How great thou ART: biomechanical properties of oocytes and embryos as indicators of quality in assisted reproductive technologies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38425501
PubMed Central
PMC10902081
DOI
10.3389/fcell.2024.1342905
PII: 1342905
Knihovny.cz E-zdroje
- Klíčová slova
- assisted reproductive technologies, biomechanics, cytoskeleton, embryo, mouse, oocyte, preimplantation development, quality assessment,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Assisted Reproductive Technologies (ART) have revolutionized infertility treatment and animal breeding, but their success largely depends on selecting high-quality oocytes for fertilization and embryos for transfer. During preimplantation development, embryos undergo complex morphogenetic processes, such as compaction and cavitation, driven by cellular forces dependent on cytoskeletal dynamics and cell-cell interactions. These processes are pivotal in dictating an embryo's capacity to implant and progress to full-term development. Hence, a comprehensive grasp of the biomechanical attributes characterizing healthy oocytes and embryos is essential for selecting those with higher developmental potential. Various noninvasive techniques have emerged as valuable tools for assessing biomechanical properties without disturbing the oocyte or embryo physiological state, including morphokinetics, analysis of cytoplasmic movement velocity, or quantification of cortical tension and elasticity using microaspiration. By shedding light on the cytoskeletal processes involved in chromosome segregation, cytokinesis, cellular trafficking, and cell adhesion, underlying oogenesis, and embryonic development, this review explores the significance of embryo biomechanics in ART and its potential implications for improving clinical IVF outcomes, offering valuable insights and research directions to enhance oocyte and embryo selection procedures.
Zobrazit více v PubMed
Aghigh A., Bancelin S., Rivard M., Pinsard M., Ibrahim H., Légaré F. (2023). Second harmonic generation microscopy: a powerful tool for bio-imaging. Biophys. Rev. 15, 43–70. 10.1007/S12551-022-01041-6 PubMed DOI PMC
Ajduk A., Ilozue T., Windsor S., Yu Y., Seres K. B., Bomphrey R. J., et al. (2011). Rhythmic actomyosin-driven contractions induced by sperm entry predict mammalian embryo viability. Nat. Commun. 2, 417–7. 10.1038/ncomms1424 PubMed DOI PMC
Ajduk A., Szkulmowski M. (2019). Light microscopy of mammalian gametes and embryos: methods and applications. Int. J. Dev. Biol. 63, 235–244. 10.1387/ijdb.180300aa PubMed DOI
Ajduk A., Zernicka-Goetz M. (2013). Quality control of embryo development. Mol. Asp. Med. 34, 903–918. 10.1016/j.mam.2013.03.001 PubMed DOI
Aksenov M. Y., Aksenova M. V., Butterfield D. A., Geddes J. W., Markesbery W. R. (2001). Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103, 373–383. 10.1016/S0306-4522(00)00580-7 PubMed DOI
Anagnostopoulou C., Maldonado Rosas I., Singh N., Gugnani N., Chockalingham A., Singh K., et al. (2022). Oocyte quality and embryo selection strategies: a review for the embryologists, by the embryologists. Panminerva Med. 64, 171–184. 10.23736/S0031-0808.22.04680-8 PubMed DOI
Andolfi L., Masiero E., Giolo E., Martinelli M., Luppi S., Dal Zilio S., et al. (2016). Investigating the mechanical properties of zona pellucida of whole human oocytes by atomic force spectroscopy. Integr. Biol. 8, 886–893. 10.1039/C6IB00044D PubMed DOI
Aplin J. D., Ruane P. T. (2017). Embryo-epithelium interactions during implantation at a glance. J. Cell Sci. 130, 15–22. 10.1242/jcs.175943 PubMed DOI
Arena R., Bisogno S., Gasior Ł., Rudnicka J., Bernhardt L., Haaf T., et al. (2021). Lipid droplets in mammalian eggs are utilized during embryonic diapause. Proc. Natl. Acad. Sci. U.S.A. 118, e2018362118. 10.1073/pnas.2018362118 PubMed DOI PMC
Baribault H., Price J., Miyai K., Oshima R. G. (1993). Mid-gestational lethality in mice lacking keratin 8. Genes Dev. 7, 1191–1202. 10.1101/gad.7.7a.1191 PubMed DOI
Battistella A., Andolfi L., Zanetti M., Dal Zilio S., Stebel M., Ricci G., et al. (2022). Atomic force spectroscopy-based essay to evaluate oocyte postovulatory aging. Bioeng. Transl. Med. 7, e10294. 10.1002/BTM2.10294 PubMed DOI PMC
Bazer F. W., Spencer T. E., Johnson G. A., Burghardt R. C., Wu G. (2009). Comparative aspects of implantation. Reproduction 138, 195–209. 10.1530/REP-09-0158 PubMed DOI
Berlett B. S., Stadtman E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313–20316. 10.1074/jbc.272.33.20313 PubMed DOI
Bertet C., Sulak L., Lecuit T. (2004). Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671. 10.1038/nature02590 PubMed DOI
Blondin P. (2017). Logistics of large scale commercial IVF embryo production. Reprod. Fertil. Dev. 29, 32–36. 10.1071/RD16317 PubMed DOI
Boccaccio A., Frassanito M. C., Lamberti L., Brunelli R., Maulucci G., Monaci M., et al. (2012). Nanoscale characterization of the biomechanical hardening of bovine zona pellucida. J. R. Soc. Interface 9, 2871–2882. 10.1098/RSIF.2012.0269 PubMed DOI PMC
