The first cell-fate decision of mouse preimplantation embryo development: integrating cell position and polarity
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
29167310
PubMed Central
PMC5717349
DOI
10.1098/rsob.170210
PII: rsob.170210
Knihovny.cz E-zdroje
- Klíčová slova
- cell positioning and polarity, cell-fate, preimplantation mouse embryo,
- MeSH
- biologické modely * MeSH
- buněčný rodokmen MeSH
- embryo savčí cytologie fyziologie MeSH
- embryonální vývoj fyziologie MeSH
- polarita buněk * MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
During the first cell-fate decision of mouse preimplantation embryo development, a population of outer-residing polar cells is segregated from a second population of inner apolar cells to form two distinct cell lineages: the trophectoderm and the inner cell mass (ICM), respectively. Historically, two models have been proposed to explain how the initial differences between these two cell populations originate and ultimately define them as the two stated early blastocyst stage cell lineages. The 'positional' model proposes that cells acquire distinct fates based on differences in their relative position within the developing embryo, while the 'polarity' model proposes that the differences driving the lineage segregation arise as a consequence of the differential inheritance of factors, which exhibit polarized subcellular localizations, upon asymmetric cell divisions. Although these two models have traditionally been considered separately, a growing body of evidence, collected over recent years, suggests the existence of a large degree of compatibility. Accordingly, the main aim of this review is to summarize the major historical and more contemporarily identified events that define the first cell-fate decision and to place them in the context of both the originally proposed positional and polarity models, thus highlighting their functional complementarity in describing distinct aspects of the developmental programme underpinning the first cell-fate decision in mouse embryogenesis.
Zobrazit více v PubMed
Aiken CE, Swoboda PP, Skepper JN, Johnson MH. 2004. The direct measurement of embryogenic volume and nucleo-cytoplasmic ratio during mouse pre-implantation development. Reproduction 128, 527–535. (doi:10.1530/rep.1.00281) PubMed DOI
Johnson MH, McConnell J, Van Blerkom J. 1984. Programmed development in the mouse embryo. J. Embryol. Exp. Morphol. 83, 197–231. PubMed
Morris SA, Guo Y, Zernicka-Goetz M. 2012. Developmental plasticity is bound by pluripotency and the Fgf and Wnt signaling pathways. Cell Rep. 2, 756–765. (doi:10.1016/j.celrep.2012.08.029) PubMed DOI PMC
Artus J, Cohen-Tannoudji M. 2008. Cell cycle regulation during early mouse embryogenesis. Mol. Cell. Endocrinol. 282, 78–86. (doi:10.1016/j.mce.2007.11.008) PubMed DOI
Aoki F, Worrad DM, Schultz RM. 1997. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181, 296–307. (doi:10.1006/dbio.1996.8466) PubMed DOI
Johnson MH, McConnell JM. 2004. Lineage allocation and cell polarity during mouse embryogenesis. Semin. Cell Dev. Biol. 15, 583–597. (doi:10.1016/j.semcdb.2004.04.002) PubMed DOI
Tarkowski AK. 1959. Experiments on the development of isolated blastomers of mouse eggs. Nature 184, 1286–1287. (doi:10.1038/1841286a0) PubMed DOI
Rossant J. 1975. Investigation of the determinative state of the mouse inner cell mass. I. Aggregation of isolated inner cell masses with morulae. J. Embryol. Exp. Morphol. 33, 979–990. PubMed
