Nest initiation and flooding in response to season and semi-lunar spring tides in a ground-nesting shorebird
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
31139233
PubMed Central
PMC6533712
DOI
10.1186/s12983-019-0313-1
PII: 313
Knihovny.cz E-resources
- Keywords
- Charadrius nivosus, Ground-nesting shorebirds, Nest flooding, Nest initiation schedule, Semi-lunar cycle, Snowy plover, Spring tide rhythm,
- Publication type
- Journal Article MeSH
BACKGROUND: Marine and intertidal organisms face the rhythmic environmental changes induced by tides. The large amplitude of spring tides that occur around full and new moon may threaten nests of ground-nesting birds. These birds face a trade-off between ensuring nest safety from tidal flooding and nesting near the waterline to provide their newly hatched offspring with suitable foraging opportunities. The semi-lunar periodicity of spring tides may enable birds to schedule nest initiation adaptively, for example, by initiating nests around tidal peaks when the water line reaches the farthest into the intertidal habitat. We examined the impact of semi-lunar tidal changes on the phenology of nest flooding and nest initiation in Snowy Plovers (Charadrius nivosus) breeding at Bahía de Ceuta, a coastal wetland in Northwest Mexico. RESULTS: Using nest initiations and fates of 752 nests monitored over ten years we found that the laying season coincides with the lowest spring tides of the year and only 6% of all nests were flooded by tides. Tidal nest flooding varied substantially over time. First, flooding was the primary cause of nest failures in two of the ten seasons indicating high between-season stochasticity. Second, nests were flooded almost exclusively during the second half of the laying season. Third, nest flooding was associated with the semi-lunar spring tide cycle as nests initiated around spring tide had a lower risk of being flooded than nests initiated at other times. Following the spring tide rhythm, plovers appeared to adapt to this risk of flooding with nest initiation rates highest around spring tides and lowest around neap tides. CONCLUSIONS: Snowy Plovers appear generally well adapted to the risk of nest flooding by spring tides. Our results are in line with other studies showing that intertidal organisms have evolved adaptive responses to predictable rhythmic tidal changes but these adaptations do not prevent occasional catastrophic losses caused by stochastic events.
Institute for Biology University of Graz Universitätsplatz 2 8010 Graz Austria
Max Planck Institute for Ornithology Eberhard Gwinner Str 82319 Seewiesen Germany
See more in PubMed
Tessmar-Raible K, Raible F, Arboleda E. Another place, another timer: marine species and the rhythms of life. Bioessays. 2011;33(3):165–172. PubMed PMC
Brodsky VY. Circahoralian (ultradian) metabolic rhythms. Biochem Mosc. 2014;79(6):483–495. PubMed
Dominoni DM, Åkesson S, Klaassen R, Spoelstra K, Bulla M. Methods in field chronobiology. Philos Trans R Soc Lond Ser B Biol Sci. 2017;372(1734):20160247. PubMed PMC
Edmunds LN. Cellular and molecular bases of biological clocks: models and mechanisms for circadian timekeeping. New York: Springer; 1988.
Mistlberger RE, Skene DJ. Social influences on mammalian circadian rhythms: animal and human studies. Biol Rev. 2004;79(3):533–556. PubMed
Fingerman M. Lunar rhythmicity in marine organisms. Am Nat. 1957;91(858):167–178.
Colwell MA, Dodd SL. Environmental and habitat correlates of pasture use by nonbreeding shorebirds. Condor. 1997;99(2):337–344.
Helm B, Gwinner E, Koolhaas A, Battley P, Schwabl I, Dekinga A, et al. Avian migration: temporal multitasking and a case study of melatonin cycles in waders 1 ed: Elsevier BV; 2012. 454–479 p. PubMed
Ikegami T, Takeuchi Y, Takemura A. Lunar clock in fish reproduction. In: Numata H, Helm B, editors. Annual, lunar, and tidal clocks: patterns and mechanisms of Nature's enigmatic rhythms. Tokyo: Springer Japan; 2014. pp. 163–178.
Shriver WG, Vickery PD, Hodgman TP, Gibbs JP, Sandercock BK. Flood tides affect breeding ecology of two sympatric sharp-tailed sparrows. Auk. 2007;124(2):552–560.