Bodri D., Sugimoto T., Yao Serna J., Kawachiya S., Kato R., Matsumoto T. (2016). Blastocyst collapse is not an independent predictor of reduced live birth: a time-lapse study. Fertil. Steril. 105, 1476–1483. 10.1016/j.fertnstert.2016.02.014 PubMed DOI
Bogliolo L., Murrone O., Di Emidio G., Piccinini M., Ariu F., Ledda S., et al. (2013). Raman spectroscopy-based approach to detect aging-related oxidative damage in the mouse oocyte. J. Assist. Reprod. Genet. 30, 877–882. 10.1007/s10815-013-0046-6 PubMed DOI PMC
Bon P., Lécart S., Fort E., Lévêque-Fort S. (2014). Fast label-free cytoskeletal network imaging in living mammalian cells. Biophys. J. 106, 1588–1595. 10.1016/J.BPJ.2014.02.023 PubMed DOI PMC
Bormann C. L., Thirumalaraju P., Kanakasabapathy M. K., Kandula H., Souter I., Dimitriadis I., et al. (2020). Consistency and objectivity of automated embryo assessments using deep neural networks. Fertil. Steril. 113, 781–787. 10.1016/j.fertnstert.2019.12.004 PubMed DOI PMC
Bradley J., Pope I., Masia F., Sanusi R., Langbein W., Swann K., et al. (2016). Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy. Development 143, 2238–2247. 10.1242/dev.129908 PubMed DOI PMC
Bui T. T. H., Belli M., Fassina L., Vigone G., Merico V., Garagna S., et al. (2017). Cytoplasmic movement profiles of mouse surrounding nucleolus and not-surrounding nucleolus antral oocytes during meiotic resumption. Mol. Reprod. Dev. 84, 356–362. 10.1002/mrd.22788 PubMed DOI
Caamaño J. N., Muñoz M., Diez C., Gómez E. (2010). Polarized light microscopy in mammalian oocytes. Reprod. Domest. Anim. 45, 49–56. 10.1111/j.1439-0531.2010.01621.x PubMed DOI
Campàs O. (2016). A toolbox to explore the mechanics of living embryonic tissues. Semin. Cell Dev. Biol. 55, 119–130. 10.1016/J.SEMCDB.2016.03.011 PubMed DOI PMC
Carroll J., Depypere H., Matthews C. D. (1990). Freeze-thaw-induced changes of the zona pellucida explains decreased rates of fertilization in frozen-thawed mouse oocytes. J. Reprod. Fertil. 90, 547–553. 10.1530/jrf.0.0900547 PubMed DOI
Chaigne A., Campillo C., Gov N. S., Voituriez R., Azoury J., Umaña-Diaz C., et al. (2013). A soft cortex is essential for asymmetric spindle positioning in mouse oocytes. Nat. Cell Biol. 15, 958–966. 10.1038/ncb2799 PubMed DOI
Chaigne A., Campillo C., Gov N. S., Voituriez R., Sykes C., Verlhac M. H., et al. (2015). A narrow window of cortical tension guides asymmetric spindle positioning in the mouse oocyte. Nat. Commun. 6, 6027. 10.1038/ncomms7027 PubMed DOI
Chaigne A., Campillo C., Voituriez R., Gov N. S., Sykes C., Verlhac M. H., et al. (2016). F-actin mechanics control spindle centring in the mouse zygote. Nat. Commun. 7, 10253. 10.1038/ncomms10253 PubMed DOI PMC
Chan C. J., Costanzo M., Ruiz-Herrero T., Mönke G., Petrie R. J., Bergert M., et al. (2019). Hydraulic control of mammalian embryo size and cell fate. Nature 571, 112–116. 10.1038/s41586-019-1309-x PubMed DOI
Chapuis A., Gala A., Ferrières-Hoa A., Mullet T., Bringer-Deutsch S., Vintejoux E., et al. (2017). Sperm quality and paternal age: effect on blastocyst formation and pregnancy rates. Basic Clin. Androl. 27, 2. 10.1186/s12610-016-0045-4 PubMed DOI PMC
Charras G. T., Hu C. K., Coughlin M., Mitchison T. J. (2006). Reassembly of contractile actin cortex in cell blebs. J. Cell Biol. 175, 477–490. 10.1083/jcb.200602085 PubMed DOI PMC
Colaco S., Sakkas D. (2018). Paternal factors contributing to embryo quality. J. Assist. Reprod. Genet. 35, 1953–1968. 10.1007/s10815-018-1304-4 PubMed DOI PMC
Consensus Group C. (2020). ‘There is only one thing that is truly important in an IVF laboratory: everything’ Cairo Consensus Guidelines on IVF Culture Conditions. Reprod. Biomed. Online 40, 33–60. 10.1016/j.rbmo.2019.10.003 PubMed DOI
Coravos J. S., Mason F. M., Martin A. C. (2017). Actomyosin pulsing in tissue integrity maintenance during morphogenesis. Trends Cell Biol. 27, 276–283. 10.1016/j.tcb.2016.11.008 PubMed DOI PMC
Coumailleau F., Fürthauer M., Knoblich J. A., González-Gaitán M. (2009). Directional Delta and Notch trafficking in Sara endosomes during asymmetric cell division. Nature 458, 1051–1055. 10.1038/nature07854 PubMed DOI
Cui W. (2010). Mother or nothing: the agony of infertility. Bull. World Health Organ. 88, 881–882. 10.2471/blt.10.011210 PubMed DOI PMC
Czajkowska K., Ajduk A. (2023). Mitochondrial activity and redox status in oocytes from old mice: the interplay between maternal and postovulatory aging. Theriogenology 204, 18–30. 10.1016/j.theriogenology.2023.03.022 PubMed DOI
Daar A. S., Merali Z. (2002). “Infertility and social suffering: the case of ART in developing countries,” in “Medical, ethical and social aspects of assisted reproduction” held at WHO headquarters in Geneva, Switzerland 17–21 september 2001. Editors Vayena E., Rowe P. J., Griffin D. P. (Geneva: World Health Organization; ), 15–21.
