Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis

. 2017 Nov ; 16 (11) : 898-907.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, metaanalýza, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29029846

Grantová podpora
RP-PG-0310-1004 Department of Health - United Kingdom
MR/L003120/1 Medical Research Council - United Kingdom
RG/13/13/30194 British Heart Foundation - United Kingdom
G0800270 Medical Research Council - United Kingdom
MR/P02811X/1 Medical Research Council - United Kingdom
MR/P013880/1 Medical Research Council - United Kingdom
CH/12/2/29428 British Heart Foundation - United Kingdom
RG/08/014/24067 British Heart Foundation - United Kingdom
P50 NS072187 NINDS NIH HHS - United States
Wellcome Trust - United Kingdom
RG/16/4/32218 British Heart Foundation - United Kingdom

Odkazy

PubMed 29029846
PubMed Central PMC5755468
DOI 10.1016/s1474-4422(17)30327-7
PII: S1474-4422(17)30327-7
Knihovny.cz E-zdroje

BACKGROUND: Restless legs syndrome is a prevalent chronic neurological disorder with potentially severe mental and physical health consequences. Clearer understanding of the underlying pathophysiology is needed to improve treatment options. We did a meta-analysis of genome-wide association studies (GWASs) to identify potential molecular targets. METHODS: In the discovery stage, we combined three GWAS datasets (EU-RLS GENE, INTERVAL, and 23andMe) with diagnosis data collected from 2003 to 2017, in face-to-face interviews or via questionnaires, and involving 15 126 cases and 95 725 controls of European ancestry. We identified common variants by fixed-effect inverse-variance meta-analysis. Significant genome-wide signals (p≤5 × 10-8) were tested for replication in an independent GWAS of 30 770 cases and 286 913 controls, followed by a joint analysis of the discovery and replication stages. We did gene annotation, pathway, and gene-set-enrichment analyses and studied the genetic correlations between restless legs syndrome and traits of interest. FINDINGS: We identified and replicated 13 new risk loci for restless legs syndrome and confirmed the previously identified six risk loci. MEIS1 was confirmed as the strongest genetic risk factor for restless legs syndrome (odds ratio 1·92, 95% CI 1·85-1·99). Gene prioritisation, enrichment, and genetic correlation analyses showed that identified pathways were related to neurodevelopment and highlighted genes linked to axon guidance (associated with SEMA6D), synapse formation (NTNG1), and neuronal specification (HOXB cluster family and MYT1). INTERPRETATION: Identification of new candidate genes and associated pathways will inform future functional research. Advances in understanding of the molecular mechanisms that underlie restless legs syndrome could lead to new treatment options. We focused on common variants; thus, additional studies are needed to dissect the roles of rare and structural variations. FUNDING: Deutsche Forschungsgemeinschaft, Helmholtz Zentrum München-Deutsches Forschungszentrum für Gesundheit und Umwelt, National Research Institutions, NHS Blood and Transplant, National Institute for Health Research, British Heart Foundation, European Commission, European Research Council, National Institutes of Health, National Institute of Neurological Disorders and Stroke, NIH Research Cambridge Biomedical Research Centre, and UK Medical Research Council.

Center for Restless Legs Study Department of Neurology Johns Hopkins University Baltimore MD USA

Clinic for Neurosurgery University Medical Centre Georg August University Göttingen Göttingen Germany; Paracelsus Elena Hospital Centre of Parkinsonism and Movement Disorders Kassel Germany

Département de Psychiatrie Université de Montréal Montréal QC Canada; Hôpital du Sacré Coeur de Montréal 67120 Center for Advanced Research in Sleep Medicine Montréal QC Canada

Department of Cardiology and Angiology Centre of Sleep Medicine Charité Universitätsmedizin Berlin Berlin Germany

Department of Clinical Neurophysiology University Medical Centre Georg August University Göttingen Göttingen Germany

Department of Health National Institute for Health and Welfare Helsinki Finland; Institute of Molecular Medicine FIMM University of Helsinki Helsinki Finland

Department of Medicine Duke University School of Medicine Durham NC USA; Duke Clinical Research Institute Duke University School of Medicine Durham NC USA

