Methods in field chronobiology
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
28993491
PubMed Central
PMC5647274
DOI
10.1098/rstb.2016.0247
PII: rstb.2016.0247
Knihovny.cz E-zdroje
- Klíčová slova
- GPS-tracking, clocks, fibroblasts, incubation, radar, remote sensing,
- MeSH
- chování zvířat MeSH
- chronobiologie (obor) metody MeSH
- cirkadiánní rytmus * MeSH
- genetická zdatnost MeSH
- hmyz fyziologie MeSH
- hnízdění MeSH
- pohyb MeSH
- ptáci fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Chronobiological research has seen a continuous development of novel approaches and techniques to measure rhythmicity at different levels of biological organization from locomotor activity (e.g. migratory restlessness) to physiology (e.g. temperature and hormone rhythms, and relatively recently also in genes, proteins and metabolites). However, the methodological advancements in this field have been mostly and sometimes exclusively used only in indoor laboratory settings. In parallel, there has been an unprecedented and rapid improvement in our ability to track animals and their behaviour in the wild. However, while the spatial analysis of tracking data is widespread, its temporal aspect is largely unexplored. Here, we review the tools that are available or have potential to record rhythms in the wild animals with emphasis on currently overlooked approaches and monitoring systems. We then demonstrate, in three question-driven case studies, how the integration of traditional and newer approaches can help answer novel chronobiological questions in free-living animals. Finally, we highlight unresolved issues in field chronobiology that may benefit from technological development in the future. As most of the studies in the field are descriptive, the future challenge lies in applying the diverse technologies to experimental set-ups in the wild.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Zobrazit více v PubMed
Emerson KJ, Bradshaw WE, Holzapfel CM. 2008. Concordance of the circadian clock with the environment is necessary to maximize fitness in natural populations. Evolution 62, 979–983. (10.1111/j.1558-5646.2008.00324.x) PubMed DOI PMC
Yerushalmi S, Green RM. 2009. Evidence for the adaptive significance of circadian rhythms. Ecol. Lett. 12, 970–981. (10.1111/j.1461-0248.2009.01343.x) PubMed DOI
Aschoff J. 1985. Circadian timing. Ann. N. Y. Acad. Sci. 423, 442–467. (10.1111/j.1749-6632.1984.tb23452.x) PubMed DOI
Kronfeld-Schor N, Bloch G, Schwartz WJ. 2013. Animal clocks: when science meets nature. Proc. R. Soc. B 280, 20131354 (10.1098/rspb.2013.1354) PubMed DOI PMC
Helm B, Ben-Shlomo R, Sheriff MJ, Hut RA, Foster R, Barnes BM, Dominoni DM. 2013. Annual rhythms that underlie phenology: biological time-keeping meets environmental change. Proc. R. Soc. B 280, 20130016 (10.1098/rspb.2013.0016) PubMed DOI PMC
Daan S. 2011. How and Why? The lab versus the field. Sleep Biol. Rhythms 9, 1–2. (10.1111/j.1479-8425.2010.00482.x) DOI
Calisi RM, Bentley GE. 2009. Lab and field experiments: are they the same animal? Horm. Behav. 56, 1–10. (10.1016/j.yhbeh.2009.02.010) PubMed DOI
Vanin S, Bhutani S, Montelli S, Menegazzi P, Green EW, Pegoraro M, Sandrelli F, Costa R, Kyriacou CP. 2012. Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature 484, 371–375. (10.1038/nature10991) PubMed DOI