Tang PC, West JD. 2000. The effects of embryo stage and cell number on the composition of mouse aggregation chimaeras. Zygote 8, 235–243. (doi:10.1017/S0967199400001039) PubMed DOI
Tarkowski AK. 1961. Mouse chimaeras developed from fused eggs. Nature 190, 857–860. (doi:10.1038/190857a0) PubMed DOI
Posfai E, Petropoulos S, de Barros FR, Schell JP, Jurisica I, Sandberg R, Lanner F, Rossant J. 2017. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. Elife 6, e22906 (doi:10.7554/eLife.22906) PubMed DOI PMC
Suwinska A, Czolowska R, Ozdzenski W, Tarkowski AK. 2008. Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev. Biol. 322, 133–144. (doi:10.1016/j.ydbio.2008.07.019) PubMed DOI
Rossant J. 1976. Postimplantation development of blastomeres isolated from 4- and 8-cell mouse eggs. J. Embryol. Exp. Morphol. 36, 283–290. PubMed
Tarkowski AK, Wroblewska J. 1967. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J. Embryol. Exp. Morphol. 18, 155–180. PubMed
Kelly SJ. 1977. Studies of the developmental potential of 4- and 8-cell stage mouse blastomeres. J. Exp. Zool. 200, 365–376. (doi:10.1002/jez.1402000307) PubMed DOI
Pinyopummin A, Takahashi Y, Hishinuma M, Kanagawa H. 1994. Development of single blastomeres from 4-cell stage embryos after aggregation with parthenogenones in mice. Jpn. J. Vet. Res. 42, 119–126. PubMed
Piotrowska-Nitsche K, Perea-Gomez A, Haraguchi S, Zernicka-Goetz M. 2005. Four-cell stage mouse blastomeres have different developmental properties. Development 132, 479–490. (doi:10.1242/dev.01602) PubMed DOI
Goolam M, Scialdone A, Graham SJ, Macaulay IC, Jedrusik A, Hupalowska A, Voet T, Marioni JC, Zernicka-Goetz M. 2016. Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165, 61–74. (doi:10.1016/j.cell.2016.01.047) PubMed DOI PMC
Jedrusik A, Parfitt DE, Guo G, Skamagki M, Grabarek JB, Johnson MH, Robson P, Zernicka-Goetz M. 2008. Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev. 22, 2692–2706. (doi:10.1101/gad.486108) PubMed DOI PMC
Kelly SJ, Mulnard JG, Graham CF. 1978. Cell division and cell allocation in early mouse development. J. Embryol. Exp. Morphol. 48, 37–51. PubMed
Plachta N, Bollenbach T, Pease S, Fraser SE, Pantazis P. 2011. Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat. Cell Biol. 13, 337 (doi:10.1038/ncb0311-337) PubMed DOI
Tabansky I, et al. 2013. Developmental bias in cleavage-stage mouse blastomeres. Curr. Biol. 23, 21–31. (doi:10.1016/j.cub.2012.10.054) PubMed DOI PMC
White MD, et al. 2016. Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo. Cell 165, 75–87. (doi:10.1016/j.cell.2016.02.032) PubMed DOI
Pratt HP, Ziomek CA, Reeve WJ, Johnson MH. 1982. Compaction of the mouse embryo: an analysis of its components. J. Embryol. Exp. Morphol. 70, 113–132. PubMed
Hyenne V, Louvet-Vallee S, El-Amraoui A, Petit C, Maro B, Simmler MC. 2005. Vezatin, a protein associated to adherens junctions, is required for mouse blastocyst morphogenesis. Dev. Biol. 287, 180–191. (doi:10.1016/j.ydbio.2005.09.004) PubMed DOI
Johnson MH, Ziomek CA. 1981. Induction of polarity in mouse 8-cell blastomeres: specificity, geometry, and stability. J. Cell Biol. 91, 303–308. (doi:10.1083/jcb.91.1.303) PubMed DOI PMC
Fleming TP, McConnell J, Johnson MH, Stevenson BR. 1989. Development of tight junctions de novo in the mouse early embryo: control of assembly of the tight junction-specific protein, ZO-1. J. Cell Biol. 108, 1407–1418. (doi:10.1083/jcb.108.4.1407) PubMed DOI PMC