Department of Molecular Biology of Cancer Institute of Experimental Medicine Academy of Science of Czech Republic Prague Czech Republic; Biomedical Centre Faculty of Medicine in Pilsen Charles University Prague Pilsen Czech Republic

Department of Neurology and Centre of Clinical Neuroscience 1st Faculty of Medicine and General University Hospital Prague Charles University Prague Czech Republic

Department of Neurology and Neurosurgery McGill University Montréal QC Canada; Department of Human Genetics McGill University Montréal QC Canada; Montreal Neurological Institute McGill University Montréal QC Canada

Department of Neurology and Neurosurgery McGill University Montréal QC Canada; Montreal Neurological Institute McGill University Montréal QC Canada

Department of Neurology Mayo Clinic Jacksonville FL USA

Department of Neurology Medical University of Innsbruck Innsbruck Austria

Department of Neurology Methodist Neurological Institute Houston TX USA

Department of Neurology Paracelsus Klinik Osnabrueck Germany

Department of Neurology University of Ulm Ulm Germany; Neuropsychiatry Centre Erding München Erding Germany

Department of Neuroscience Mayo Clinic Jacksonville FL USA

Estonian Genome Centre University of Tartu and Estonian Biocentre Tartu Estonia

Inserm UMR1087 CNRS UMR 6291 Institut du Thorax Nantes France; Centre Hospitalier Universitaire Nantes Université de Nantes France

Institute of Clinical Molecular Biology Kiel University Kiel Germany

Institute of Epidemiology 2 Helmholtz Zentrum München German Research Centre for Environmental Health Neuherberg Germany; German Centre for Diabetes Research Berlin Germany

Institute of Epidemiology 2 Helmholtz Zentrum München German Research Centre for Environmental Health Neuherberg Germany; Research Unit of Molecular Epidemiology Helmholtz Zentrum München German Research Centre for Environmental Health Neuherberg Germany; German Centre for Diabetes Research Neuherberg Germany

Institute of Epidemiology and Social Medicine University of Münster Münster Germany

Institute of Neurogenomics Helmholtz Zentrum München German Research Centre for Environmental Health Neuherberg Germany

Institute of Neurogenomics Helmholtz Zentrum München German Research Centre for Environmental Health Neuherberg Germany; Department of Neurology Philipps University Marburg Marburg Germany

Institute of Neurogenomics Helmholtz Zentrum München German Research Centre for Environmental Health Neuherberg Germany; Munich Cluster for Systems Neurology Munich Germany; Institute of Human Genetics Technische Universität München Munich Germany; Neurologische Klinik und Poliklinik Klinikum rechts der Isar der Technischen Universität München Munich Germany

John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre University of Ottawa Heart Institute Ottawa ON Canada

Laboratoire de Neurogénétique Centre de Recherche Institut Universitaire en Santé Mentale de Montréal Montréal QC Canada; Département de Psychiatrie Université de Montréal Montréal QC Canada; Department of Neurology and Neurosurgery McGill University Montréal QC Canada

Laboratory of Neurogenetics Department of Neurology Faculty of Medicine University of Thessaly University Hospital of Larissa Biopolis Larissa Greece

Max Planck Institute of Psychiatry Munich Germany

Max Planck Institute of Psychiatry Munich Germany; Munich Cluster for Systems Neurology Munich Germany; Institute of Translational Medicine University of Liverpool Liverpool UK

Me Mountain View CA USA

National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge Strangeways Research Laboratory University of Cambridge Cambridge UK; Department of Haematology University of Cambridge Cambridge Biomedical Campus Cambridge UK; Department of Human Genetics Wellcome Trust Sanger Institute Wellcome Trust Genome Campus Hinxton UK

National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge Strangeways Research Laboratory University of Cambridge Cambridge UK; Department of Haematology University of Cambridge Cambridge Biomedical Campus Cambridge UK; NHS Blood and Transplant Cambridge UK; British Heart Foundation Centre of Excellence Division of Cardiovascular Medicine Addenbrooke's Hospital Cambridge UK; Department of Human Genetics Wellcome Trust Sanger Institute Wellcome Trust Genome Campus Hinxton UK