Kronfeld-Schor N, Dominoni D, de la Iglesia H, Levy O, Herzog ED, Dayan T, et al. Chronobiology by moonlight. Proc R Soc B Biol Sci. 2013;280(1765):20123088. PubMed PMC
Bulla M, Oudman T, Bijleveld AI, Piersma T, Kyriacou CP. Marine biorhythms: bridging chronobiology and ecology. Philos Trans R Soc Lond B Biol Sci. 2017;372(1734):20160253. PubMed PMC
Eberhart-Phillips LJ. Dancing in the moonlight: evidence that killdeer foraging behaviour varies with the lunar cycle. J Ornithol. 2017;158(1):253–262.
Cruz-López M, Eberhart-Phillips LJ, Fernández G, Beamonte-Barrientos R, Székely T, Serrano-Meneses MA, et al. The plight of a plover: viability of an important snowy plover population with flexible brood care in Mexico. Biol Conserv. 2017;209:440–448.
Cuervo JJ. Nest-site selection and characteristics in a mixed-species colony of avocets Recurvirostra avosetta and black-winged stilts Himantopus himantopus. Bird Study. 2004;51(1):20–24.
Maslo B, Schlacher TA, Weston MA, Huijbers CM, Anderson C, Gilby BL, et al. Regional drivers of clutch loss reveal important trade-offs for beach-nesting birds. PeerJ. 2016;4:e2460. PubMed PMC
Storey AE, Montevecchi WA, Andrews HF, Sims N. Constraints on nest site selection: a comparison of predator and flood avoidance in four species of marsh-nesting birds (genera: Catoptrophorus, Larus, Rallus, and Sterna) J Comp Psychol. 1988;102(1):14–20. PubMed
Valdes K, Hunter EA, Nibbelink NP. Salt marsh elevation is a strong determinant of nest-site selection by clapper rails in Georgia, USA. J. Field Ornithol. 2016;87(1):65–73.
van de Pol M, Ens BJ, Heg D, Brouwer L, Krol J, Maier M, et al. Do changes in the frequency, magnitude and timing of extreme climatic events threaten the population viability of coastal birds. J Appl Ecol. 2010;47(4):720–730.
Bailey LD, Ens BJ, Both C, Heg D, Oosterbeek K, Mvd P. No phenotypic plasticity in nest-site selection in response to extreme flooding events. Philos Trans R Soc Lond B Biol Sci. 2017;372(1723):20160139. PubMed PMC
Benvenuti B, Walsh J, O'Brien KM, Kovach AI. Plasticity in nesting adaptations of a tidal marsh endemic bird. Ecol Evol. 2018;8(22):10780–10793. PubMed PMC
Ens BJ, Kersten M, Brenninkmeijer A, Hulscher JB. Territory quality, parental effort and reproductive success of oystercatchers (Haematopus ostralegus) J Anim Ecol. 1992;61:703–715.
Nguyen LP, Nol E, Abraham KF. Nest success and habitat selection of the Semipalmated plover on Akimiski Island, Nunavut. The Wilson Bulletin. 2003;115(3):285–291.
Kaiser TS, Neumann D, Heckel DG. Timing the tides: genetic control of diurnal and lunar emergence times is correlated in the marine midge Clunio marinus. BMC Genet. 2011;12(1):49. PubMed PMC
Marshall RM, Reinert SE. Breeding ecology of seaside sparrows in a Massachusetts salt marsh. The Wilson Bulletin. 1990;102:501–513.
Küpper C, Augustin J, Kosztolányi A, Figuerola J, Burke T, Székely T. Kentish versus snowy plover: phenotypic and genetic analyses of Charadrius alexandrinus reveal divergence of Eurasian and American subspecies. Auk. 2009;126:839–852.
Page GW, Stenzel LE, Warriner JS, Warriner JC, Paton PW. Snowy plover (Charadrius nivosus), version 2.0. In: Poole A, editor. The birds of North America. Ithaca, NY: Cornell Lab of Ornithology; 2009.
Colwell MA, Meyer JJ, Hardy MA, McAllister SE, Transou AN, Levalley RR, et al. Western snowy plovers Charadrius alexandrinus nivosus select nesting substrates that enhance egg crypsis and improve nest survival. Ibis. 2011;153(2):303–311.
