Silver Nanoparticles Stabilised by Cationic Gemini Surfactants with Variable Spacer Length
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29065563
PubMed Central
PMC6151783
DOI
10.3390/molecules22101794
PII: molecules22101794
Knihovny.cz E-zdroje
- Klíčová slova
- gemini surfactant, microbicidal activity, nanoparticle stability, silver nanoparticle, surfactant spacer,
- MeSH
- antiinfekční látky farmakologie MeSH
- gramnegativní bakterie účinky léků MeSH
- houby účinky léků MeSH
- kovové nanočástice chemie MeSH
- micely MeSH
- povrchově aktivní látky chemie MeSH
- stříbro chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky MeSH
- micely MeSH
- povrchově aktivní látky MeSH
- stříbro MeSH
The present study is focused on the synthesis and investigation of the physicochemical and biological properties of silver nanoparticles stabilized with a series of cationic gemini surfactants having a polymethylene spacer of variable length. UV-VIS spectroscopy, dynamic light scattering, scanning electron microscopy and zeta potential measurements were applied to provide physicochemical characterization of the silver nanoparticles. The mean size values of the nanoparticles were found to be in the 50 to 115 nm range. From the nanoparticle size distributions and scanning electron microscopy images it results that a population of small nanoparticles with the size of several nanometers was confirmed if the nanoparticles were stabilized with gemini molecules with either a short methylene spacer (two or four -CH₂- groups) or a long spacer (12 -CH₂- groups). The average zeta potential value for silver nanoparticles stabilized with gemini molecules is roughly independent of gemini surfactant spacer length and is approx. +58 mV. An interaction model between silver nanoparticles and gemini molecules which reflects the gained experimental data, is suggested. Microbicidal activity determinations revealed that the silver nanoparticles stabilized with gemini surfactants are more efficient against Gram-negative bacteria and yeasts, which has a direct relation to the interaction mechanism of nanoparticles with the bacterial cell membrane and its structural composition.
Zobrazit více v PubMed
Tani T. Silver Nanoparticles: From Silver Halide Photography to Plasmonics. Oxford University Press; Oxford, NY, USA: 2015.
Alshehri A.H., Jakubowska M., Mlozniak A., Horaczek M., Rudka D., Free C., Carey J.D. Enhanced Electrical Conductivity of Silver Nanoparticles for High Frequency Electronic Applications. ACS Appl. Mater. Interfaces. 2012;4:7007–7010. doi: 10.1021/am3022569. PubMed DOI
Abou El-Nour K.M.M., Eftaiha A., Al-Warthan A., Ammar R.A.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem. 2010;3:135–140. doi: 10.1016/j.arabjc.2010.04.008. DOI
Dong X.-Y., Gao Z.-W., Yang K.-F., Zhang W.-Q., Xu L.-W. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal. Sci. Technol. 2015;5:2554–2574. doi: 10.1039/C5CY00285K. DOI
Bhakya S., Muthukrishnan S., Sukumaran M., Muthukumar M. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. 2016;6:755–766. doi: 10.1007/s13204-015-0473-z. DOI
Treshchalov A., Erikson H., Puust L., Tsarenko S., Saar R., Vanetsev A., Tammeveski K., Sildos I. Stabilizer-free silver nanoparticles as efficient catalysts for electrochemical reduction of oxygen. J. Colloid Interface Sci. 2017;491:358–366. doi: 10.1016/j.jcis.2016.12.053. PubMed DOI
Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramírez J.T., Yacaman M.J. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–2353. doi: 10.1088/0957-4484/16/10/059. PubMed DOI
Manno D., Filippo E., Di Giulio M., Serra A. Synthesis and characterization of starch-stabilized Ag nanostructures for sensors applications. J. Non-Cryst. Solids. 2008;354:5515–5520. doi: 10.1016/j.jnoncrysol.2008.04.059. DOI
Martínez-Gutierrez F., Thi E.P., Silverman J.M., de Oliveira C.C., Svensson S.L., Hoek A.V., Sánchez E.M., Reiner N.E., Gaynor E.C., Pryzdial E.L.G., et al. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2012;8:328–336. doi: 10.1016/j.nano.2011.06.014. PubMed DOI
Galdiero S., Falanga A., Vitiello M., Cantisani M., Marra V., Galdiero M. Silver Nanoparticles as Potential Antiviral Agents. Molecules. 2011;16:8894–8918. doi: 10.3390/molecules16108894. PubMed DOI PMC
Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004;275:177–182. doi: 10.1016/j.jcis.2004.02.012. PubMed DOI
Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4:707–716. doi: 10.1016/j.actbio.2007.11.006. PubMed DOI
Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009;27:76–83. doi: 10.1016/j.biotechadv.2008.09.002. PubMed DOI
Lara H.H., Ayala-Núnez N.V., del Carmen Ixtepan Turrent L., Rodríguez Padilla C. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 2010;26:615–621. doi: 10.1007/s11274-009-0211-3. DOI
Lara H.H., Garza-Trevino E.N., Ixtepan-Turrent L., Singh D.K. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnol. 2011;9:30. doi: 10.1186/1477-3155-9-30. PubMed DOI PMC
Guzman M., Dille J., Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2012;8:37–45. doi: 10.1016/j.nano.2011.05.007. PubMed DOI
Suchomel P., Kvitek L., Panacek A., Prucek R., Hrbac J., Vecerova R., Zboril R. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs) PLoS ONE. 2015;10:e0119202. doi: 10.1371/journal.pone.0119202. PubMed DOI PMC
Nair L.S., Laurencin C.T. Silver Nanoparticles: Synthesis and Therapeutic Applications. J. Biomed. Nanotechnol. 2007;3:301–316. doi: 10.1166/jbn.2007.041. DOI
Brandt O., Mildner M., Egger A.E., Groessl M., Rix U., Posch M., Keppler B.K., Strupp C., Mueller B., Stingl G. Nanoscalic silver possesses broad-spectrum antimicrobial activities and exhibits fewer toxicological side effects than silver sulfadiazine. Nanomed. Nanotechnol. Biol. Med. 2012;8:478–488. doi: 10.1016/j.nano.2011.07.005. PubMed DOI
Ghosh S., Kaushik R., Nagalakshmi K., Hoti S.L., Menezes G.A., Harish B.N., Vasan H.N. Antimicrobial activity of highly stable silver nanoparticles embedded in agar–agar matrix as a thin film. Carbohydr. Res. 2010;345:2220–2227. doi: 10.1016/j.carres.2010.08.001. PubMed DOI
Radzig M.A., Nadtochenko V.A., Koksharova O.A., Kiwi J., Lipasova V.A., Khmel I.A. Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids Surf. B Biointerfaces. 2013;102:300–306. doi: 10.1016/j.colsurfb.2012.07.039. PubMed DOI
Mavani K., Shah M. Synthesis of Silver Nanoparticles by using Sodium Borohydride as a Reducing Agent. Int. J. Eng. Res. Technol. 2013;2:1–5.
Malina D., Sobczak-Kupiec A., Wzorek Z., Kowalski Z. Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Dig. J. Nanomater. Biostruct. 2012;7:1527–1534.
