Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, metaanalýza, přehledy
Grantová podpora
RP-PG-0310-1004
Department of Health - United Kingdom
MR/L003120/1
Medical Research Council - United Kingdom
RG/13/13/30194
British Heart Foundation - United Kingdom
G0800270
Medical Research Council - United Kingdom
MR/P02811X/1
Medical Research Council - United Kingdom
MR/P013880/1
Medical Research Council - United Kingdom
CH/12/2/29428
British Heart Foundation - United Kingdom
RG/08/014/24067
British Heart Foundation - United Kingdom
P50 NS072187
NINDS NIH HHS - United States
Wellcome Trust - United Kingdom
RG/16/4/32218
British Heart Foundation - United Kingdom
PubMed
29029846
PubMed Central
PMC5755468
DOI
10.1016/s1474-4422(17)30327-7
PII: S1474-4422(17)30327-7
Knihovny.cz E-zdroje
- MeSH
- běloši MeSH
- celogenomová asociační studie * MeSH
- DNA vazebné proteiny genetika MeSH
- genetická predispozice k nemoci genetika MeSH
- GPI-vázané proteiny genetika MeSH
- lidé MeSH
- netriny MeSH
- proteiny nervové tkáně genetika MeSH
- semaforiny genetika MeSH
- syndrom neklidných nohou epidemiologie genetika MeSH
- transkripční faktory genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- přehledy MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- GPI-vázané proteiny MeSH
- MYT1 protein, human MeSH Prohlížeč
- netriny MeSH
- NTNG1 protein, human MeSH Prohlížeč
- proteiny nervové tkáně MeSH
- Sema6d protein, mouse MeSH Prohlížeč
- semaforiny MeSH
- transkripční faktory MeSH
BACKGROUND: Restless legs syndrome is a prevalent chronic neurological disorder with potentially severe mental and physical health consequences. Clearer understanding of the underlying pathophysiology is needed to improve treatment options. We did a meta-analysis of genome-wide association studies (GWASs) to identify potential molecular targets. METHODS: In the discovery stage, we combined three GWAS datasets (EU-RLS GENE, INTERVAL, and 23andMe) with diagnosis data collected from 2003 to 2017, in face-to-face interviews or via questionnaires, and involving 15 126 cases and 95 725 controls of European ancestry. We identified common variants by fixed-effect inverse-variance meta-analysis. Significant genome-wide signals (p≤5 × 10-8) were tested for replication in an independent GWAS of 30 770 cases and 286 913 controls, followed by a joint analysis of the discovery and replication stages. We did gene annotation, pathway, and gene-set-enrichment analyses and studied the genetic correlations between restless legs syndrome and traits of interest. FINDINGS: We identified and replicated 13 new risk loci for restless legs syndrome and confirmed the previously identified six risk loci. MEIS1 was confirmed as the strongest genetic risk factor for restless legs syndrome (odds ratio 1·92, 95% CI 1·85-1·99). Gene prioritisation, enrichment, and genetic correlation analyses showed that identified pathways were related to neurodevelopment and highlighted genes linked to axon guidance (associated with SEMA6D), synapse formation (NTNG1), and neuronal specification (HOXB cluster family and MYT1). INTERPRETATION: Identification of new candidate genes and associated pathways will inform future functional research. Advances in understanding of the molecular mechanisms that underlie restless legs syndrome could lead to new treatment options. We focused on common variants; thus, additional studies are needed to dissect the roles of rare and structural variations. FUNDING: Deutsche Forschungsgemeinschaft, Helmholtz Zentrum München-Deutsches Forschungszentrum für Gesundheit und Umwelt, National Research Institutions, NHS Blood and Transplant, National Institute for Health Research, British Heart Foundation, European Commission, European Research Council, National Institutes of Health, National Institute of Neurological Disorders and Stroke, NIH Research Cambridge Biomedical Research Centre, and UK Medical Research Council.
Center for Restless Legs Study Department of Neurology Johns Hopkins University Baltimore MD USA
Department of Neurology Mayo Clinic Jacksonville FL USA
Department of Neurology Medical University of Innsbruck Innsbruck Austria
Department of Neurology Methodist Neurological Institute Houston TX USA
Department of Neurology Paracelsus Klinik Osnabrueck Germany
Department of Neuroscience Mayo Clinic Jacksonville FL USA
Estonian Genome Centre University of Tartu and Estonian Biocentre Tartu Estonia
Institute of Clinical Molecular Biology Kiel University Kiel Germany
Institute of Epidemiology and Social Medicine University of Münster Münster Germany
Max Planck Institute of Psychiatry Munich Germany
PopGen Biobank and Institute of Epidemiology Christian Albrechts University Kiel Kiel Germany
Zobrazit více v PubMed
Allen RP, Picchietti DL, Garcia-Borreguero D. Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria—history, rationale, description, and significance. Sleep Med. 2014;15:860–873. PubMed
Allen RP, Bharmal M, Calloway M. Prevalence and disease burden of primary restless legs syndrome: results of a general population survey in the United States. Mov Disord. 2011;26:114–120. PubMed
Schormair B, Winkelmann J. Genetics of restless legs syndrome: mendelian, complex, and everything in between. Sleep Med Clin. 2011;6:203–215.