National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge Strangeways Research Laboratory University of Cambridge Cambridge UK; MRC BHF Cardiovascular Epidemiology Unit Department of Public Health and Primary Care Strangeways Research Laboratory University of Cambridge Cambridge UK; National Institute for Health Research Cambridge Biomedical Research Centre Cambridge UK

National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge Strangeways Research Laboratory University of Cambridge Cambridge UK; MRC BHF Cardiovascular Epidemiology Unit Department of Public Health and Primary Care Strangeways Research Laboratory University of Cambridge Cambridge UK; National Institute for Health Research Cambridge Biomedical Research Centre Cambridge UK; British Heart Foundation Centre of Excellence Division of Cardiovascular Medicine Addenbrooke's Hospital Cambridge UK

National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge Strangeways Research Laboratory University of Cambridge Cambridge UK; MRC BHF Cardiovascular Epidemiology Unit Department of Public Health and Primary Care Strangeways Research Laboratory University of Cambridge Cambridge UK; National Institute for Health Research Cambridge Biomedical Research Centre Cambridge UK; British Heart Foundation Centre of Excellence Division of Cardiovascular Medicine Addenbrooke's Hospital Cambridge UK; Department of Human Genetics Wellcome Trust Sanger Institute Wellcome Trust Genome Campus Hinxton UK

National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge Strangeways Research Laboratory University of Cambridge Cambridge UK; MRC BHF Cardiovascular Epidemiology Unit Department of Public Health and Primary Care Strangeways Research Laboratory University of Cambridge Cambridge UK; NHS Blood and Transplant Cambridge UK; National Institute for Health Research Cambridge Biomedical Research Centre Cambridge UK; British Heart Foundation Centre of Excellence Division of Cardiovascular Medicine Addenbrooke's Hospital Cambridge UK

NHS Blood and Transplant Oxford UK; Radcliffe Department of Medicine BRC Haematology Theme and NHS Blood and Transplant John Radcliffe Hospital Headington Oxford UK; Department of Haematology and BRC Haematology Theme Churchill Hospital Oxford UK

PopGen Biobank and Institute of Epidemiology Christian Albrechts University Kiel Kiel Germany

Sleep Wake Disorders Centre Department of Neurology Hôpital Gui de Chauliac INSERM U1061 CHU Montpellier France

Unesta Research Centre Tampere Finland; Department of Pulmonary Diseases Tampere University Hospital Tampere Finland

Komentář v

PubMed

Komentář v

PubMed

Zobrazit více v PubMed

Allen RP, Picchietti DL, Garcia-Borreguero D. Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria—history, rationale, description, and significance. Sleep Med. 2014;15:860–873. PubMed

Allen RP, Bharmal M, Calloway M. Prevalence and disease burden of primary restless legs syndrome: results of a general population survey in the United States. Mov Disord. 2011;26:114–120. PubMed

Schormair B, Winkelmann J. Genetics of restless legs syndrome: mendelian, complex, and everything in between. Sleep Med Clin. 2011;6:203–215.

Winkelmann J, Schormair B, Lichtner P. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat Genet. 2007;39:1000–1006. PubMed

Stefansson H, Rye DB, Hicks A. A genetic risk factor for periodic limb movements in sleep. N Engl J Med. 2007;357:639–647. PubMed

Schormair B, Kemlink D, Roeske D. PTPRD (protein tyrosine phosphatase receptor type delta) is associated with restless legs syndrome. Nat Genet. 2008;40:946–948. PubMed

Winkelmann J, Czamara D, Schormair B. Genome-wide association study identifies novel restless legs syndrome susceptibility loci on 2p14 and 16q12.1. PLoS Genet. 2011;7:e1002171. PubMed PMC

Spieler D, Kaffe M, Knauf F. Restless legs syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon. Genome Res. 2014;24:592–603. PubMed PMC

Catoire H, Dion PA, Xiong L. Restless legs syndrome-associated MEIS1 risk variant influences iron homeostasis. Ann Neurol. 2011;70:170–175. PubMed

Freeman A, Pranski E, Miller RD. Sleep fragmentation and motor restlessness in a drosophila model of restless legs syndrome. Curr Biol. 2012;22:1142–1148. PubMed PMC