Mehr F., Khanjani M., Vatani P. Synthesis of Nano-Ag particles using Sodium Borohydride. Orient. J. Chem. 2015;31:1831–1833. doi: 10.13005/ojc/310367. DOI
Drogat N., Granet R., Sol V., Krausz P. One-Pot Silver Nanoring Synthesis. Nanoscale Res. Lett. 2010;5:566–569. doi: 10.1007/s11671-009-9505-5. PubMed DOI PMC
Wan Y., Guo Z., Jiang X., Fang K., Lu X., Zhang Y., Gu N. Quasi-spherical silver nanoparticles: Aqueous synthesis and size control by the seed-mediated Lee–Meisel method. J. Colloid Interface Sci. 2013;394:263–268. doi: 10.1016/j.jcis.2012.12.037. PubMed DOI
Mehta S.K., Chaudhary S., Gradzielski M. Time dependence of nucleation and growth of silver nanoparticles generated by sugar reduction in micellar media. J. Colloid Interface Sci. 2010;343:447–453. doi: 10.1016/j.jcis.2009.11.053. PubMed DOI
Filippo E., Serra A., Buccolieri A., Manno D. Controlled synthesis and chain-like self-assembly of silver nanoparticles through tertiary amine. Colloids Surf. Physicochem. Eng. Asp. 2013;417:10–17. doi: 10.1016/j.colsurfa.2012.10.045. DOI
Król-Gracz A., Michalak E., Nowak P., Dyonizy A. Photo-induced chemical reduction of silver bromide to silver nanoparticles. Open Chem. 2011;9 doi: 10.2478/s11532-011-0085-8. DOI
Khan Z., AL-Thabaiti S.A., Obaid A.Y., Khan Z.A., Al-Youbi A.A.O. Shape-directing role of cetyltrimethylammonium bromide in the preparation of silver nanoparticles. J. Colloid Interface Sci. 2012;367:101–108. doi: 10.1016/j.jcis.2011.10.014. PubMed DOI
Er H., Yasuda H., Harada M., Taguchi E., Iida M. Formation of silver nanoparticles from ionic liquids comprising N-alkylethylenediamine: Effects of dissolution modes of the silver(I) ions in the ionic liquids. Colloids Surf. Physicochem. Eng. Asp. 2017;522:503–513. doi: 10.1016/j.colsurfa.2017.03.046. DOI
Manna A., Imae T., Iida M., Hisamatsu N. Formation of Silver Nanoparticles from a N-Hexadecylethylenediamine Silver Nitrate Complex. Langmuir. 2001;17:6000–6004. doi: 10.1021/la010389j. DOI
Iida M., Baba C., Inoue M., Yoshida H., Taguchi E., Furusho H. Ionic Liquids of Bis(alkylethylenediamine)silver(I) Salts and the Formation of Silver(0) Nanoparticles from the Ionic Liquid System. Chem. Eur. J. 2008;14:5047–5056. doi: 10.1002/chem.200701764. PubMed DOI
Ermakova A.M., Morozova J.E., Shalaeva Y.V., Syakaev V.V., Nizameev I.R., Kadirov M.K., Antipin I.S., Konovalov A.I. The supramolecular approach to the phase transfer of carboxylic calixresorcinarene-capped silver nanoparticles. Colloids Surf. Physicochem. Eng. Asp. 2017;524:127–134. doi: 10.1016/j.colsurfa.2017.04.045. DOI
Li P., Li S., Wang Y., Zhang Y., Han G.-Z. Green synthesis of beta-CD-functionalized monodispersed silver nanoparticles with ehanced catalytic activity. Colloids Surf. Physicochem. Eng. Asp. 2017;520:26–31. doi: 10.1016/j.colsurfa.2017.01.034. DOI
Karthik R., Govindasamy M., Chen S.-M., Cheng Y.-H., Muthukrishnan P., Padmavathy S., Elangovan A. Biosynthesis of silver nanoparticles by using Camellia japonica leaf extract for the electrocatalytic reduction of nitrobenzene and photocatalytic degradation of Eosin-Y. J. Photochem. Photobiol. B. 2017;170:164–172. doi: 10.1016/j.jphotobiol.2017.03.018. PubMed DOI
Bhakya S., Muthukrishnan S., Muthukumar M., Sukumaran M., Rao M.V., Senthil Kumar T. Catalytic Degradation of Organic Dyes using Synthesized Silver Nanoparticles: A Green Approach. J. Bioremediat. Biodegrad. 2015;6 doi: 10.4172/2155-6199.1000312. DOI