Helm B, Visser M, Schwartz WJ, Kronfeld-Schor N, Gerkema M, Piersma T, Bloch G. 2017. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Phil. Trans. R. Soc. B 372, 20160246 (10.1098/rstb.2016.246) PubMed DOI PMC
Dominoni DM, Helm B, Lehmann M, Dowse HB, Partecke J. 2013. Clocks for the city: circadian differences between forest and city songbirds. Proc. R. Soc. B 280, 20130593 (10.1098/rspb.2013.0593) PubMed DOI PMC
Steiger SS, Valcu M, Spoelstra K, Helm B, Wikelski M, Kempenaers B. 2013. When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds. Proc. R. Soc. B 280, 20131016 (10.1098/rspb.2013.1016) PubMed DOI PMC
Bulla M, et al. 2016. Unexpected diversity in socially synchronized rhythms of shorebirds. Nature 540, 109–113. (10.1038/nature20563) PubMed DOI
Bulla M, Valcu M, Rutten AL, Kempenaers B. 2014. Biparental incubation patterns in a high-Arctic breeding shorebird: how do pairs divide their duties? Behav. Ecol. 25, 152–164. (10.1093/beheco/art098) PubMed DOI PMC
Lesku JA, Rattenborg NC, Valcu M, Vyssotski AL, Kuhn S, Kuemmeth F, Heidrich W, Kempenaers B. 2012. Adaptive sleep loss in polygynous pectoral sandpipers. Science 337, 1654–1658. (10.1126/science.1220939) PubMed DOI
Rattenborg NC, Voirin B, Cruz SM, Tisdale R, Dell'Omo G, Lipp H-P, Wikelski M, Vyssotski AL. 2016. Evidence that birds sleep in mid-flight. Nat. Commun. 7, 12468 (10.1038/ncomms12468) PubMed DOI PMC
Spoelstra K, Wikelski M, Daan S, Loudon ASI, Hau M.. 2015. Natural selection against a circadian clock gene mutation in mice. Proc. Natl Acad. Sci. USA 113, 201516442 (10.1073/pnas.1516442113) PubMed DOI PMC
Daan S, Aschoff J. 1975. Circadian rhythms of locomotor activity in captive birds and mammals: their variation with season and latitude. Oecologia 18, 269–316. (10.1007/BF00345851) PubMed DOI
Plautz JD, Straume M, Stanewsky R, Jamison CF, Brandes C, Dowse HB, Hall JC, Kay SA. 1997. Quantitative analysis of drosophila period gene transcription in living animals. J. Biol. Rhythms 12, 204–217. (10.1177/074873049701200302) PubMed DOI
Meijer JH, Robbers Y. 2014. Wheel running in the wild. Proc. R. Soc. B 281, 348–357. (10.1098/rspb.2014.0210) PubMed DOI PMC
Williams CT, Barnes BM, Buck CL. 2012. Daily body temperature rhythms persist under the midnight sun but are absent during hibernation in free-living arctic ground squirrels. Biol. Lett. 8, 31–34. (10.1098/rsbl.2011.0435) PubMed DOI PMC
Dominoni DM, Goymann W, Helm B, Partecke J. 2013. Urban-like night illumination reduces melatonin release in European blackbirds (Turdus merula): implications of city life for biological time-keeping of songbirds. Front. Zool. 10, 60 (10.1186/1742-9994-10-60) PubMed DOI PMC
Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P. 2012. Coordination of the transcriptome and metabolome by the circadian clock. Proc. Natl Acad. Sci. USA 109, 5541–5546. (10.1073/pnas.1118726109) PubMed DOI PMC
Dominoni DM, Partecke J.. 2015. Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula). Phil. Trans. R. Soc. B 370, 20140118 (10.1098/rstb.2014.0118) PubMed DOI PMC
Bäckman J, Andersson A, Alerstam T, Pedersen L, Sjöberg S, Thorup K, Tøttrup AP. 2016. Activity and migratory flights of individual free-flying songbirds throughout the annual cycle: method and first case study. J. Avian Biol. 47, 1–11. (10.1111/jav.01068) DOI
