Four Saccharomyces species differ in their tolerance to various stresses though they have similar basic physiological parameters

. 2018 Mar ; 63 (2) : 217-227. [epub] 20171020

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29052811

Grantová podpora
15-03708S Grantová Agentura České Republiky
FP7-ITN-264717 FP7 People

Odkazy

PubMed 29052811
DOI 10.1007/s12223-017-0559-y
PII: 10.1007/s12223-017-0559-y
Knihovny.cz E-zdroje

Saccharomyces species, which are mostly used in the food and beverage industries, are known to differ in their fermentation efficiency and tolerance of adverse fermentation conditions. However, the basis of their difference has not been fully elucidated, although their genomes have been sequenced and analyzed. Five strains of four Saccharomyces species (S. cerevisiae, S. kudriavzevii, S. bayanus, and S. paradoxus), when grown in parallel in laboratory conditions, exhibit very similar basic physiological parameters such as membrane potential, intracellular pH, and the degree to which they are able to quickly activate their Pma1 H+-ATPase upon glucose addition. On the other hand, they differ in their ability to proliferate in media with a very low concentration of potassium, in their osmotolerance and tolerance to toxic cations and cationic drugs in a growth-medium specific manner, and in their capacity to survive anhydrobiosis. Overall, S. cerevisiae (T73 more than FL100) and S. paradoxus are the most robust, and S. kudriavzevii the most sensitive species. Our results suggest that the difference in stress survival is based on their ability to quickly accommodate their cell size and metabolism to changing environmental conditions and to adjust their portfolio of available detoxifying transporters.

Zobrazit více v PubMed

PLoS One. 2016 Apr 08;11(4):e0153374 PubMed

Mol Gen Genet. 1993 Jan;236(2-3):363-8 PubMed

Eukaryot Cell. 2007 Dec;6(12):2175-83 PubMed

Yeast. 1998 Sep 30;14(13):1189-97 PubMed

Eukaryot Cell. 2011 Sep;10 (9):1241-50 PubMed

FEMS Microbiol Lett. 2011 Apr;317(1):1-8 PubMed

Biotechniques. 2007 Nov;43(5):667-72 PubMed

Appl Microbiol Biotechnol. 2008 Nov;81(2):211-23 PubMed

Yeast. 2010 Jun;27(6):317-25 PubMed

Cryobiology. 2003 Dec;47(3):236-41 PubMed

FEMS Yeast Res. 2017 Aug 1;17 (5):null PubMed

Int J Food Microbiol. 2015 Jul 16;205:41-6 PubMed

Biochim Biophys Acta. 2013 Feb;1828(2):623-31 PubMed

Biochim Biophys Acta. 2011 Oct;1810(10):933-44 PubMed

Microbiol Mol Biol Rev. 2002 Jun;66(2):300-72 PubMed

FEMS Yeast Res. 2010 Aug 1;10(5):508-17 PubMed

Front Microbiol. 2016 Jun 07;7:897 PubMed

Microbiol Mol Biol Rev. 2010 Mar;74(1):95-120 PubMed

Nature. 1998 Jul 9;394(6689):192-5 PubMed

FEMS Microbiol Lett. 2014 Jan;350(1):28-33 PubMed

EMBO J. 1995 Aug 15;14(16):3870-82 PubMed

Biochim Biophys Acta. 2009 Mar;1788(3):717-23 PubMed

Folia Microbiol (Praha). 1997;42(3):221-4 PubMed

PLoS One. 2014 Jan 30;9(1):e87290 PubMed

Microbiology. 2009 Jan;155(Pt 1):268-78 PubMed

Mol Microbiol. 2015 Aug;97(3):541-59 PubMed

Appl Microbiol Biotechnol. 2014 Nov;98(21):8821-34 PubMed

PLoS One. 2015 Sep 29;10(9):e0139306 PubMed

Sci Rep. 2016 Mar 21;6:23502 PubMed

Int J Food Microbiol. 2008 Feb 29;122(1-2):188-95 PubMed

FEBS Lett. 1985 Apr 8;183(1):21-4 PubMed

Folia Microbiol (Praha). 2007;52(3):241-5 PubMed

J Appl Microbiol. 2013 May;114(5):1405-14 PubMed

Int J Biochem Cell Biol. 2005 Dec;37(12):2536-43 PubMed

Front Microbiol. 2016 Mar 31;7:435 PubMed

Curr Genet. 2012 Dec;58(5-6):255-64 PubMed

Biochim Biophys Acta. 2004 Oct 11;1665(1-2):111-7 PubMed

Yeast. 2014 Aug;31(8):309-21 PubMed

Curr Genet. 2015 Aug;61(3):263-74 PubMed

Nature. 1986 Feb 20-26;319(6055):689-93 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...