Drgonova J, Walther D, Wang KJ. Mouse model for PTPRD associations with WED/RLS and addiction: reduced expression alters locomotion, sleep behaviors and cocaine-conditioned place preference. Mol Med. 2015;21:717. PubMed PMC

Allen RP, Picchietti D, Hening WA. Restless legs syndrome: diagnostic criteria, special considerations, and epidemiology. A report from the restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health. Sleep Med. 2003;4:101–119. PubMed

Moore C, Bolton T, Walker M. Recruitment and representativeness of blood donors in the INTERVAL randomised trial assessing varying inter-donation intervals. Trials. 2016;17:458. PubMed PMC

Di Angelantonio E, Thompson SG, Kaptoge S. Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45 000 donors. Lancet. 2017 http://dx.doi.org/10.1016/S0140-6736(17)31928-1 published online Sept 20. PubMed DOI PMC

Allen RP, Burchell BJ, MacDonald B, Hening WA, Earley CJ. Validation of the self-completed Cambridge-Hopkins questionnaire (CH-RLSq) for ascertainment of restless legs syndrome (RLS) in a population survey. Sleep Med. 2009;10:1097–1100. PubMed

Devlin B, Bacanu S-A, Roeder K. Genomic control to the extreme. Nat Genet. 2004;36:1129–1130. PubMed

Pers TH, Karjalainen JM, Chan Y. Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun. 2015;6:5890. PubMed PMC

Zhang Q, Goto H, Akiyoshi-Nishimura S. Diversification of behavior and postsynaptic properties by netrin-G presynaptic adhesion family proteins. Mol Brain. 2016;9:6. PubMed PMC

Dijkmans TF, van Hooijdonk LWA, Fitzsimons CP, Vreugdenhil E. The doublecortin gene family and disorders of neuronal structure. Cent Nerv Syst Agents Med Chem. 2010;10:32–46. PubMed

Rataj-Baniowska M, Niewiadomska-Cimicka A, Paschaki M. Retinoic acid receptor β controls development of striatonigral projection neurons through FGF-dependent and Meis1-dependent mechanisms. J Neurosci. 2015;35:14467–14475. PubMed PMC

Keil R, Schulz J, Hatzfeld M. p0071/PKP4, a multifunctional protein coordinating cell adhesion with cytoskeletal organization. Biol Chem. 2013;394:1005–1017. PubMed

Fischer ES, Böhm K, Lydeard JR. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature. 2014;512:49–53. PubMed PMC

Jo S, Lee K-H, Song S, Jung Y-K, Park C-S. Identification and functional characterization of cereblon as a binding protein for large-conductance calcium-activated potassium channel in rat brain. J Neurochem. 2005;94:1212–1224. PubMed

Asami O-A, Zuko A, Kleijer KTE, Burbach JPH. A current view on contactin-4, -5, and -6: implications in neurodevelopmental disorders. Mol Cell Neurosci. 2017;81:72–83. PubMed

Loh KH, Stawski PS, Draycott AS. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell. 2016;166:1295–1307. e21. PubMed PMC

Lee K, Kim Y, Lee S-J. MDGAs interact selectively with neuroligin-2 but not other neuroligins to regulate inhibitory synapse development. Proc Natl Acad Sci. 2013;110:336–341. PubMed PMC

Sun Y, Hu D, Liang J. Association between variants of zinc finger genes and psychiatric disorders: systematic review and meta-analysis. Schizophr Res. 2015;162:124–137. PubMed

Fukata Y, Yokoi N, Miyazaki Y, Fukata M. The LGI1–ADAM22 protein complex in synaptic transmission and synaptic disorders. Neurosci Res. 2016;116:39–45. PubMed

Takahashi H, Craig AM. Protein tyrosine phosphatases PTPδ, PTPσ, and LAR: presynaptic hubs for synapse organization. Trends Neurosci. 2013;36:522–534. PubMed PMC

Li Y, Zhang P, Choi T-Y. Splicing-dependent trans-synaptic SALM3-LAR-RPTP interactions regulate excitatory synapse development and locomotion. Cell Rep. 2015;12:1618–1630. PubMed PMC