Balakier H, Pedersen RA. 1982. Allocation of cells to inner cell mass and trophectoderm lineages in preimplantation mouse embryos. Dev. Biol. 90, 352–362. (doi:10.1016/0012-1606(82)90384-0) PubMed DOI
Fleming TP. 1987. A quantitative analysis of cell allocation to trophectoderm and inner cell mass in the mouse blastocyst. Dev. Biol. 119, 520–531. (doi:10.1016/0012-1606(87)90055-8) PubMed DOI
Ziomek CA, Johnson MH. 1982. The roles of phenotype and position in guiding the fate of 16-cell mouse blastomeres. Dev. Biol. 91, 440–447. (doi:10.1016/0012-1606(82)90050-1) PubMed DOI
Tarkowski AK, Suwinska A, Czolowska R, Ozdzenski W. 2010. Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice. Dev. Biol. 348, 190–198. (doi:10.1016/j.ydbio.2010.09.022) PubMed DOI
Manejwala FM, Cragoe EJ Jr, Schultz RM. 1989. Blastocoel expansion in the preimplantation mouse embryo: role of extracellular sodium and chloride and possible apical routes of their entry. Dev. Biol. 133, 210–220. (doi:10.1016/0012-1606(89)90312-6) PubMed DOI
Vorbrodt A, Konwinski M, Solter D, Koprowski H. 1977. Ultrastructural cytochemistry of membrane-bound phosphatases in preimplantation mouse embryos. Dev. Biol. 55, 117–134. (doi:10.1016/0012-1606(77)90324-4) PubMed DOI
Wiley LM. 1984. Cavitation in the mouse preimplantation embryo: Na/K-ATPase and the origin of nascent blastocoele fluid. Dev. Biol. 105, 330–342. (doi:10.1016/0012-1606(84)90290-2) PubMed DOI
Sheth B, Nowak RL, Anderson R, Kwong WY, Papenbrock T, Fleming TP. 2008. Tight junction protein ZO-2 expression and relative function of ZO-1 and ZO-2 during mouse blastocyst formation. Exp. Cell Res. 314, 3356–3368. (doi:10.1016/j.yexcr.2008.08.021) PubMed DOI
Sheth B, Fontaine JJ, Ponza E, McCallum A, Page A, Citi S, Louvard D, Zahraoui A, Fleming TP. 2000. Differentiation of the epithelial apical junctional complex during mouse preimplantation development: a role for rab13 in the early maturation of the tight junction. Mech. Dev. 97, 93–104. (doi:10.1016/S0925-4773(00)00416-0) PubMed DOI
Chazaud C, Yamanaka Y, Pawson T, Rossant J. 2006. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10, 615–624. (doi:10.1016/j.devcel.2006.02.020) PubMed DOI
Meilhac SM, Adams RJ, Morris SA, Danckaert A, Le Garrec JF, Zernicka-Goetz M. 2009. Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst. Dev. Biol. 331, 210–221. (doi:10.1016/j.ydbio.2009.04.036) PubMed DOI PMC
Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK. 2008. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135, 3081–3091. (doi:10.1242/dev.021519) PubMed DOI PMC
Vestweber D, Gossler A, Boller K, Kemler R. 1987. Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos. Dev. Biol. 124, 451–456. (doi:10.1016/0012-1606(87)90498-2) PubMed DOI
Ducibella T, Anderson E. 1979. The effects of calcium deficiency on the formation of the zonula occludens and blastocoel in the mouse embryo. Dev. Biol. 73, 46–58. (doi:10.1016/0012-1606(79)90136-2) PubMed DOI
Hyafil F, Morello D, Babinet C, Jacob F. 1980. A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell 21, 927–934. (doi:10.1016/0092-8674(80)90456-0) PubMed DOI
Larue L, Ohsugi M, Hirchenhain J, Kemler R. 1994. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl Acad. Sci. USA 91, 8263–8267. (doi:10.1073/pnas.91.17.8263) PubMed DOI PMC
Riethmacher D, Brinkmann V, Birchmeier C. 1995. A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc. Natl Acad. Sci. USA 92, 855–859. (doi:10.1073/pnas.92.3.855) PubMed DOI PMC
De Vries WN, Evsikov AV, Haac BE, Fancher KS, Holbrook AE, Kemler R, Solter D, Knowles BB. 2004. Maternal beta-catenin and E-cadherin in mouse development. Development 131, 4435–4445. (doi:10.1242/dev.01316) PubMed DOI
Stephenson RO, Yamanaka Y, Rossant J. 2010. Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development 137, 3383–3391. (doi:10.1242/dev.050195) PubMed DOI
Kidder GM, McLachlin JR. 1985. Timing of transcription and protein synthesis underlying morphogenesis in preimplantation mouse embryos. Dev. Biol. 112, 265–275. (doi:10.1016/0012-1606(85)90397-5) PubMed DOI
Levy JB, Johnson MH, Goodall H, Maro B. 1986. The timing of compaction: control of a major developmental transition in mouse early embryogenesis. J. Embryol. Exp. Morphol. 95, 213–237. PubMed
Sefton M, Johnson MH, Clayton L. 1992. Synthesis and phosphorylation of uvomorulin during mouse early development. Development 115, 313–318. PubMed
Winkel GK, Ferguson JE, Takeichi M, Nuccitelli R. 1990. Activation of protein kinase C triggers premature compaction in the four-cell stage mouse embryo. Dev. Biol. 138, 1–15. (doi:10.1016/0012-1606(90)90171-E) PubMed DOI
Liu H, et al. 2013. Atypical PKC, regulated by Rho GTPases and Mek/Erk, phosphorylates Ezrin during eight-cell embryocompaction. Dev. Biol. 375, 13–22. (doi:10.1016/j.ydbio.2013.01.002) PubMed DOI
Fierro-Gonzalez JC, White MD, Silva JC, Plachta N. 2013. Cadherin-dependent filopodia control preimplantation embryo compaction. Nat. Cell Biol. 15, 1424–1433. (doi:10.1038/ncb2875) PubMed DOI
Maitre JL, Turlier H, Illukkumbura R, Eismann B, Niwayama R, Nedelec F, Hiiragi T. 2016. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536, 344–348. (doi:10.1038/nature18958) PubMed DOI PMC
Bornens M. 2008. Organelle positioning and cell polarity. Nat. Rev. Mol. Cell Biol. 9, 874–886. (doi:10.1038/nrm2524) PubMed DOI
Johnson MH, Ziomek CA. 1981b. The foundation of two distinct cell lineages within the mouse morula. Cell 24, 71–80. (doi:10.1016/0092-8674(81)90502-X) PubMed DOI
Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N, Buchholz F, Hiiragi T. 2017. The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev. Cell 40, 235–247. (doi:10.1016/j.devcel.2017.01.006) PubMed DOI PMC
Johnson MH, Maro B, Takeichi M. 1986. The role of cell adhesion in the synchronization and orientation of polarization in 8-cell mouse blastomeres. J. Embryol. Exp. Morphol. 93, 239–255. PubMed
Dard N, Louvet-Vallee S, Santa-Maria A, Maro B. 2004. Phosphorylation of ezrin on threonine T567 plays a crucial role during compaction in the mouse early embryo. Dev. Biol. 271, 87–97. (doi:10.1016/j.ydbio.2004.03.024) PubMed DOI
Reeve WJ, Ziomek CA. 1981. Distribution of microvilli on dissociated blastomeres from mouse embryos: evidence for surface polarization at compaction. J. Embryol. Exp. Morphol. 62, 339–350. PubMed
Louvet S, Aghion J, Santa-Maria A, Mangeat P, Maro B. 1996. Ezrin becomes restricted to outer cells following asymmetrical division in the preimplantation mouse embryo. Dev. Biol. 177, 568–579. (doi:10.1006/dbio.1996.0186) PubMed DOI
Hirate Y, et al. 2013. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr. Biol. 23, 1181–1194. (doi:10.1016/j.cub.2013.05.014) PubMed DOI PMC
Clayton L, Hall A, Johnson MH. 1999. A role for Rho-like GTPases in the polarisation of mouse eight-cell blastomeres. Dev. Biol. 205, 322–331. (doi:10.1006/dbio.1998.9117) PubMed DOI
Vinot S, Le T, Ohno S, Pawson T, Maro B, Louvet-Vallee S. 2005. Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction. Dev. Biol. 282, 307–319. (doi:10.1016/j.ydbio.2005.03.001) PubMed DOI
