Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29123680
PubMed Central
PMC5668863
DOI
10.1107/s2052252517014154
PII: it5014
Knihovny.cz E-zdroje
- Klíčová slova
- hit detection, plasma emission spectra, protein structure, serial femtosecond crystallography,
- Publikační typ
- časopisecké články MeSH
Serial femtosecond crystallography is an emerging and promising method for determining protein structures, making use of the ultrafast and bright X-ray pulses from X-ray free-electron lasers. The upcoming X-ray laser sources will produce well above 1000 pulses per second and will pose a new challenge: how to quickly determine successful crystal hits and avoid a high-rate data deluge. Proposed here is a hit-finding scheme based on detecting photons from plasma emission after the sample has been intercepted by the X-ray laser. Plasma emission spectra are simulated for systems exposed to high-intensity femtosecond pulses, for both protein crystals and the liquid carrier systems that are used for sample delivery. The thermal radiation from the glowing plasma gives a strong background in the XUV region that depends on the intensity of the pulse, around the emission lines from light elements (carbon, nitrogen, oxygen). Sample hits can be reliably distinguished from the carrier liquid based on the characteristic emission lines from heavier elements present only in the sample, such as sulfur. For buffer systems with sulfur present, selenomethionine substitution is suggested, where the selenium emission lines could be used both as an indication of a hit and as an aid in phasing and structural reconstruction of the protein.
Department of Cell and Molecular Biology Uppsala University Box 596 SE 751 24 Uppsala Sweden
Department of Physics and Astronomy Uppsala University Box 516 SE 751 20 Uppsala Sweden
Zobrazit více v PubMed
Andreasson, J. et al. (2011). Phys. Rev. E, 83, 016403. PubMed
Andreasson, J. et al. (2014). Opt. Express, 22, 2497–2510. PubMed
Aquila, A. et al. (2012). Opt. Express, 20, 2706–2715. PubMed PMC
Barty, A. et al. (2012). Nat. Photon. 6, 35–40. PubMed PMC
Bergh, M., Tîmneanu, N., Hau-Riege, S. P. & Scott, H. A. (2008). Phys. Rev. E, 77, 026404. PubMed
Boutet, S. et al. (2012). Science, 337, 362–364. PubMed
Caleman, C., Bergh, M., Scott, H. A., Spence, J. C. H., Chapman, H. N. & Tîmneanu, N. (2011). J. Mod. Opt. 58, 1486–1497.
Caleman, C., Huldt, G., Maia, F. R. N. C., Ortiz, C., Parak, F. G., Hajdu, J., van der Spoel, D., Chapman, H. N. & Tîmneanu, N. (2011). ACS Nano, 5, 139–146. PubMed
Chapman, H. N. (2017). Protein Crystallography: Methods and Protocols, edited by A. Wlodawer, Z. Dauter and M. Jaskolski, pp. 295–324. New York: Springer.
Chung, H.-K. & Lee, R. W. (2009). High Energy Density Phys. 5, 1–14.
Gericke, D. O., Murillo, M. S. & Schlanges, M. (2002). Phys. Rev. E, 65, 036418. PubMed
Hädrich, S., Klenke, A., Rothhardt, J., Krebs, M., Hoffmann, A., Pronin, O., Pervak, V., Limpert, J. & Tünnermann, A. (2014). Nat. Photon. 8, 779–783.
Kern, J. et al. (2013). Science, 340, 491–495. PubMed
Kern, J. et al. (2014). Nat. Commun. 5, 4371. PubMed PMC
Lomb, L. et al. (2011). Phys. Rev. B, 84, 214111. PubMed PMC
Maia, F. R. N. C. & Hajdu, J. (2016). Sci. Data, 3, 160059. PubMed PMC
Mancuso, A. P. (2012). Conceptual Design Report: Scientific Instrument Single Particles, Clusters, and Biomolecules (SPB). Report TR-2011-007. European XFEL, Hamburg, Germany.
Nantel, M., Ma, G., Gu, S., Côté, C. Y., Itatani, J. & Umstadter, D. (1998). Phys. Rev. Lett. 80, 4442–4445.
Nass, K. et al. (2015). J. Synchrotron Rad. 22, 225–238. PubMed
Oberthuer, D. et al. (2017). Sci. Rep. 7, 44628. PubMed PMC
Rath, A. D. et al. (2014). Opt. Express, 22, 28914–28925. PubMed
Redecke, L. et al. (2012). Science, 339, 227–230. PubMed
Schlichting, I. (2015). IUCrJ, 2, 246–255. PubMed PMC
Scott, H. A. (2001). J. Quant. Spectrosc. Radiat. Transfer, 71, 689–701.
Spitzer, L. (1956). Physics of Fully Ionized Gases. New York: Interscience Publishers.
Stewart, J. C. & Pyatt, K. D. (1966). Astrophys. J. 144, 1203.
Vinko, S. M. et al. (2012). Nature, 482, 59–62. PubMed
Weisshaupt, J., Juve, V., Holtz, M., Ku, S., Woerner, M., Elsaesser, T., Alisauskas, S., Pugzlys, A. & Baltuska, A. (2014). Nat. Photon. 8, 927–930.
Westbrook, J., Feng, Z., Jain, S., Bhat, T. N., Thanki, N., Ravichandran, V., Gilliland, G. L., Bluhm, W., Weissig, H., Greer, D. S., Bourne, P. E. & Berman, H. M. (2002). Nucleic Acids Res. 30, 245–248. PubMed PMC
Macromolecular Nanocrystal Structural Analysis with Electron and X-Rays: A Comparative Review