Liechti F, Witvliet W, Weber R, Bächler E. 2013. First evidence of a 200-day non-stop flight in a bird. Nat. Commun. 4, R861–R870. (10.1038/ncomms3554) PubMed DOI
Ensing EP, Ciuti S, de Wijs FALM, Lentferink DH, ten Hoedt A, Boyce MS, Hut RA. 2014. GPS based daily activity patterns in European red deer and North American Elk (Cervus elaphus): indication for a weak circadian clock in ungulates. PLoS ONE 9, e106997 (10.1371/journal.pone.0106997) PubMed DOI PMC
Schlaich AE, Klaassen RHG, Bouten W, Bretagnolle V, Koks BJ, Villers A, Both C. 2016. How individual Montagu's Harriers cope with Moreau's paradox during the Sahelian winter. J. Anim. Ecol. 85, 1491–1501. (10.1111/1365-2656.12583) PubMed DOI
Kissling WD, Pattemore DE, Hagen M. 2014. Challenges and prospects in the telemetry of insects. Biol. Rev. 89, 511–530. (10.1111/brv.12065) PubMed DOI
Payne NL, van der Meulen DE, Gannon R, Semmens JM, Suthers IM, Gray CA, Taylor MD. 2013. Rain reverses diel activity rhythms in an estuarine teleost. Proc. R. Soc. B 280, 20122363 (10.1098/rspb.2012.2363) PubMed DOI PMC
Tomotani BM, Flores DEFL, Tachinardi P, Paliza JD, Oda GA, Valentinuzzi VS. 2012. Field and laboratory studies provide insights into the meaning of day-time activity in a subterranean rodent (Ctenomys aff. knighti), the Tuco-Tuco. PLoS ONE 7, e37918 (10.1371/journal.pone.0037918) PubMed DOI PMC
Rowcliffe JM, Kays R, Kranstauber B, Carbone C, Jansen PA. 2014. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5, 1170–1179. (10.1111/2041-210X.12278) DOI
Hope PR, Jones G. 2013. An entrained circadian cycle of peak activity in a population of hibernating bats. J. Mammal. 94, 497–505. (10.1644/12-MAMM-A-095.1) DOI
Runemark A, Wellenreuther M, Jayaweera HHE, Svanberg S, Brydegaard M. 2012. Rare events in remote dark-field spectroscopy: an ecological case study of insects. IEEE J. Sel. Top. Quantum Electron. 18, 1573–1582. (10.1109/JSTQE.2012.2184528) DOI
Kirkeby C, Wellenreuther M, Brydegaard M. 2016. Observations of movement dynamics of flying insects using high resolution lidar. Sci. Rep. 6, 29083 (10.1038/srep29083) PubMed DOI PMC
Leskinen M, Markkula I, Koistinen J, Pylkkö P, Ooperi S, Siljamo P, Ojanen H, Raiskio S, Tiilikkala K. 2011. Pest insect immigration warning by an atmospheric dispersion model, weather radars and traps. J. Appl. Entomol. 135, 55–67. (10.1111/j.1439-0418.2009.01480.x) DOI
Bishop CM, et al. 2015. The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science 347, 250–254. (10.1126/science.1258732) PubMed DOI
Decoursey PJ, Pius S, Sandlin C, Wethey D, Schull J. 1998. Relationship of circadian temperature and activity rhythms in two rodent species. Physiol. Behav. 65, 457–463. (10.1016/S0031-9384(98)00187-5) PubMed DOI
Brown SA, et al. 2005. The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol. 3, e338 (10.1371/journal.pbio.0030338) PubMed DOI PMC
Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. 2012. The human circadian metabolome. Proc. Natl Acad. Sci. USA 109, 2625–2629. (10.1073/pnas.1114410109) PubMed DOI PMC
Rattenborg NC, Voirin B, Vyssotski AL, Kays RW, Spoelstra K, Kuemmeth F, Heidrich W, Wikelski M. 2008. Sleeping outside the box: electroencephalographic measures of sleep in sloths inhabiting a rainforest. Biol. Lett. 4, 402–405. (10.1098/rsbl.2008.0203) PubMed DOI PMC
Wilson RP, Shepard ELC, Liebsch N. 2008. Prying into the intimate details of animal lives: use of a daily diary on animals. Endanger. Species Res. 4, 123–137. (10.3354/esr00064) DOI