Khan Z., Hussain J.I., Hashmi A.A. Shape-directing role of cetyltrimethylammonium bromide in the green synthesis of Ag-nanoparticles using Neem (Azadirachta indica) leaf extract. Colloids Surf. B Biointerfaces. 2012;95:229–234. doi: 10.1016/j.colsurfb.2012.03.002. PubMed DOI
Lateef A., Azeez M.A., Asafa T.B., Yekeen T.A., Akinboro A., Oladipo I.C., Azeez L., Ajibade S.E., Ojo S.A., Gueguim-Kana E.B., et al. Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial and antioxidant activities and application as a paint additive. J. Taibah Univ. Sci. 2016;10:551–562. doi: 10.1016/j.jtusci.2015.10.010. DOI
Krystosiak P., Tomaszewski W., Megiel E. High-density polystyrene-grafted silver nanoparticles and their use in the preparation of nanocomposites with antibacterial properties. J. Colloid Interface Sci. 2017;498:9–21. doi: 10.1016/j.jcis.2017.03.041. PubMed DOI
Begum R., Naseem K., Ahmed E., Sharif A., Farooqi Z.H. Simultaneous catalytic reduction of nitroarenes using silver nanoparticles fabricated in poly(N-isopropylacrylamide-acrylic acid-acrylamide) microgels. Colloids Surf. Physicochem. Eng. Asp. 2016;511:17–26. doi: 10.1016/j.colsurfa.2016.09.076. DOI
Zana R. Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: A review. Adv. Colloid Interface Sci. 2002;97:205–253. doi: 10.1016/S0001-8686(01)00069-0. PubMed DOI
Rosen M.J. Surfactants and Interfacial Phenomena. 3rd ed. John Wiley & Sons; New York, NY, USA: 2004.
Devínsky F., Pisárčik M., Lacko I. Hydrodynamic size of DNA/cationic gemini surfactant complex as a function of surfactant structure. Gen. Physiol. Biophys. 2009;28:160–167. doi: 10.4149/gpb_2009_02_160. PubMed DOI
Hedberg J., Lundin M., Lowe T., Blomberg E., Wold S., Wallinder I.O. Interactions between surfactants and silver nanoparticles of varying charge. J. Colloid Interface Sci. 2012;369:193–201. doi: 10.1016/j.jcis.2011.12.004. PubMed DOI
He S., Chen H., Guo Z., Wang B., Tang C., Feng Y. High-concentration silver colloid stabilized by a cationic gemini surfactant. Colloids Surf. Physicochem. Eng. Asp. 2013;429:98–105. doi: 10.1016/j.colsurfa.2013.03.068. DOI
Tiwari A.K., Gangopadhyay S., Chang C.-H., Pande S., Saha S.K. Study on metal nanoparticles synthesis and orientation of gemini surfactant molecules used as stabilizer. J. Colloid Interface Sci. 2015;445:76–83. doi: 10.1016/j.jcis.2014.12.064. PubMed DOI
Xu J., Han X., Liu H., Hu Y. Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloids Surf. Physicochem. Eng. Asp. 2006;273:179–183. doi: 10.1016/j.colsurfa.2005.08.019. DOI
Xu F., Zhang Q., Gao Z. Simple one-step synthesis of gold nanoparticles with controlled size using cationic Gemini surfactants as ligands: Effect of the variations in concentrations and tail lengths. Colloids Surf. Physicochem. Eng. Asp. 2013;417:201–210. doi: 10.1016/j.colsurfa.2012.10.059. DOI
Datta S., Biswas J., Bhattacharya S. How does spacer length of imidazolium gemini surfactants control the fabrication of 2D-Langmuir films of silver-nanoparticles at the air–water interface? J. Colloid Interface Sci. 2014;430:85–92. doi: 10.1016/j.jcis.2014.05.018. PubMed DOI
Charlé K.-P., Frank F., Schulze W. The Optical Properties of Silver Microcrystallites in Dependence on Size and the Influence of the Matrix Environment. Ber. Bunsenges Phys. Chem. 1984;88:350–354. doi: 10.1002/bbpc.19840880407. DOI