Dalton C. M., Carroll J. (2013). Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J. Cell Sci. 126, 2955–2964. 10.1242/jcs.128744 PubMed DOI PMC
Davidson B., Murray A. A., Elfick A., Spears N. (2013). Raman micro-spectroscopy can Be used to investigate the developmental stage of the mouse oocyte. PLoS ONE 8, e67972. 10.1371/journal.pone.0067972 PubMed DOI PMC
D’Avino P. P., Giansanti M. G., Petronczki M. (2015). Cytokinesis in animal cells. Cold Spring Harb. Perspect. Biol. 7, a015834. 10.1101/cshperspect.a015834 PubMed DOI PMC
Derivery E., Seum C., Daeden A., Loubéry S., Holtzer L., Jülicher F., et al. (2015). Polarized endosome dynamics by spindle asymmetry during asymmetric cell division. Nature 528, 280–285. 10.1038/nature16443 PubMed DOI
De Roo C., Tilleman K., Tsjoen G., De Sutter P. (2016). Fertility options in transgender people. Int. Rev. Psychiatry. 28, 112–119. 10.3109/09540261.2015.1084275 PubMed DOI
Di Santo M., Tarozzi N., Nadalini M., Borini A. (2012). Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv. Urol. 2012, 854837. 10.1155/2012/854837 PubMed DOI PMC
D’Occhio M. J., Campanile G., Zicarelli L., Visintin J. A., Baruselli P. S. (2020). Adhesion molecules in gamete transport, fertilization, early embryonic development, and implantation—role in establishing a pregnancy in cattle: a review. Mol. Reprod. Dev. 87, 206–222. 10.1002/mrd.23312 PubMed DOI
Du Q. Y., Wang E. Y., Huang Y., Guo X. Y., Xiong Y. J., Yu Y. P., et al. (2016). Blastocoele expansion degree predicts live birth after single blastocyst transfer for fresh and vitrified/warmed single blastocyst transfer cycles. Fertil. Steril. 105, 910–919. 10.1016/j.fertnstert.2015.12.014 PubMed DOI
Ducibella T., Kurasawa S., Rangarajan S., Kopf G. S., Schultz R. M. (1990). Precocious loss of cortical granules during mouse oocyte meiotic maturation and correlation with an egg-induced modification of the zona pellucida. Dev. Biol. 137, 46–55. 10.1016/0012-1606(90)90006-5 PubMed DOI
Dumbauld D. W., Lee T. T., Singh A., Scrimgeour J., Gersbach C. A., Zamir E. A., et al. (2013). How vinculin regulates force transmission. Proc. Natl. Acad. Sci. U. S. A. 110, 9788–9793. 10.1073/PNAS.1216209110 PubMed DOI PMC
Dumont J., Million K., Sunderland K., Rassinier P., Lim H., Leader B., et al. (2007). Formin-2 is required for spindle migration and for the late steps of cytokinesis in mouse oocytes. Dev. Biol. 301, 254–265. 10.1016/j.ydbio.2006.08.044 PubMed DOI
Dumortier J. G., Le Verge-Serandour M., Tortorelli A. F., Mielke A., De Plater L., Turlier H., et al. (2019). Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Sci. (80-. ) 365, 465–468. 10.1126/science.aaw7709 PubMed DOI
Dunkley S., Scheffler K., Mogessie B. (2022). Cytoskeletal form and function in mammalian oocytes and zygotes. Curr. Opin. Cell Biol. 75, 102073. 10.1016/J.CEB.2022.02.007 PubMed DOI
Ebner T., Moser M., Sommergruber M., Puchner M., Wiesinger R., Tews G. (2003). Developmental competence of oocytes showing increased cytoplasmic viscosity. Hum. Reprod. 18, 1294–1298. 10.1093/humrep/deg232 PubMed DOI
Ebner T., Oppelt P., Radler E., Allerstorfer C., Habelsberger A., Mayer R. B., et al. (2017). Morphokinetics of vitrified and warmed blastocysts predicts implantation potential. J. Assist. Reprod. Genet. 34, 239–244. 10.1007/s10815-016-0855-5 PubMed DOI PMC
Eckert J. J., McCallum A., Mears A., Rumsby M. G., Cameron I. T., Fleming T. P. (2004). Specific PKC isoforms regulate blastocoel formation during mouse preimplantation development. Dev. Biol. 274, 384–401. 10.1016/J.YDBIO.2004.07.027 PubMed DOI
Eddy R. J., Pierini L. M., Matsumura F., Maxfield F. R. (2000). Ca2+-dependent myosin II activation is required for uropod retraction during neutrophil migration. J. Cell Sci. 113, 1287–1298. 10.1242/jcs.113.7.1287 PubMed DOI
European Society of Human Reproduction and Embryology (ESHRE) (2023). ART in Europe, 2019: results generated from European registries by ESHRE. Available from: https://www.eshre.eu. PubMed PMC
Evans C. L., Xie X. S. (2008). Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 1, 883–909. 10.1146/annurev.anchem.1.031207.112754 PubMed DOI
Fan W., Huang T., Wu T., Bai H., Kawahara M., Takahashi M. (2022). Zona pellucida removal by acid Tyrode’s solution affects pre- and post-implantation development and gene expression in mouse embryos†. Biol. Reprod. 107, 1228–1241. 10.1093/biolre/ioac155 PubMed DOI
Fidler A. T., Bernstein J. (1999). Infertility: from a personal to a public health problem. Public Health Rep. 14, 494–511. 10.1093/phr/114.6.494 PubMed DOI PMC