Hirate Y, Hirahara S, Inoue K, Kiyonari H, Niwa H, Sasaki H. 2015. Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos. Dev. Growth Differ. 57, 544–556. (doi:10.1111/dgd.12235) PubMed DOI
Kono K, Tamashiro DA, Alarcon VB. 2014. Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev. Biol. 394, 142–155. (doi:10.1016/j.ydbio.2014.06.023) PubMed DOI PMC
Mihajlovic AI, Bruce AW. 2016. Rho-associated protein kinase regulates subcellular localisation of Angiomotin and Hippo-signalling during preimplantation mouse embryo development. Reprod. Biomed. Online 33, 381–390. (doi:10.1016/j.rbmo.2016.06.028) PubMed DOI
Mihajlovic AI, Thamodaran V, Bruce AW. 2015. The first two cell-fate decisions of preimplantation mouse embryo development are not functionally independent. Sci. Rep. 5, 15034 (doi:10.1038/srep15034) PubMed DOI PMC
Tao H, Inoue K, Kiyonari H, Bassuk AG, Axelrod JD, Sasaki H, Aizawa S, Ueno N. 2012. Nuclear localization of Prickle2 is required to establish cell polarity during early mouse embryogenesis. Dev. Biol. 364, 138–148. (doi:10.1016/j.ydbio.2012.01.025) PubMed DOI PMC
Cao Z, Carey TS, Ganguly A, Wilson CA, Paul S, Knott JG. 2015. Transcription factor AP-2gamma induces early Cdx2 expression and represses HIPPO signaling to specify the trophectoderm lineage. Development 142, 1606–1615. (doi:10.1242/dev.120238) PubMed DOI PMC
Choi I, Carey TS, Wilson CA, Knott JG. 2012. Transcription factor AP-2γ is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis. Development 139, 4623–4632. (doi:10.1242/dev.086645) PubMed DOI PMC
Alarcon VB. 2010. Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo. Biol. Reprod. 83, 347–358. (doi:10.1095/biolreprod.110.084400) PubMed DOI PMC
Ralston A, Rossant J. 2008. Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev. Biol. 313, 614–629. (doi:10.1016/j.ydbio.2007.10.054) PubMed DOI
Kawagishi R, Tahara M, Sawada K, Ikebuchi Y, Morishige K, Sakata M, Tasaka K, Murata Y. 2004. Rho-kinase is involved in mouse blastocyst cavity formation. Biochem. Biophys. Res. Commun. 319, 643–648. (doi:10.1016/j.bbrc.2004.05.040) PubMed DOI
Dard N, Le T, Maro B, Louvet-Vallee S. 2009. Inactivation of aPKClambda reveals a context dependent allocation of cell lineages in preimplantation mouse embryos. PLoS ONE 4, e7117 (doi:10.1371/journal.pone.0007117) PubMed DOI PMC
Morris SA, Teo RT, Li H, Robson P, Glover DM, Zernicka-Goetz M. 2010. Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc. Natl Acad. Sci. USA 107, 6364–6369. (doi:10.1073/pnas.0915063107) PubMed DOI PMC
Johnson MH. 2009. From mouse egg to mouse embryo: polarities, axes, and tissues. Annu. Rev. Cell Dev. Biol. 25, 483–512. (doi:10.1146/annurev.cellbio.042308.113348) PubMed DOI
Dard N, Louvet-Vallee S, Maro B. 2009. Orientation of mitotic spindles during the 8- to 16-cell stage transition in mouse embryos. PLoS ONE 4, e8171 (doi:10.1371/journal.pone.0008171) PubMed DOI PMC
Ajduk A, Biswas Shivhare S, Zernicka-Goetz M. 2014. The basal position of nuclei is one pre-requisite for asymmetric cell divisions in the early mouse embryo. Dev. Biol. 392, 133–140. (doi:10.1016/j.ydbio.2014.05.009) PubMed DOI PMC
Humiecka M, Szpila M, Klos P, Maleszewski M, Szczepanska K. 2017. Mouse blastomeres acquire ability to divide asymmetrically before compaction. PLoS ONE 12, e0175032 (doi:10.1371/journal.pone.0175032) PubMed DOI PMC
Strauss B, Adams RJ, Papalopulu N. 2006. A default mechanism of spindle orientation based on cell shape is sufficient to generate cell-fate diversity in polarized Xenopus blastomeres. Development 133, 3883–3893. (doi:10.1242/dev.02578) PubMed DOI