Ellis KS, Cavitt JF, Larsen RT. Factors influencing snowy plover (Charadrius nivosus) nest survival at great salt Lake, Utah. Waterbirds. 2015;38(1):58–67.
Himes JG, Douglass NJ, Pruner RA, Croft AM, Seckinger EM. Status and distribution of the Snowy Plover in Florida. Tallahassee: Florida Fish and Wildlife Conservation Commission; 2006.
Saalfeld ST, Conway WC, Haukos DA, Johnson WP. Nest success of snowy plovers (Charadrius nivosus) in the southern High Plains of Texas. Waterbirds. 2011;34(4):389–399.
Sexson MG, Farley GH. Snowy plover nest survival in Kansas and effective management to counter negative effects of precipitation. J Wildl Manag. 2012;76(8):1587–1596.
Vincze O, Székely T, Küpper C, AlRashidi M, Amat JA, Ticó AA, et al. Local environment but not genetic differentiation influences biparental care in ten plover populations. PLoS One. 2013;8(4):e60998. PubMed PMC
Vincze O, Kosztolányi A, Barta Z, Küpper C, Alrashidi M, Amat JA, et al. Parental cooperation in a changing climate: fluctuating environments predict shifts in care division. Glob Ecol Biogeogr. 2017;26(3):347–358.
Bulla M, Valcu M, Dokter AM, Dondua AG, Kosztolányi A, Rutten AL, et al. Unexpected diversity in socially synchronized rhythms of shorebirds. Nature. 2016;540:109–113. PubMed
Stoddard MC, Kupán K, Eyster HN, Rojas-Abreu W, Cruz-López M, Serrano-Meneses MA, et al. Camouflage and clutch survival in plovers and terns. Sci Rep. 2016;6:32059. PubMed PMC
Bayard TS, Elphick CS. Planning for sea-level rise: quantifying patterns of saltmarsh sparrow (Ammodramus caudacutus) nest flooding under current sea-level conditions. Auk. 2011;128(2):393–403.
Székely T, Kosztolanyi A, Küpper C. Practical guide for investigating breeding ecology of Kentish plover
Eberhart-Phillips LJ, Küpper C, Miller TEX, Cruz-López M, Maher KH, dos Remedios N, et al. Sex-specific early survival drives adult sex ratio bias in snowy plovers and impacts mating system and population growth. Proc Natl Acad Sci. 2017;114(27):E5474. PubMed PMC
Carmona-Isunza MC, Ancona S, Székely T, Ramallo-González AP, Cruz-López M, Serrano-Meneses MA, et al. Adult sex ratio and operational sex ratio exhibit different temporal dynamics in the wild. Behav Ecol. 2017;28(2):523–532.
Nakagawa S, Freckleton RP. Model averaging, missing data and multiple imputation: a case study for behavioural ecology. Behav Ecol Sociobiol. 2011;65(1):103–116.
Mazatlán, Sinaloa, Mexico Tide Chart: Mobile Geographics.com; 2018. Available from: https://tides.mobilegeographics.com/locations/3689.html. Accessed 7 Jan 2019.
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. ISBN3–900051–07-0 https://www.R-project.org.
Bates D, Mächler M, Bolker B, Walker S. fitting linear mixed-effects models using lme4. 2015. 2015;67(1):48.
Gelman A, Su YS. arm: Data analysis using regression and multilevel/hierarchical models [online]. R package version. 2018:1.10–1.
Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models. New York: Cambridge University Press; 2007.
Korner-Nievergelt F, Roth T, Von Felten S, Guélat J, Almasi B, Korner-Nievergelt P. Bayesian data analysis in ecology using linear models with R, BUGS, and Stan: Academic Press; 2015.
Knief U, Forstmeier W. Violating the normality assumption may be the lesser of two evils. bioRxiv. 2018:49893. PubMed PMC
Neumann D. Tidal and lunar rhythms. In: Aschoff J, editor. Biological rhythms. Boston, MA: Springer US; 1981. pp. 351–380.
Last KS, Hendrick VJ. The clock-work Worms: diversity and function of clock expression in marine polychaete worms. In: Numata H, Helm B, editors. Annual, lunar, and tidal clocks: patterns and mechanisms of Nature's enigmatic rhythms. Tokyo: Springer Japan; 2014. pp. 179–199.