FitzHarris G., Marangos P., Carroll J. (2007). Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein. Dev. Biol. 305, 133–144. 10.1016/j.ydbio.2007.02.006 PubMed DOI
Fujiwara K., Pollard T. D. (1976). Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J. Cell Biol. 71, 848–875. 10.1083/jcb.71.3.848 PubMed DOI PMC
Gandolfi F., Brevini T. A. L. (2010). RFD Award Lecture 2009. in vitro maturation of farm animal oocytes: a useful tool for investigating the mechanisms leading to full-term development. Reprod. Fertil. Dev. 22, 495–507. 10.1071/RD09151 PubMed DOI
Gardner D. K., Balaban B. (2016). Assessment of human embryo development using morphological criteria in an era of time-lapse, algorithms and ‘OMICS’: is looking good still important? Mol. Hum. Rep. 22, 704–718. 10.1093/molehr/gaw057 PubMed DOI
Gazzo E., Peña F., Valdéz F., Chung A., Velit M., Ascenzo M., et al. (2020). Blastocyst contractions are strongly related with aneuploidy, lower implantation rates, and slow-cleaving embryos: a time lapse study. J. Bras. Reprod. Assist. 24, 77–81. 10.5935/1518-0557.20190053 PubMed DOI PMC
Gimenes F., Souza R. P., Bento J. C., Teixeira J. J. V., Maria-Engler S. S., Bonini M. G., et al. (2014). Male infertility: a public health issue caused by sexually transmitted pathogens. Nat. Rev. Urol. 11, 672–687. 10.1038/nrurol.2014.285 PubMed DOI
Giuliano R., Maione A., Vallefuoco A., Sorrentino U., Zuccarello D. (2023). Preimplantation genetic testing for genetic diseases: limits and review of current literature. Genes 14, 2095. 10.3390/genes14112095 PubMed DOI PMC
Gómez-Martínez R., Hernández-Pinto A. M., Duch M., Vázquez P., Zinoviev K., De La Rosa E. J., et al. (2013). Silicon chips detect intracellular pressure changes in living cells. Nat. Nanotechnol. 8, 517–521. 10.1038/nnano.2013.118 PubMed DOI
Goossens K., Tesfaye D., Rings F., Schellander K., Hölker M., Van Poucke M., et al. (2010). Suppression of keratin 18 gene expression in bovine blastocysts by RNA interference. Reprod. Fertil. Dev. 22, 395–404. 10.1071/RD09080 PubMed DOI
Hansen P. J. (2014). Current and future assisted reproductive technologies for mammalian farm animals. Adv. Exp. Med. Biol. 752, 1–22. 10.1007/978-1-4614-8887-3_1 PubMed DOI
Haucke E., Santos A. N., Simm A., Henning C., Glomb M. A., Gürke J., et al. (2014). Accumulation of advanced glycation end products in the rabbit blastocyst under maternal diabetes. Reproduction 148, 169–178. 10.1530/REP-14-0149 PubMed DOI
Hendriks W. K., Roelen B. A. J., Colenbrander B., Stout T. A. E. (2015). Cellular damage suffered by equine embryos after exposure to cryoprotectants or cryopreservation by slow-freezing or vitrification. Equine Vet. J. 47, 701–707. 10.1111/evj.12341 PubMed DOI
Hernebring M., Brolén G., Aguilaniu H., Semb H., Nyström T. (2006). Elimination of damaged proteins during differentiation of embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 103, 7700–7705. 10.1073/pnas.0510944103 PubMed DOI PMC
Herrick J. R. (2019). Assisted reproductive technologies for endangered species conservation: developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod. 100, 1158–1170. 10.1093/biolre/ioz025 PubMed DOI
Hesse M., Franz T., Tamai Y., Taketo M. M., Magin T. M. (2000). Targeted deletion of keratins 18 and 19 leads to trophoblast fragility and early embryonic lethality. EMBO J. 19, 5060–5070. 10.1093/emboj/19.19.5060 PubMed DOI PMC
Hildebrandt T. B., Hermes R., Colleoni S., Diecke S., Holtze S., Renfree M. B., et al. (2018). Embryos and embryonic stem cells from the white rhinoceros. Nat. Commun. 9, 2589. 10.1038/s41467-018-04959-2 PubMed DOI PMC
Hosu B. G., Mullen S. F., Critser J. K., Forgacs G. (2008). Reversible disassembly of the actin cytoskeleton improves the survival rate and developmental competence of cryopreserved mouse oocytes. PLoS One 3, e2787, e2787. 10.1371/journal.pone.0002787 PubMed DOI PMC
Hsieh C.-S., Chen S.-U., Lee Y.-W., Yang Y.-S., Sun C.-K. (2008). Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos. Opt. Express 16, 11574–11588. 10.1364/oe.16.011574 PubMed DOI
Huang T. T., Huang D. H., Ahn H. J., Arnett C., Huang C. T. (2019). Early blastocyst expansion in euploid and aneuploid human embryos: evidence for a non-invasive and quantitative marker for embryo selection. Reprod. Biomed. Online 39, 27–39. 10.1016/j.rbmo.2019.01.010 PubMed DOI
Huang T. T. F., Chinn K., Kosasa T., Ahn H. J., Kessel B. (2016). Morphokinetics of human blastocyst expansion in vitro . Reprod. Biomed. Online 33, 659–667. 10.1016/j.rbmo.2016.08.020 PubMed DOI
Human Fertilisation and Embryology Authority (HEFA) (2021). HFEA Fertility treatment 2019: trends and figures. Available from: https://www.hfea.gov.uk.