Anani S, Bhat S, Honma-Yamanaka N, Krawchuk D, Yamanaka Y. 2014. Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development 141, 2813–2824. (doi:10.1242/dev.107276) PubMed DOI
Samarage CR, White MD, Alvarez YD, Fierro-Gonzalez JC, Henon Y, Jesudason EC, Bissiere S, Fouras A, Plachta N. 2015. Cortical tension allocates the first inner cells of the mammalian embryo. Dev. Cell 34, 435–447. (doi:10.1016/j.devcel.2015.07.004) PubMed DOI
Watanabe T, Biggins JS, Tannan NB, Srinivas S. 2014. Limited predictive value of blastomere angle of division in trophectoderm and inner cell mass specification. Development 141, 2279–2288. (doi:10.1242/dev.103267) PubMed DOI PMC
Plusa B, Frankenberg S, Chalmers A, Hadjantonakis AK, Moore CA, Papalopulu N, Papaioannou VE, Glover DM, Zernicka-Goetz M. 2005. Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J. Cell Sci. 118, 505–515. (doi:10.1242/jcs.01666) PubMed DOI
Nishioka N, et al. 2009. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410. (doi:10.1016/j.devcel.2009.02.003) PubMed DOI
Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, Nakao K, Sasaki H. 2008. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech. Dev. 125, 270–283. (doi:10.1016/j.mod.2007.11.002) PubMed DOI
Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, Buonanno A. 2007. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134, 3827–3836. (doi:10.1242/dev.010223) PubMed DOI
Cockburn K, Biechele S, Garner J, Rossant J. 2013. The Hippo pathway member Nf2 is required for inner cell mass specification. Curr. Biol. 23, 1195–1201. (doi:10.1016/j.cub.2013.05.044) PubMed DOI
Leung CY, Zernicka-Goetz M. 2013. Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms. Nat. Commun. 4, 2251 (doi:10.1038/ncomms3251) PubMed DOI PMC
Lorthongpanich C, Messerschmidt DM, Chan SW, Hong W, Knowles BB, Solter D. 2013. Temporal reduction of LATS kinases in the early preimplantation embryo prevents ICM lineage differentiation. Genes Dev. 27, 1441–1446. (doi:10.1101/gad.219618.113) PubMed DOI PMC
Gladden AB, Hebert AM, Schneeberger EE, McClatchey AI. 2010. The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev. Cell 19, 727–739. (doi:10.1016/j.devcel.2010.10.008) PubMed DOI PMC
Wicklow E, Blij S, Frum T, Hirate Y, Lang RA, Sasaki H, Ralston A. 2014. HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLoS Genet. 10, e1004618 (doi:10.1371/journal.pgen.1004618) PubMed DOI PMC
Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, Robson P. 2010. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18, 675–685. (doi:10.1016/j.devcel.2010.02.012) PubMed DOI
Krupa M, Mazur E, Szczepanska K, Filimonow K, Maleszewski M, Suwinska A. 2014. Allocation of inner cells to epiblast vs primitive endoderm in the mouse embryo is biased but not determined by the round of asymmetric divisions (8→16- and 16→32-cells). Dev. Biol. 385, 136–148. (doi:10.1016/j.ydbio.2013.09.008) PubMed DOI
Morris SA, Graham SJ, Jedrusik A, Zernicka-Goetz M. 2013. The differential response to Fgf signalling in cells internalized at different times influences lineage segregation in preimplantation mouse embryos. Open Biol. 3, 130104 (doi:10.1098/rsob.130104) PubMed DOI PMC
Johnson MH, Ziomek CA. 1983. Cell interactions influence the fate of mouse blastomeres undergoing the transition from the 16- to the 32-cell stage. Dev. Biol. 95, 211–218. (doi:10.1016/0012-1606(83)90019-2) PubMed DOI