung HC, Maurer C, Kay SA. 2006. Second messenger and Ras/MAPK signalling pathways regulate CLOCK/CYCLE-dependent transcription. J. Neurochem. 98, 248–257. (10.1111/j.1471-4159.2006.03865.x) PubMed DOI
Zhang L, Hastings MH, Green EW, Tauber E, Sladek M, Webster SG, Kyriacou CP, Wilcockson DC. 2013. Dissociation of circadian and circatidal timekeeping in the marine crustacean Eurydice pulchra. Curr. Biol. 23, 1863–1873. (10.1016/j.cub.2013.08.038) PubMed DOI PMC
Satoh A, Yoshioka E, Numata H. 2008. Circatidal activity rhythm in the mangrove cricket Apteronemobius asahinai. Biol. Lett. 4, 233–236. (10.1098/rsbl.2008.0036) PubMed DOI PMC
Takekata H, Matsuura Y, Goto SG, Satoh A, Numata H. 2012. RNAi of the circadian clock gene period disrupts the circadian rhythm but not the circatidal rhythm in the mangrove cricket. Biol. Lett. 8, 488–491. (10.1098/rsbl.2012.0079) PubMed DOI PMC
Takekata H, Numata H, Shiga S, Goto SG. 2014. Silencing the circadian clock gene Clock using RNAi reveals dissociation of the circatidal clock from the circadian clock in the mangrove cricket. J. Insect Physiol. 68, 16–22. (10.1016/j.jinsphys.2014.06.012) PubMed DOI
Neumann D, Heimbach F. 1984. Time cues for semilunar reproduction rhythms in European populations of Clunio marinus. II The influence of tidal temperature cycles. Biol. Bull. 166, 509–524. (10.2307/1541158) DOI
Kon N, et al. 2014. CaMKII is essential for the cellular clock and coupling between morning and evening behavioral rhythms. Genes Dev. 28, 1101–1110. (10.1101/gad.237511.114) PubMed DOI PMC
Harrisingh MC, Wu Y, Lnenicka GA, Nitabach MN. 2007. Intracellular Ca2+ regulates free-running circadian clock oscillation in vivo. J. Neurosci. 27, 12 489–12 499. (10.1523/JNEUROSCI.3680-07.2007) PubMed DOI PMC
Zantke J, Ishikawa-Fujiwara T, Arboleda E, Lohs C, Schipany K, Hallay N, Straw AD, Todo T, Tessmar-Raible K. 2013. Circadian and circalunar clock interactions in a marine annelid. Cell. Rep. 5, 99–113. (10.1016/j.celrep.2013.08.031) PubMed DOI PMC
Raible F, Tessmar-Raible K. 2014. Platynereis dumerilii. Curr. Biol. 24, R676–R677. (10.1016/j.cub.2014.06.032) PubMed DOI
Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, Gant TW, Hastings MH, Kyriacou CP. 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12, 540–550. (10.1016/S0960-9822(02)00759-5) PubMed DOI
Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, Panda S, Hogenesch JB. 2009. Harmonics of circadian gene transcription in mammals. PLoS Genet. 5, e1000442 (10.1371/journal.pgen.1000442) PubMed DOI PMC
Clayton JD, Kyriacou CP, Reppert SM. 2001. Keeping time with the human genome. Nature 409, 829–831. (10.1038/35057006) PubMed DOI
Gattermann R, et al. 2008. Golden hamsters are nocturnal in captivity but diurnal in nature. Biol. Lett. 4, 253–255. (10.1098/rsbl.2008.0066) PubMed DOI PMC
Daan S, et al. 2011. Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J. Biol. Rhythms 26, 118–129. (10.1177/0748730410397645) PubMed DOI
Vanin S, Bhutani S, Montelli S, Menegazzi P, Green EW, Pegoraro M, Sandrelli F, Costa R, Kyriacou CP. 2012. Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature 484, 371–375. (10.1038/nature10991) PubMed DOI
Spoelstra K, Wikelski M, Daan S, Loudon AS, Hau M. 2016. Natural selection against a circadian clock gene mutation in mice. Proc. Natl Acad. Sci. USA 113, 686–691. (10.1073/pnas.1516442113) PubMed DOI PMC
Dominoni D, Åkesson S, Klaassen R, Spoelstra K, Bulla M. 2017. Methods in field chronobiology. Phil. Trans. R. Soc. B 372, 20160247 (10.1098/rstb.2016.0247) PubMed DOI PMC