Inhorn M. C., van Balen F., Sandelowski M., de Lacey S., Thompson C. M., Greil A. L., et al. (2002). Infertility around the globe: new thinking on childlessness, gender, and reproductive technologies., infertility around the globe. Berkeley: University of California Press. 10.1525/9780520927810 DOI
Ishigaki M., Hashimoto K., Sato H., Ozaki Y. (2017). Non-destructive monitoring of mouse embryo development and its qualitative evaluation at the molecular level using Raman spectroscopy. Sci. Rep. 7, 43942. 10.1038/srep43942 PubMed DOI PMC
Iwasawa T., Takahashi K., Goto M., Anzai M., Shirasawa H., Sato W., et al. (2019). Human frozen-thawed blastocyst morphokinetics observed using time-lapse cinematography reflects the number of trophectoderm cells. PLoS One 14, e0210992. 10.1371/journal.pone.0210992 PubMed DOI PMC
Jasensky J., Boughton A. P., Khmaladze A., Ding J., Zhang C., Swain J. E., et al. (2016). Live-cell quantification and comparison of mammalian oocyte cytosolic lipid content between species, during development, and in relation to body composition using nonlinear vibrational microscopy. Analyst 141, 4694–4706. 10.1039/c6an00629a PubMed DOI
Jurema M. W., Nogueira D. (2006). In vitro maturation of human oocytes for assisted reproduction. Fertil. Steril. 86, 1277–1291. 10.1016/j.fertnstert.2006.02.126 PubMed DOI
Karnowski K., Ajduk A., Wieloch B., Tamborski S., Krawiec K., Wojtkowski M., et al. (2017). Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos. Sci. Rep. 7, 4165. 10.1038/s41598-017-04220-8 PubMed DOI PMC
Khalilian M., Navidbakhsh M., Valojerdi M. R., Chizari M., Yazdi P. E. (2010). Estimating Young’s modulus of zona pellucida by micropipette aspiration in combination with theoretical models of ovum. J. R. Soc. Interface 7, 687–694. 10.1098/rsif.2009.0380 PubMed DOI PMC
Kochan J., Niżański W., Moreira N., Cubas Z. S., Nowak A., Prochowska S., et al. (2019). ARTs in wild felid conservation programmes in Poland and in the world. J. Vet. Res. 63, 457–464. 10.2478/jvetres-2019-0043 PubMed DOI PMC
Kölle S., Reese S., Kummer W. (2009). New aspects of gamete transport, fertilization, and embryonic development in the oviduct gained by means of live cell imaging. Theriogenology 73, 786–795. 10.1016/j.theriogenology.2009.11.002 PubMed DOI
Kragh M. F., Karstoft H. (2021). Embryo selection with artificial intelligence: how to evaluate and compare methods? J. Assist. Reprod. Genet. 38, 1675–1689. 10.1007/s10815-021-02254-6 PubMed DOI PMC
Lanyon J. M., Burgess E. A. (2019). “Reproductive science methods for wild, fully-marine mammals: current approaches and future applications,” in Advances in experimental medicine and Biology (New York LLC: Springer; ), 363–411. 10.1007/978-3-030-23633-5_13 PubMed DOI
Larson S. M., Lee H. J., Hung P. H., Matthews L. M., Robinson D. N., Evans J. P. (2010). Cortical mechanics and meiosis II completion in mammalian oocytes are mediated by myosin-II and Ezrin-Radixin-Moesin (ERM) proteins. Mol. Biol. Cell 21, 3182–3192. 10.1091/mbc.E10-01-0066 PubMed DOI PMC
Leader B., Lim H., Carabatsos M. J., Harrington A., Ecsedy J., Pellman D., et al. (2002). Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat. Cell Biol. 4, 921–928. 10.1038/ncb880 PubMed DOI
Lemoine M. E., Ravitsky V. (2013). Toward a public health approach to infertility: the ethical dimensions of infertility prevention. Public Health Ethics 6, 287–301. 10.1093/phe/pht026 DOI
Leoni G. G., Berlinguer F., Succu S., Bebbere D., Mossa F., Madeddu M., et al. (2008). A new selection criterion to assess good quality ovine blastocysts after vitrification and to predict their transfer into recipients. Mol. Reprod. Dev. 75, 373–382. 10.1002/mrd.20754 PubMed DOI
Letourneau J. M., Ebbel E. E., Katz P. P., Oktay K. H., McCulloch C. E., Ai W. Z., et al. (2012). Acute ovarian failure underestimates age-specific reproductive impairment for young women undergoing chemotherapy for cancer. Cancer 118, 1933–1939. 10.1002/cncr.26403 PubMed DOI PMC
Levine R. L. (2002). Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic. Biol. Med. 32, 790–796. 10.1016/S0891-5849(02)00765-7 PubMed DOI
Li L., Zheng P., Dean J. (2010). Maternal control of early mouse development. Development 137, 859–870. 10.1242/dev.039487 PubMed DOI PMC
Liang T., Motan T. (2016). Mature oocyte cryopreservation for fertility preservation. Adv. Exp. Med. Biol. 951, 155–161. 10.1007/978-3-319-45457-3_13 PubMed DOI
Lim H. Y. G., Alvarez Y. D., Gasnier M., Wang Y., Tetlak P., Bissiere S., et al. (2020). Keratins are asymmetrically inherited fate determinants in the mammalian embryo. Nature 585, 404–409. 10.1038/s41586-020-2647-4 PubMed DOI
Lin R., Feng G., Shu J., Zhang B., Zhou H., Gan X., et al. (2017). Blastocoele re-expansion time in vitrified–warmed cycles is a strong predictor of clinical pregnancy outcome. J. Obstet. Gynaecol. Res. 43, 689–695. 10.1111/jog.13257 PubMed DOI
Lindheim S. R., Klock S. C. (2018). Oocyte donation: lessons from the past, directions for the future. Fertil. Steril. 110, 979–980. 10.1016/j.fertnstert.2018.09.019 PubMed DOI