Alami E., Beinert G., Marie P., Zana R. Alkanediyl-alpha,omega-bis(dimethylalkylammonium bromide) surfactants. 3. Behavior at the air-water interface. Langmuir. 1993;9:1465–1467. doi: 10.1021/la00030a006. DOI
Pisárčik M., Rosen M.J., Polakovičová M., Devínsky F., Lacko I. Area per surfactant molecule values of gemini surfactants at the liquid–hydrophobic solid interface. J. Colloid Interface Sci. 2005;289:560–565. doi: 10.1016/j.jcis.2005.03.092. PubMed DOI
Zana R., Benrraou M., Rueff R. Alkanediyl-alpha,omega-bis(dimethylalkylammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir. 1991;7:1072–1075. doi: 10.1021/la00054a008. DOI
Danino D., Talmon Y., Zana R. Alkanediyl-α,ω-Bis(Dimethylalkylammonium Bromide) Surfactants (Dimeric Surfactants). 5. Aggregation and Microstructure in Aqueous Solutions. Langmuir. 1995;11:1448–1456. doi: 10.1021/la00005a008. DOI
Pisárčik M., Jampílek J., Devínsky F., Drábiková J., Tkacz J., Opravil T. Gemini Surfactants with Polymethylene Spacer: Supramolecular Structures at Solid Surface and Aggregation in Aqueous Solution. J. Surfactants Deterg. 2016;19:477–486. doi: 10.1007/s11743-016-1797-8. DOI
Tanford C. Micelle shape and size. J. Phys. Chem. 1972;76:3020–3024. doi: 10.1021/j100665a018. DOI
Jalali S.A.H., Allafchian A.R. Assessment of antibacterial properties of novel silver nanocomposite. J. Taiwan Inst. Chem. Eng. 2016;59:506–513. doi: 10.1016/j.jtice.2015.08.004. DOI
Devínsky F., Lacko I., Mlynarčík D., Račanský V., Krasnec L. Relationship between critical micelle concentrations and minimum inhibitory concentrations for some non-aromatic quaternary ammonium salts and amine oxides. Tenside Deterg. 1985;22:10–15.
Pavlíková-Mořická M., Lacko I., Devínsky F., Masárová L., Mlynarčík D. Quantitative relationships between structure and antimicrobial activity of new “Soft” bisquaternary ammonium salts. Folia Microbiol. 1994;39:176–180. doi: 10.1007/BF02814644. PubMed DOI
Pavlíková M., Lacko I., Devínský F., Mlynarčík D. Quantitative Relationships between Structure, Aggregation Properties and Antimicrobial Activity of Quaternary Ammonium Bolaamphiphiles. Collect. Czechoslov. Chem. Commun. 1995;60:1213–1228. doi: 10.1135/cccc19951213. DOI
Kawahara K., Tsuruda K., Morishita M., Uchida M. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent. Mater. 2000;16:452–455. doi: 10.1016/S0109-5641(00)00050-6. PubMed DOI
Imam T., Devinsky F., Lacko I., Mlynarcik D., Krasnec L. Preparation and antimicrobial activity of some new bisquaternary ammonium salts. Pharmazie. 1983;38:308–310. PubMed
Koppel D.E. Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants. J. Chem. Phys. 1972;57:4814–4820. doi: 10.1063/1.1678153. DOI
Provencher S.W. Constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 1982;27:213–227. doi: 10.1016/0010-4655(82)90173-4. DOI
Lukáč M., Lacko I., Bukovský M., Kyselová Z., Karlovská J., Horváth B., Devínsky F. Synthesis and antimicrobial activity of a series of optically active quaternary ammonium salts derived from phenylalanine. Cent. Eur. J. Chem. 2010;8:194–201. doi: 10.2478/s11532-009-0126-8. DOI
Lukáč M., Devínsky F., Pisárčik M., Papapetropoulou A., Bukovský M., Horváth B. Novel Phospholium-Type Cationic Surfactants: Synthesis, Aggregation Properties and Antimicrobial Activity. J. Surfactants Deterg. 2017;20:159–171. doi: 10.1007/s11743-016-1908-6. DOI
Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes