• This record comes from PubMed

Changes in the lung bacteriome in relation to antipseudomonal therapy in children with cystic fibrosis

. 2018 Mar ; 63 (2) : 237-248. [epub] 20171110

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
400213 Grantová Agentura, Univerzita Karlova

Links

PubMed 29127619
DOI 10.1007/s12223-017-0562-3
PII: 10.1007/s12223-017-0562-3
Knihovny.cz E-resources

The lung in cystic fibrosis (CF) is home to numerous pathogens that shorten the lives of patients. The aim of the present study was to assess changes in the lung bacteriome following antibiotic therapy targeting Pseudomonas aeruginosa in children with CF. The study included nine children (9-18 years) with CF who were treated for their chronic or intermittent positivity for Pseudomonas aeruginosa. The bacteriomes were determined in 16 pairs of sputa collected at the beginning and at the end of a course of intravenous antibiotic therapy via deep sequencing of the variable region 4 of the 16S rRNA gene, and the total bacterial load and selected specific pathogens were assessed using quantitative real-time PCR. The effect of antipseudomonal antibiotics was observable as a profound decrease in the total 16S rDNA load (p = 0.001) as well as in a broad range of individual taxa including Staphylococcus aureus (p = 0.03) and several members of the Streptococcus mitis group (S. oralis, S. mitis, and S. infantis) (p = 0.003). Improvements in forced expiratory volume (FEV1) were associated with an increase in Granulicatella sp. (p = 0.004), whereas a negative association was noted between the total bacterial load and white blood cell count (p = 0.007). In conclusion, the data show how microbial communities differ in reaction to antipseudomonal treatment, suggesting that certain rare species may be associated with clinical parameters. Our work also demonstrates the utility of absolute quantification of bacterial load in addition to the 16S rDNA profiling.

See more in PubMed

J Cyst Fibros. 2013 Jan;12(1):22-8 PubMed

J Bacteriol. 2012 Sep;194(17):4709-17 PubMed

Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13769-74 PubMed

Sci Rep. 2015 May 14;5:10241 PubMed

Thorax. 2010 Nov;65(11):978-84 PubMed

JAMA. 2005 Feb 2;293(5):581-8 PubMed

Microbiome. 2015 Apr 01;3:12 PubMed

PLoS One. 2012;7(3):e33865 PubMed

Sci Rep. 2016 May 31;6:26775 PubMed

Curr Opin Pediatr. 2011 Jun;23(3):319-24 PubMed

Am J Respir Crit Care Med. 2011 Jul 1;184(1):75-81 PubMed

Ann Am Thorac Soc. 2013 Jun;10(3):179-87 PubMed

J Cyst Fibros. 2004 Jun;3(2):67-91 PubMed

Ann Am Thorac Soc. 2014 Sep;11(7):1039-48 PubMed

PLoS One. 2009 Sep 15;4(9):e7010 PubMed

Diabetes Care. 2015 May;38(5):930-3 PubMed

Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5809-14 PubMed

J Cyst Fibros. 2012 Dec;11(6):461-79 PubMed

Nat Methods. 2010 May;7(5):335-6 PubMed

PLoS One. 2013 Apr 22;8(4):e61217 PubMed

PLoS One. 2012;7(1):e29973 PubMed

ISME J. 2016 May;10 (5):1081-91 PubMed

J Med Microbiol. 2012 Jun;61(Pt 6):755-61 PubMed

Trends Microbiol. 2016 May;24(5):327-37 PubMed

J Clin Microbiol. 1998 Jul;36(7):2089-92 PubMed

Nat Rev Microbiol. 2009 Aug;7(8):555-67 PubMed

PLoS One. 2012;7(9):e45001 PubMed

Pediatr Pulmonol. 2015 Oct;50 Suppl 40:S31-8 PubMed

Mol Microbiol. 2005 Feb;55(3):778-87 PubMed

PLoS One. 2010 Jun 23;5(6):e11044 PubMed

J Cyst Fibros. 2003 Mar;2(1):29-34 PubMed

N Engl J Med. 2012 May 24;366(21):1978-86 PubMed

Appl Environ Microbiol. 2009 Dec;75(23):7537-41 PubMed

Pediatr Pulmonol. 2010 Jun;45(6):569-77 PubMed

Clin Microbiol Rev. 2011 Jan;24(1):29-70 PubMed

PLoS One. 2013 Apr 30;8(4):e62917 PubMed

Microbiome. 2013 Nov 01;1(1):27 PubMed

Clin Microbiol Infect. 2010 Nov;16(11):1656-8 PubMed

PLoS One. 2017 May 25;12 (5):e0177062 PubMed

Nucleic Acids Res. 2012 Jan;40(1):e3 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...