Liu X., Fernandes R., Jurisicova A., Casper R., Sun Yu, Liu X., et al. (2010). In situ mechanical characterization of mouse oocytes using a cell holding device. Lab. Chip 10, 2154–2161. 10.1039/C004706F PubMed DOI
Liu X., Shi J., Zong Z., Wan K. T., Sun Y. (2012). Elastic and viscoelastic characterization of mouse oocytes using micropipette indentation. Ann. Biomed. Eng. 40, 2122–2130. 10.1007/s10439-012-0595-3 PubMed DOI
Lord T., Aitken J. R., John Aitken R., Aitken J. R. (2013). Oxidative stress and ageing of the post-ovulatory oocyte. Reproduction 146, 217–227. 10.1530/rep-13-0111 PubMed DOI
Louvet S., Aghion J., Santa-Maria A., Mangeat P., Maro B. (1996). Ezrin becomes restricted to outer cells following asymmetrical division in the preimplantation mouse embryo. Dev. Biol. 177, 568–579. 10.1006/dbio.1996.0186 PubMed DOI
Lu H., Hesse M., Peters B., Magin T. M. (2005). Type II keratins precede type I keratins during early embryonic development. Eur. J. Cell Biol. 84, 709–718. 10.1016/j.ejcb.2005.04.001 PubMed DOI
Ma N., Mochel N. R., Pham P. D., Yoo T. Y., Cho K. W. Y., Digman M. A. (2019). Label-free assessment of pre-implantation embryo quality by the Fluorescence Lifetime Imaging Microscopy (FLIM)-phasor approach. Sci. Rep. 9, 13206. 10.1038/s41598-019-48107-2 PubMed DOI PMC
Macaluso M., Wright-Schnapp T. J., Chandra A., Johnson R., Satterwhite C. L., Pulver A., et al. (2010). A public health focus on infertility prevention, detection, and management. Fertil. Steril. 93, 16.e1–10. 10.1016/j.fertnstert.2008.09.046 PubMed DOI
Mackenzie A. C. L., Kyle D. D., McGinnis L. A., Lee H. J., Aldana N., Robinson D. N., et al. (2016). Cortical mechanics and myosin-II abnormalities associated with post-ovulatory aging: implications for functional defects in aged eggs. Mol. Hum. Reprod. 22, 397–409. 10.1093/molehr/gaw019 PubMed DOI PMC
Madan P., Rose K., Watson A. J. (2007). Na/K-ATPase beta1 subunit expression is required for blastocyst formation and normal assembly of trophectoderm tight junction-associated proteins. J. Biol. Chem. 282, 12127–12134. 10.1074/JBC.M700696200 PubMed DOI
Madero J. I., Manotas M. C., García-Acero M., López Cáceres A., López Jaimes C. (2023). Preimplantation genetic testing in assisted reproduction. Minerva Obstet. Gynecol. 75, 260–272. 10.23736/S2724-606X.21.04805-3 PubMed DOI
Maître J. L., Berthoumieux H., Krens S. F. G., Salbreux G., Jülicher F., Paluch E., et al. (2012). Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338, 253–256. 10.1126/science.1225399 PubMed DOI
Maître J. L., Niwayama R., Turlier H., Nedelec F., Hiiragi T. (2015). Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat. Cell Biol. 17, 849–855. 10.1038/ncb3185 PubMed DOI
Maître J. L., Turlier H., Illukkumbura R., Eismann B., Niwayama R., Nédélec F., et al. (2016). Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536, 344–348. 10.1038/nature18958 PubMed DOI PMC
Marcos J., Pérez-Albalá S., Mifsud A., Molla M., Landeras J., Meseguer M. (2015). Collapse of blastocysts is strongly related to lower implantation success: a time-lapse study. Hum. Reprod. 30, 2501–2508. 10.1093/humrep/dev216 PubMed DOI
Marikawa Y., Alarcon V. B. (2018). RHOA activity in expanding blastocysts is essential to regulate HIPPO-YAP signaling and to maintain the trophectoderm-specific gene expression program in a ROCK/actin filament-independent manner. Mol. Hum. Reprod. 25, 43–60. 10.1093/molehr/gay048 PubMed DOI PMC
Martin A. C., Kaschube M., Wieschaus E. F. (2009). Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457, 495–499. 10.1038/nature07522 PubMed DOI PMC
Mastenbroek S., de Wert G., Adashi E. Y. (2021). The imperative of responsible innovation in reproductive medicine. N. Engl. J. Med. 385, 2096–2100. 10.1056/NEJMsb2101718 PubMed DOI
McCoy R. C., Summers M. C., McCollin A., Ottolini C. S., Ahuja K., Handyside A. H. (2023). Meiotic and mitotic aneuploidies drive arrest of in vitro fertilized human preimplantation embryos. Genome Med. 15, 77. 10.1186/S13073-023-01231-1 PubMed DOI PMC
McGinnis L. A., Lee H. J., Robinson D. N., Evans J. P. (2015). MAPK3/1 (ERK1/2) and myosin light chain kinase in mammalian eggs affect myosin-II function and regulate the metaphase II state in a calcium- and zinc-dependent manner. Biol. Reprod. 92, 146. 10.1095/biolreprod.114.127027 PubMed DOI PMC
Mehlmann L. M., Terasaki M., Jaffe L. A., Kline D. (1995). Reorganization of the endoplasmic reticulum during meiotic maturation of the mouse oocyte. Dev. Biol. 170, 607–615. 10.1006/dbio.1995.1240 PubMed DOI
Miao Y. L., Kikuchi K., Sun Q. Y., Schatten H. (2009). Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum. Reprod. Update. 15, 573–585. 10.1093/humupd/dmp014 PubMed DOI
Mignini Renzini M., Dal Canto M., Guglielmo M. C., Garcia D., De Ponti E., La Marca A., et al. (2021). Sperm donation: an alternative to improve post-ICSI live birth rates in advanced maternal age patients. Hum. Reprod. 36, 2148–2156. 10.1093/humrep/deab148 PubMed DOI
Mihajlović A. I., Bruce A. W. (2016). Rho-associated protein kinase regulates subcellular localisation of Angiomotin and Hippo-signalling during preimplantation mouse embryo development. Reprod. Biomed. Online 33, 381–390. 10.1016/j.rbmo.2016.06.028 PubMed DOI
Mihajlović A. I., Bruce A. W. (2017). The first cell-fate decision of mouse preimplantation embryo development: integrating cell position and polarity. Open Biol. 7, 170210. 10.1098/rsob.170210 PubMed DOI PMC
Mihalas B. P., Bromfield E. G., Sutherland J. M., De Iuliis G. N., McLaughlin E. A., John Aitken R., et al. (2018). Oxidative damage in naturally aged mouse oocytes is exacerbated by dysregulation of proteasomal activity. J. Biol. Chem. 293, 18944–18964. 10.1074/jbc.RA118.005751 PubMed DOI PMC
Milewski R., Szpila M., Ajduk A. (2018). Dynamics of cytoplasm and cleavage divisions correlates with preimplantation embryo development. Reproduction 155, 1–14. 10.1530/REP-17-0230 PubMed DOI
Mogessie B., Schuh M. (2017). Actin protects mammalian eggs against chromosome segregation errors. Science 357, 1647. 10.1126/science.aal1647 PubMed DOI
Mohler W., Millard A. C., Campagnola P. J. (2003). Second harmonic generation imaging of endogenous structural proteins. Methods 29, 97–109. 10.1016/S1046-2023(02)00292-X PubMed DOI
Montag M., Toth B., Strowitzki T. (2013). New approaches to embryo selection. Reprod. Biomed. Online 27, 539–546. 10.1016/j.rbmo.2013.05.013 PubMed DOI
Moore S. G., Hasler J. F. (2017). A 100-Year Review: reproductive technologies in dairy science. J. Dairy Sci. 100, 10314–10331. 10.3168/JDS.2017-13138 PubMed DOI
Morado S. A., Cetica P. D., Beconi M. T., Dalvit G. C. (2009). Reactive oxygen species in bovine oocyte maturation in vitro . Reprod. Fertil. Dev. 21, 608–614. 10.1071/RD08198 PubMed DOI
Moreno R. D., Schatten G., Ramalho-Santos J. (2002). Golgi apparatus dynamics during mouse oocyte in vitro maturation: effect of the membrane trafficking inhibitor brefeldin A. Biol. Reprod. 66, 1259–1266. 10.1095/biolreprod66.5.1259 PubMed DOI
Moriwaki K., Tsukita S., Furuse M. (2007). Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos. Dev. Biol. 312, 509–522. 10.1016/J.YDBIO.2007.09.049 PubMed DOI
Murayama Y., Mizuno J., Kamakura H., Fueta Y., Nakamura H., Akaishi K., et al. (2006). Mouse zona pellucida dynamically changes its elasticity during oocyte maturation, fertilization, and early embryo development. Hum. Cell 19, 119–125. 10.1111/j.1749-0774.2006.00019.x PubMed DOI
Murrell M., Oakes P. W., Lenz M., Gardel M. L. (2015). Forcing cells into shape: the mechanics of actomyosin contractility. Nat. Rev. Mol. Cell Biol. 16, 486–498. 10.1038/nrm4012 PubMed DOI PMC
Nagy Z. P., Jones-Colon S., Roos P., Botros L., Greco E., Dasig J., et al. (2009). Metabolomic assessment of oocyte viability. Reprod. Biomed. Online 18, 219–225. 10.1016/s1472-6483(10)60259-3 PubMed DOI
Nguyen T. L., Pradeep S., Judson-Torres R. L., Reed J., Teitell M. A., Zangle T. A. (2022). Quantitative phase imaging: recent advances and expanding potential in biomedicine. ACS Nano 16, 11516–11544. 10.1021/ACSNANO.1C11507 PubMed DOI PMC
Niimura S. (2003). Time-lapse videomicrographic analyses of contractions in mouse blastocysts. J. Reprod. Dev. 49, 413–423. 10.1262/jrd.49.413 PubMed DOI
Nik Hazlina N. H., Norhayati M. N., Shaiful Bahari I., Nik Muhammad Arif N. A. (2022). Worldwide prevalence, risk factors and psychological impact of infertility among women: a systematic review and meta-analysis. BMJ Open 12, e057132. 10.1136/bmjopen-2021-057132 PubMed DOI PMC
Nikiforov D., Grøndahl M. L., Hreinsson J., Andersen C. Y. (2022). Human oocyte morphology and outcomes of infertility treatment: a systematic review. Reprod. Sci. 29, 2768–2785. 10.1007/s43032-021-00723-y PubMed DOI
Oldenbourg R. (2013). Polarized light microscopy: principles and practice. Cold Spring Harb. Protoc. 2013, 078600. 10.1101/pdb.top078600 PubMed DOI
Ombelet W., De Sutter P., Van der Elst J., Martens G. (2005). Multiple gestation and infertility treatment: registration, reflection and reaction - the Belgian project. Hum. Reprod. Update 11, 3–14. 10.1093/humupd/dmh048 PubMed DOI
Omidi M., Faramarzi A., Agharahimi A., Khalili M. A. (2017). Noninvasive imaging systems for gametes and embryo selection in IVF programs: a review. J. Microsc. 267, 253–264. 10.1111/jmi.12573 PubMed DOI
Özgüç Ö., de Plater L., Kapoor V., Tortorelli A. F., Clark A. G., Maître J. L. (2022). Cortical softening elicits zygotic contractility during mouse preimplantation development. PLoS Biol. 20, e3001593. 10.1371/journal.pbio.3001593 PubMed DOI PMC
Özgüç Ö., Maître J. L. (2020). Multiscale morphogenesis of the mouse blastocyst by actomyosin contractility. Curr. Opin. Cell Biol. 66, 123–129. 10.1016/j.ceb.2020.05.002 PubMed DOI
Paternot G., Devroe J., Debrock S., D’Hooghe T. M., Spiessens C. (2009). Intra- and inter-observer analysis in the morphological assessment of early-stage embryos. Reprod. Biol. Endocrinol. 7, 105. 10.1186/1477-7827-7-105 PubMed DOI PMC
Patrizio P., Fragouli E., Bianchi V., Borini A., Wells D. (2007). Molecular methods for selection of the ideal oocyte. Reprod. Biomed. Online 15, 346–353. 10.1016/S1472-6483(10)60349-5 PubMed DOI