Honsa P, Pivonkova H, Anderova M. Focal cerebral ischemia induces the neurogenic potential of mouse Dach1-expressing cells in the dorsal part of the lateral ventricles. Neuroscience. 2013;240:39–53. PubMed

Agoston Z, Heine P, Brill MS. Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb. Development. 2014;141:28–38. PubMed

Yoshida Y, Han B, Mendelsohn M, Jessell TM. PlexinA1 signaling directs the segregation of proprioceptive sensory axons in the developing spinal cord. Neuron. 2006;52:775–788. PubMed PMC

Leslie JR, Imai F, Fukuhara K. Ectopic myelinating oligodendrocytes in the dorsal spinal cord as a consequence of altered semaphorin 6D signaling inhibit synapse formation. Development. 2011;138:4085–4095. PubMed PMC

Sahu SK, Fritz A, Tiwari N. TOX3 regulates neural progenitor identity. Biochim Biophys Acta. 2016;1859:833–840. PubMed

Philippidou P, Dasen JS. Hox genes: choreographers in neural development, architects of circuit organization. Neuron. 2013;80:12–34. PubMed PMC

Di Bonito M, Glover JC, Studer M. Hox genes and region-specific sensorimotor circuit formation in the hindbrain and spinal cord. Dev Dyn. 2013;242:1348–1368. PubMed

Vasconcelos FF, Sessa A, Laranjeira C. MyT1 counteracts the neural progenitor program to promote vertebrate neurogenesis. Cell Rep. 2016;17:469–483. PubMed PMC

Lo Coco D, Piccoli F, La Bella V. Restless legs syndrome in patients with amyotrophic lateral sclerosis. Mov Disord. 2010;25:2658–2661. PubMed

Limousin N, Blasco H, Corcia P, Arnulf I, Praline J. The high frequency of restless legs syndrome in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2011;12:303–306. PubMed

Talarico G, Canevelli M, Tosto G. Restless legs syndrome in a group of patients with Alzheimer's disease. Am J Alzheimer's Dis Other Demen. 2013;28:165–170. PubMed PMC

Ohayon MM, O'Hara R, Vitiello MV. Epidemiology of restless legs syndrome: a synthesis of the literature. Sleep Med Rev. 2012;16:283–295. PubMed PMC

Rijsman RM, Schoolderman LF, Rundervoort RS, Louter M. Restless legs syndrome in Parkinson's disease. Parkinsonism Relat Disord. 2014;20:S5–S9. PubMed

Marchesi E, Negrotti A, Angelini M, Goldoni M, Abrignani G, Calzetti S. A prospective study of the cumulative incidence and course of restless legs syndrome in de novo patients with Parkinson's disease during chronic dopaminergic therapy. J Neurol. 2016;263:441–447. PubMed

Winkelmann J, Prager M, Lieb R. ‘Anxietas tibiarum’: depression and anxiety disorders in patients with restless legs syndrome. J Neurol. 2005;252:67–71. PubMed

Berger K, Luedemann J, Trenkwalder C. Sex and the risk of restless legs syndrome in the general population. Arch Intern Med. 2004;164:196–202. PubMed

Earley CJ, Connor J, Garcia-Borreguero D. Altered brain iron homeostasis and dopaminergic function in restless legs syndrome (Willis–Ekbom disease) Sleep Med. 2014;15:1288–1301. PubMed

Madabhushi R, Gao F, Pfenning AR. Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell. 2015;161:1592–1605. PubMed PMC

Suberbielle E, Sanchez PE, Kravitz AV. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci. 2013;16:613–621. PubMed PMC

Spieler D, Kaffe M, Knauf F. Restless legs syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon. Genome Res. 2014;24:592–603. PubMed PMC

Rizzo G, Li X, Galantucci S, Filippi M, Cho YW. Brain imaging and networks in restless legs syndrome. Sleep Med. 2017;31:39–48. PubMed PMC

Pidsley R, Viana J, Hannon E. Methylomic profiling of human brain tissue supports a neurodevelopmental origin for schizophrenia. Genome Biol. 2014;15:483. PubMed PMC

O'Shea KS, McInnis MG. Neurodevelopmental origins of bipolar disorder: iPSC models. Mol Cell Neurosci. 2016;73:63–83. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...