Winkelmann J, Schormair B, Lichtner P. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat Genet. 2007;39:1000–1006. PubMed
Stefansson H, Rye DB, Hicks A. A genetic risk factor for periodic limb movements in sleep. N Engl J Med. 2007;357:639–647. PubMed
Schormair B, Kemlink D, Roeske D. PTPRD (protein tyrosine phosphatase receptor type delta) is associated with restless legs syndrome. Nat Genet. 2008;40:946–948. PubMed
Winkelmann J, Czamara D, Schormair B. Genome-wide association study identifies novel restless legs syndrome susceptibility loci on 2p14 and 16q12.1. PLoS Genet. 2011;7:e1002171. PubMed PMC
Spieler D, Kaffe M, Knauf F. Restless legs syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon. Genome Res. 2014;24:592–603. PubMed PMC
Catoire H, Dion PA, Xiong L. Restless legs syndrome-associated MEIS1 risk variant influences iron homeostasis. Ann Neurol. 2011;70:170–175. PubMed
Freeman A, Pranski E, Miller RD. Sleep fragmentation and motor restlessness in a drosophila model of restless legs syndrome. Curr Biol. 2012;22:1142–1148. PubMed PMC
Drgonova J, Walther D, Wang KJ. Mouse model for PTPRD associations with WED/RLS and addiction: reduced expression alters locomotion, sleep behaviors and cocaine-conditioned place preference. Mol Med. 2015;21:717. PubMed PMC
Allen RP, Picchietti D, Hening WA. Restless legs syndrome: diagnostic criteria, special considerations, and epidemiology. A report from the restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health. Sleep Med. 2003;4:101–119. PubMed
Moore C, Bolton T, Walker M. Recruitment and representativeness of blood donors in the INTERVAL randomised trial assessing varying inter-donation intervals. Trials. 2016;17:458. PubMed PMC
Di Angelantonio E, Thompson SG, Kaptoge S. Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45 000 donors. Lancet. 2017 http://dx.doi.org/10.1016/S0140-6736(17)31928-1 published online Sept 20. PubMed DOI PMC
Allen RP, Burchell BJ, MacDonald B, Hening WA, Earley CJ. Validation of the self-completed Cambridge-Hopkins questionnaire (CH-RLSq) for ascertainment of restless legs syndrome (RLS) in a population survey. Sleep Med. 2009;10:1097–1100. PubMed
Devlin B, Bacanu S-A, Roeder K. Genomic control to the extreme. Nat Genet. 2004;36:1129–1130. PubMed
Pers TH, Karjalainen JM, Chan Y. Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun. 2015;6:5890. PubMed PMC
Zhang Q, Goto H, Akiyoshi-Nishimura S. Diversification of behavior and postsynaptic properties by netrin-G presynaptic adhesion family proteins. Mol Brain. 2016;9:6. PubMed PMC
Dijkmans TF, van Hooijdonk LWA, Fitzsimons CP, Vreugdenhil E. The doublecortin gene family and disorders of neuronal structure. Cent Nerv Syst Agents Med Chem. 2010;10:32–46. PubMed
Rataj-Baniowska M, Niewiadomska-Cimicka A, Paschaki M. Retinoic acid receptor β controls development of striatonigral projection neurons through FGF-dependent and Meis1-dependent mechanisms. J Neurosci. 2015;35:14467–14475. PubMed PMC
Keil R, Schulz J, Hatzfeld M. p0071/PKP4, a multifunctional protein coordinating cell adhesion with cytoskeletal organization. Biol Chem. 2013;394:1005–1017. PubMed
Fischer ES, Böhm K, Lydeard JR. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature. 2014;512:49–53. PubMed PMC
Jo S, Lee K-H, Song S, Jung Y-K, Park C-S. Identification and functional characterization of cereblon as a binding protein for large-conductance calcium-activated potassium channel in rat brain. J Neurochem. 2005;94:1212–1224. PubMed
Asami O-A, Zuko A, Kleijer KTE, Burbach JPH. A current view on contactin-4, -5, and -6: implications in neurodevelopmental disorders. Mol Cell Neurosci. 2017;81:72–83. PubMed
Loh KH, Stawski PS, Draycott AS. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell. 2016;166:1295–1307. e21. PubMed PMC
Lee K, Kim Y, Lee S-J. MDGAs interact selectively with neuroligin-2 but not other neuroligins to regulate inhibitory synapse development. Proc Natl Acad Sci. 2013;110:336–341. PubMed PMC
Sun Y, Hu D, Liang J. Association between variants of zinc finger genes and psychiatric disorders: systematic review and meta-analysis. Schizophr Res. 2015;162:124–137. PubMed
Fukata Y, Yokoi N, Miyazaki Y, Fukata M. The LGI1–ADAM22 protein complex in synaptic transmission and synaptic disorders. Neurosci Res. 2016;116:39–45. PubMed
Takahashi H, Craig AM. Protein tyrosine phosphatases PTPδ, PTPσ, and LAR: presynaptic hubs for synapse organization. Trends Neurosci. 2013;36:522–534. PubMed PMC
Li Y, Zhang P, Choi T-Y. Splicing-dependent trans-synaptic SALM3-LAR-RPTP interactions regulate excitatory synapse development and locomotion. Cell Rep. 2015;12:1618–1630. PubMed PMC
Honsa P, Pivonkova H, Anderova M. Focal cerebral ischemia induces the neurogenic potential of mouse Dach1-expressing cells in the dorsal part of the lateral ventricles. Neuroscience. 2013;240:39–53. PubMed
Agoston Z, Heine P, Brill MS. Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb. Development. 2014;141:28–38. PubMed
Yoshida Y, Han B, Mendelsohn M, Jessell TM. PlexinA1 signaling directs the segregation of proprioceptive sensory axons in the developing spinal cord. Neuron. 2006;52:775–788. PubMed PMC
Leslie JR, Imai F, Fukuhara K. Ectopic myelinating oligodendrocytes in the dorsal spinal cord as a consequence of altered semaphorin 6D signaling inhibit synapse formation. Development. 2011;138:4085–4095. PubMed PMC
Sahu SK, Fritz A, Tiwari N. TOX3 regulates neural progenitor identity. Biochim Biophys Acta. 2016;1859:833–840. PubMed
Philippidou P, Dasen JS. Hox genes: choreographers in neural development, architects of circuit organization. Neuron. 2013;80:12–34. PubMed PMC
Di Bonito M, Glover JC, Studer M. Hox genes and region-specific sensorimotor circuit formation in the hindbrain and spinal cord. Dev Dyn. 2013;242:1348–1368. PubMed
Vasconcelos FF, Sessa A, Laranjeira C. MyT1 counteracts the neural progenitor program to promote vertebrate neurogenesis. Cell Rep. 2016;17:469–483. PubMed PMC
Lo Coco D, Piccoli F, La Bella V. Restless legs syndrome in patients with amyotrophic lateral sclerosis. Mov Disord. 2010;25:2658–2661. PubMed
Limousin N, Blasco H, Corcia P, Arnulf I, Praline J. The high frequency of restless legs syndrome in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2011;12:303–306. PubMed
Talarico G, Canevelli M, Tosto G. Restless legs syndrome in a group of patients with Alzheimer's disease. Am J Alzheimer's Dis Other Demen. 2013;28:165–170. PubMed PMC
Ohayon MM, O'Hara R, Vitiello MV. Epidemiology of restless legs syndrome: a synthesis of the literature. Sleep Med Rev. 2012;16:283–295. PubMed PMC
Rijsman RM, Schoolderman LF, Rundervoort RS, Louter M. Restless legs syndrome in Parkinson's disease. Parkinsonism Relat Disord. 2014;20:S5–S9. PubMed
Marchesi E, Negrotti A, Angelini M, Goldoni M, Abrignani G, Calzetti S. A prospective study of the cumulative incidence and course of restless legs syndrome in de novo patients with Parkinson's disease during chronic dopaminergic therapy. J Neurol. 2016;263:441–447. PubMed
Winkelmann J, Prager M, Lieb R. ‘Anxietas tibiarum’: depression and anxiety disorders in patients with restless legs syndrome. J Neurol. 2005;252:67–71. PubMed
Berger K, Luedemann J, Trenkwalder C. Sex and the risk of restless legs syndrome in the general population. Arch Intern Med. 2004;164:196–202. PubMed
Earley CJ, Connor J, Garcia-Borreguero D. Altered brain iron homeostasis and dopaminergic function in restless legs syndrome (Willis–Ekbom disease) Sleep Med. 2014;15:1288–1301. PubMed
Madabhushi R, Gao F, Pfenning AR. Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell. 2015;161:1592–1605. PubMed PMC
Suberbielle E, Sanchez PE, Kravitz AV. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci. 2013;16:613–621. PubMed PMC
Spieler D, Kaffe M, Knauf F. Restless legs syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon. Genome Res. 2014;24:592–603. PubMed PMC
Rizzo G, Li X, Galantucci S, Filippi M, Cho YW. Brain imaging and networks in restless legs syndrome. Sleep Med. 2017;31:39–48. PubMed PMC
Pidsley R, Viana J, Hannon E. Methylomic profiling of human brain tissue supports a neurodevelopmental origin for schizophrenia. Genome Biol. 2014;15:483. PubMed PMC
O'Shea KS, McInnis MG. Neurodevelopmental origins of bipolar disorder: iPSC models. Mol Cell Neurosci. 2016;73:63–83. PubMed