Zantke J, Oberlerchner H, Tessmar-Raible K. Circadian and circalunar clock interactions and the impact of light in Platynereis dumerilii. In: Numata H, Helm B, editors. Annual, lunar, and tidal clocks: patterns and mechanisms of Nature's enigmatic rhythms. Tokyo: Springer Japan; 2014. pp. 143–162.
Ibáñez-Álamo JD, Magrath RD, Oteyza JC, Chalfoun AD, Haff TM, Schmidt KA, et al. Nest predation research: recent findings and future perspectives. J Ornithol. 2015;156(1):247–262.
Martin TE. Avian life history evolution in relation to nest sites, nest predation, and food. Ecol Monogr. 1995;65(1):101–127.
Ekanayake KB, Weston MA, Nimmo DG, Maguire GS, Endler JA, Küpper C. The bright incubate at night: sexual dichromatism and adaptive incubation division in an open-nesting shorebird. Proc. R. Soc. B Biol. Sci. 2015;282(1806):20143026. PubMed PMC
Mayani-Parás F, Kilner RM, Stoddard MC, Rodríguez C, Drummond H. Behaviorally induced camouflage: a new mechanism of avian egg protection. Am Nat. 2015;186(4):E91–EE7. PubMed
Troscianko J, Wilson-Aggarwal J, Spottiswoode CN, Stevens M. Nest covering in plovers: how modifying the visual environment influences egg camouflage. Ecol Evol. 2016;6(20):7536–7545. PubMed PMC
Martin TE, Auer SK, Bassar RD, Niklison AM, Lloyd P. Geographic variation in avian incubation periods and parental influences on embryonic temperature. Evolution. 2007;61(11):2558–2569. PubMed
Reneerkens J, Grond K, Schekkerman H, Tulp I, Piersma T. Do uniparental sanderlings Calidris alba increase egg heat input to compensate for low nest attentiveness? PLoS One. 2011;6(2):e16834. PubMed PMC
AlRashidi M, Kosztolányi A, Küpper C, Cuthill IC, Javed S, Székely T. The influence of a hot environment on parental cooperation of a ground-nesting shorebird, the Kentish plover Charadrius alexandrinus. Front Zool. 2010;7(1):1. PubMed PMC
Stevenson TJ, Bentley GE, Ubuka T, Arckens L, Hampson E, MacDougall-Shackleton SA. Effects of social cues on GnRH-I, GnRH-II, and reproductive physiology in female house sparrows (Passer domesticus) Gen Comp Endocrinol. 2008;156(2):385–394. PubMed
Lehrman DS, Brody PN, Wortis RP. The presence of the mate and of nesting material as stimuli for the development of incubation behavior and for gonadotropin secretion in the ring dove (Streptopelia risoria) Endocrinology. 1961;68(3):507–516. PubMed
Parejo D, White J, Danchin E. Settlement decisions in blue tits: difference in the use of social information according to age and individual success. Naturwissenschaften. 2007;94(9):749–757. PubMed
Danchin E, Boulinier T, Massot M. Conspecific reproductive success and breeding habitat selection: implications for the study of coloniality. Ecology. 1998;79(7):2415–2428.
Morinay J, Forsman JT, Kivelä SM, Gustafsson L, Doligez B. Heterospecific nest site copying behavior in a wild bird: assessing the influence of genetics and past experience on a joint breeding phenotype. Front Ecol Evol. 2018;5:167.
Coumou D, Rahmstorf S. A decade of weather extremes. Nat Clim Chang. 2012;2:491.
Convertino M, Elsner JB, Muñoz-Carpena R, Kiker GA, Martinez CJ, Fischer RA, et al. Do tropical cyclones shape shorebird habitat patterns? Biogeoclimatology of snowy plovers in Florida. PLoS One. 2011;6(1):e15683. PubMed PMC
Aiello-Lammens ME, Chu-Agor ML, Convertino M, Fischer RA, Linkov I, Resit Akçakaya H. The impact of sea-level rise on snowy plovers in Florida: integrating geomorphological, habitat, and metapopulation models. Glob Chang Biol. 2011;17(12):3644–3654.