Schlaich AE, Bouten W, Bretagnolle V, Heldbjerg H, Klaassen RHG, Sørensen IH, Villers A, Both C. 2017. A circannual perspective on daily and total flight distances in a long-distance migratory raptor, the Montagu's harrier, Circus pygargus. Biol. Lett. (10.1098/rsbl.2017.0073) PubMed DOI PMC
Davidson AJ, Menaker M. 2003. Birds of a feather clock together—sometimes: social synchronization of circadian rhythms. Curr. Opin. Neurobiol. 13, 765–769. (10.1016/j.conb.2003.10.011) PubMed DOI
Trierweiler C, Mullié WC, Drent RH, Exo KM, Komdeur J, Bairlein F, Harouna A, De Bakker M, Koks BJ. 2013. A Palaearctic migratory raptor species tracks shifting prey availability within its wintering range in the Sahel. J. Anim. Ecol. 82, 107–120. (10.1111/j.1365-2656.2012.02036.x) PubMed DOI
van Overveld T, Matthysen E. 2010. Personality predicts spatial responses to food manipulations in free-ranging great tits (Parus major). Biol. Lett. 6, 187–190. (10.1098/rsbl.2009.0764) PubMed DOI PMC
Bulla M, et al. 2016. Supporting information for ‘unexpected diversity in socially synchronized rhythms of shorebirds’. Open Sci. Fram. (10.17605/OSF.IO/WXUFM) PubMed DOI
Bulla M. 2014. R-script and example to extract incubation from temperature measurements. (10.6084/m9.figshare.1037545.v1) DOI
van der Veen DR, Riede SJ, Heideman P, Hau M, van der Vinne V, Hut RA. 2017. Flexible clock systems: adjusting the temporal program. Phil. Trans. R. Soc. B 372, 20160254 (10.1098/rstb.2016.254) PubMed DOI PMC
Hau M, Dominoni D, Casagrande S, Buck CL, Wagner G, Hazlerigg D, Greives T, Hut RA. 2017. Timing as a sexually selected trait: the right mate at the right moment. Phil. Trans. R. Soc. B 372, 20160249 (10.1098/rstb.2016.249) PubMed DOI PMC
Rijnsdorp A, Daan S, Dijkstra C. 1981. Hunting in the kestrel, Falco tinnunculus, and the adaptive significance of daily habits. Oecologia 50, 391–406. (10.1007/BF00344982) PubMed DOI
Klaassen RHG, Strandberg R, Hake M, Alerstam T. 2008. Flexibility in daily travel routines causes regional variation in bird migration speed. Behav. Ecol. Sociobiol. 62, 1427–1432. (10.1007/s00265-008-0572-x) DOI
Willis J, Phillips J, Muheim R, Diego-Rasilla FJ, Hobday AJ. 2009. Spike dives of juvenile southern bluefin tuna (Thunnus maccoyii): a navigational role? Behav. Ecol. Sociobiol. 64, 57–68. (10.1007/s00265-009-0818-2) DOI
Evans T, Kadin M, Olsson O, Åkesson S. 2013. Foraging behaviour of common murres in the Baltic Sea, recorded by simultaneous attachment of GPS and time-depth recorder devices. Mar. Ecol. Prog. Ser. 475, 277–289. (10.3354/meps10125) DOI
Bouten W, Baaij EW, Shamoun-Baranes J, Camphuysen KCJ. 2012. A flexible GPS tracking system for studying bird behaviour at multiple scales. J. Ornithol. 154, 571–580. (10.1007/s10336-012-0908-1) DOI
Trierweiler C, Klaassen RHG, Drent RH, Exo K-M, Komdeur J, Bairlein F, Koks BJ. 2014. Migratory connectivity and population-specific migration routes in a long-distance migratory bird. Proc. R. Soc. B 281, 20132897 (10.1098/rspb.2013.2897) PubMed DOI PMC
Horn HS. 1966. Measurement of ‘Overlap’ in comparative ecological studies. Am. Nat. 100, 419–424. (10.1086/282436) DOI
Koks BJ, Trierweiler C, Visser EG, Dijkstra C, Komdeur J. 2007. Do voles make agricultural habitat attractive to Montagu's Harrier Circus pygargus? Ibis 149, 575–586. (10.1111/j.1474-919X.2007.00683.x) DOI
Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U. 2004. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693–705. (10.1016/j.cell.2004.11.015) PubMed DOI
Krishnan B, Levine JD, Lynch MK, Dowse HB, Funes P, Hall JC, Hardin PE, Dryer SE. 2001. A new role for cryptochrome in a Drosophila circadian oscillator. Nature 411, 313–317. (10.1038/35077094) PubMed DOI
Pittendrigh CS, Minis DH. 1972. Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 69, 1537–1539. (10.1073/pnas.69.6.1537) PubMed DOI PMC
Kays R, Crofoot MC, Jetz W, Wikelski M. 2015. Ecology terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (10.1126/science.aaa2478) PubMed DOI
Wikelski M, Moskowitz D, Adelman JS, Cochran J, Wilcove DS, May ML. 2006. Simple rules guide dragonfly migration. Biol. Lett. 2, 325–329. (10.1098/rsbl.2006.0487) PubMed DOI PMC
Schneider CW, Tautz J, Grünewald B, Fuchs S. 2012. RFID Tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS ONE 7, e30023 (10.1371/journal.pone.0030023) PubMed DOI PMC
Stefanescu C, et al. 2013. Multi-generational long-distance migration of insects: studying the painted lady butterfly in the western palaearctic. Ecography (Cop.) 36, 474–486. (10.1111/j.1600-0587.2012.07738.x) DOI
Hobbs SE, Wolf WW, Hobbs SE, Wolf WW. 1996. Developments in airborne entomological radar. J. Atmos. Ocean. Technol. 13, 58–61. (10.1175/1520-0426(1996)013%3C0058:DIAER%3E2.0.CO;2) DOI
Cant ET, Smith AD, Reynolds DR, Osborne JL. 2005. Tracking butterfly flight paths across the landscape with harmonic radar. Proc. R. Soc. B 272, 785–790. (10.1098/rspb.2004.3002) PubMed DOI PMC
Chapman JW, Nesbit RL, Burgin LE, Reynolds DR, Smith AD, Middleton DR, Hill JK. 2010. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 327, 682–685. (10.1126/science.1182990) PubMed DOI
Åkesson S. 2016. Flying with the winds: differential migration strategies in relation to winds in moth and songbirds. J. Anim. Ecol. 85, 1–4. (10.1111/1365-2656.12450) PubMed DOI
Brydegaard M, Guan Z, Wellenreuther M, Svanberg S. 2009. Insect monitoring with fluorescence lidar techniques: feasibility study. Appl. Opt. 48, 5668 (10.1364/AO.48.005668) PubMed DOI
Brydegaard M, Gebru A, Svanberg S. 2014. Super resolution laser radar with blinking atmospheric particles—application to interacting flying insects. Prog. Electromagn. Res. 147, 141–151. (10.2528/PIER14101001) DOI
Guan Z, Brydegaard M, Lundin P, Wellenreuther M, Runemark A, Svensson EI, Svanberg S. 2010. Insect monitoring with fluorescence lidar techniques: field experiments. Appl. Opt. 49, 5133 (10.1364/AO.49.005133) PubMed DOI
Brydegaard M, Gebru A, Kirkeby C, Åkesson S, Smith HG. 2015. Daily evolution of the insect biomass spectrum in an agricultural landscape accessed with lidar. In Proc. 27th Intern Laser Radar Conf, USA, vol. 19, pp. 22004, New York City, International Coordination-group on Laser Atmospheric Studies.
Lundin P, Samuelsson P, Svanberg S, Runemark A, Åkesson S, Brydegaard M. 2011. Remote nocturnal bird classification by spectroscopy in extended wavelength ranges. Appl. Opt. 50, 3396 (10.1364/AO.50.003396) PubMed DOI
Daan S. 1981. Adaptive daily strategies in behavior. In Handbook of behavioral neurobiology; biological rhythms (ed. Aschoff J.), pp. 275–298. New York, NY: Plenum Press.
Pittendrigh CS. 1993. Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55, 17–54. (10.1146/annurev.ph.55.030193.000313) PubMed DOI
Saunders DS. 1972. Circadian control of larval growth rate in Sarcophaga argyrostoma. Proc. Natl Acad. Sci. USA 69, 2738–2740. (10.1073/pnas.69.9.2738) PubMed DOI PMC
Libert S, Bonkowski MS, Pointer K, Pletcher SD, Guarente L. 2012. Deviation of innate circadian period from 24 h reduces longevity in mice. Aging Cell 11, 794–800. (10.1111/j.1474-9726.2012.00846.x) PubMed DOI PMC
Hurd MW, Ralph MR. 1998. The significance of circadian organization for longevity in the golden hamster. J. Biol. Rhythms 13, 430–436. (10.1177/074873098129000255) PubMed DOI
Johnson CH. 2005. Testing the adaptive value of circadian systems. Methods Enzymol. 393, 818–837. (10.1016/S0076-6879(05)93043-7) PubMed DOI
DeCoursey PJ. 2004. Diversity of function of SCN pacemakers in behavior and ecology of three species of sciurid rodents. Biol. Rhythm Res. 35, 13–33. (10.1080/09291010412331313214) DOI
DeCoursey PJ, Krulas JR, Mele G, Holley DC. 1997. Circadian performance of suprachiasmatic nuclei (SCN)-lesioned antelope ground squirrels in a desert enclosure. Physiol. Behav. 62, 1099–1108. (10.1016/S0031-9384(97)00263-1) PubMed DOI
DeCoursey PJ, Walker JK, Smith SA. 2000. A circadian pacemaker in free-living chipmunks: essential for survival? J. Comp. Physiol. A 186, 169–180. (10.1007/s003590050017) PubMed DOI
Stephan FK, Zucker I. 1972. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl Acad. Sci. USA 69, 1583–1586. (10.1073/pnas.69.6.1583) PubMed DOI PMC
Ibuka N, Kawamura H. 1975. Loss of circadian rhythm in sleep-wakefulness cycle in the rat by suprachiasmatic nucleus lesions. Brain Res. 96, 76–81. (10.1016/0006-8993(75)90574-0) PubMed DOI
Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. 1998. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl Acad. Sci. USA 95, 8660–8664. (10.1073/pnas.95.15.8660) PubMed DOI PMC
Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. 2004. The adaptive value of circadian clocks. Curr. Biol. 14, 1481–1486. (10.1016/j.cub.2004.08.023) PubMed DOI
Daan S, et al. 2011. Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J. Biol. Rhythms 26, 118–129. (10.1177/0748730410397645) PubMed DOI
Albrecht U, Bordon A, Schmutz I, Ripperger J. 2007. The multiple facets of Per2. In Cold Spring Harbor symposia on quantitative biology, pp. 95–104. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. PubMed
Loudon ASI, Meng QJ, Maywood ES, Bechtold DA, Boot-Handford RP, Hastings MH. 2007. The biology of the circadian Ck1ɛ tau mutation in mice and syrian hamsters: a tale of two species. Cold Spring Harb. Symp. Quant. Biol. 72, 261–271. (10.1101/sqb.2007.72.073) PubMed DOI
de Jong M, Ouyang JQ, Da Silva A, van Grunsven RHA, Kempenaers B, Visser ME, Spoelstra K. 2015. Effects of nocturnal illumination on life-history decisions and fitness in two wild songbird species. Phil. Trans. R. Soc. B 370, 1–8. (10.1098/rstb.2014.0128) PubMed DOI PMC
Dominoni DM, Borniger JC, Nelson RJ. 2016. Light at night, clocks and health: from humans to wild organisms. Biol. Lett. 12, 20160015 (10.1098/rsbl.2016.0015) PubMed DOI PMC
Dominoni DM. 2015. The effects of light pollution on biological rhythms of birds: an integrated, mechanistic perspective. J. Ornithol. 156, 409–418. (10.1007/s10336-015-1196-3) DOI
Swaddle JP, et al. 2015. A framework to assess evolutionary responses to anthropogenic light and sound. Trends Ecol. Evol. 30, 550–560. (10.1016/j.tree.2015.06.009) PubMed DOI
Kempenaers B, Borgström P, Loës P, Schlicht E, Valcu M. 2010. Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr. Biol. 20, 1735–1739. (10.1016/j.cub.2010.08.028) PubMed DOI