Pfender S., Kuznetsov V., Pleiser S., Kerkhoff E., Schuh M. (2011). Spire-type actin nucleators cooperate with formin-2 to drive asymmetric oocyte division. Curr. Biol. 21, 955–960. 10.1016/j.cub.2011.04.029 PubMed DOI PMC
Pickering S. J., Johnson M. H., Braude P. R., Houliston E. (1988). Cytoskeletal organization in fresh, aged and spontaneously activated human oocytes. Hum. Reprod. 3, 978–989. 10.1093/oxfordjournals.humrep.a136828 PubMed DOI
Piliszek A., Madeja Z. E. (2018). “Pre-implantation development of domestic animals,” in Current topics in developmental Biology (United States: Academic Press; ), 267–294. 10.1016/bs.ctdb.2017.11.005 PubMed DOI
Płusa B., Piliszek A. (2020). Common principles of early mammalian embryo self-organisation. Development 147, 183079. 10.1242/DEV.183079 PubMed DOI
Popovic M., Dhaenens L., Boel A., Menten B., Heindryckx B. (2020). Chromosomal mosaicism in human blastocysts: the ultimate diagnostic dilemma. Hum. Reprod. Update 26, 313–334. 10.1093/humupd/dmz050 PubMed DOI
Posfai E., Rovic I., Jurisicova A. (2019). The mammalian embryo’s first agenda: making trophectoderm. Int. J. Dev. Biol. 63, 157–170. 10.1387/ijdb.180404ep PubMed DOI
Prosser S. L., Pelletier L. (2017). Mitotic spindle assembly in animal cells: a fine balancing act. Nat. Rev. Mol. Cell Biol. 18, 187–201. 10.1038/nrm.2016.162 PubMed DOI
Rienzi L., Vajta G., Ubaldi F. (2011). Predictive value of oocyte morphology in human IVF: a systematic review of the literature. Hum. Reprod. Update. 17, 34–45. 10.1093/humupd/dmq029 PubMed DOI PMC
Robert B. (2009). Resonance Raman spectroscopy. Photosynth. Res. 101, 147–155. 10.1007/s11120-009-9440-4 PubMed DOI
Rosenberg S. M., Partridge A. H. (2013). Premature menopause in young breast cancer: effects on quality of life and treatment interventions. J. Thorac. Dis. 5 Suppl 1, S55–S61. 10.3978/j.issn.2072-1439.2013.06.20 PubMed DOI PMC
Rouchou B. (2013). Consequences of infertility in developing countries. Perspect. Public Health 133, 174–179. 10.1177/1757913912472415 PubMed DOI
Rusciano G., De Canditiis C., Zito G., Rubessa M., Roca M. S., Carotenuto R., et al. (2017). Raman-microscopy investigation of vitrification-induced structural damages in mature bovine oocytes. PLoS ONE 12, e0177677. 10.1371/journal.pone.0177677 PubMed DOI PMC
Ryan A. Q., Chan C. J., Graner F., Hiiragi T. (2019). Lumen expansion facilitates epiblast-primitive endoderm fate specification during mouse blastocyst formation. Dev. Cell 51, 684–697. 10.1016/j.devcel.2019.10.011 PubMed DOI PMC
Sadecki E., Weaver A., Zhao Y., Stewart E. A., Ainsworth A. J. (2022). Fertility trends and comparisons in a historical cohort of US women with primary infertility. Reprod. Health 19, 13. 10.1186/s12978-021-01313-6 PubMed DOI PMC
Salmerón A. M., Abreu A. C., Vilches-Ferrón M., Fernández I. (2021). Solution NMR in human embryo culture media as an option for assessment of embryo implantation potential. NMR Biomed. 34, e4536. 10.1002/nbm.4536 PubMed DOI
Salucci S., Battistelli M., Burattini S., Sbrana F., Falcieri E. (2020). Holotomographic microscopy: a new approach to detect apoptotic cell features. Microsc. Res. Tech. 83, 1464–1470. 10.1002/JEMT.23539 PubMed DOI
Samarage C. R., White M. D., Álvarez Y. D., Fierro-González J. C., Henon Y., Jesudason E. C., et al. (2015). Cortical tension allocates the first inner cells of the mammalian embryo. Dev. Cell 34, 435–447. 10.1016/j.devcel.2015.07.004 PubMed DOI
Sanches B. V., Zangirolamo A. F., Seneda M. M. (2019). Intensive use of IVF by large-scale dairy programs. Anim. Reprod. 16, 394–401. 10.21451/1984-3143-AR2019-0058 PubMed DOI PMC
Sanchez T., Venturas M., Aghvami S. A., Yang X., Fraden S., Sakkas D., et al. (2019). Combined noninvasive metabolic and spindle imaging as potential tools for embryo and oocyte assessment. Hum. Reprod. 34, 2349–2361. 10.1093/humrep/dez210 PubMed DOI PMC
Sandoz P. A., Tremblay C., Gisou van der Goot F., Frechin M. (2019). Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux. PLoS Biol. 17, e3000553. 10.1371/JOURNAL.PBIO.3000553 PubMed DOI PMC
Saragusty J., Diecke S., Drukker M., Durrant B., Friedrich Ben-Nun I., Galli C., et al. (2016). Rewinding the process of mammalian extinction. Zoo. Biol. 35, 280–292. 10.1002/zoo.21284 PubMed DOI
Schliffka M. F., Dumortier J. G., Pelzer D., Mukherjee A., Maître J. L. (2023). Inverse blebs operate as hydraulic pumps during mouse blastocyst formation. bioRxiv, 2023.05.03.539105. 10.1101/2023.05.03.539105 PubMed DOI
Schuh M., Ellenberg J. (2008). A new model for asymmetric spindle positioning in mouse oocytes. Curr. Biol. 18, 1986–1992. 10.1016/j.cub.2008.11.022 PubMed DOI
Sciorio R., Thong K. J., Pickering S. J. (2020). Spontaneous blastocyst collapse as an embryo marker of low pregnancy outcome: a time-lapse study. J. Bras. Reprod. Assist. 24, 34–40. 10.5935/1518-0557.20190044 PubMed DOI PMC
Serwane F., Mongera A., Rowghanian P., Kealhofer D. A., Lucio A. A., Hockenbery Z. M., et al. (2017). In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods 14, 181–186. 10.1038/nmeth.4101 PubMed DOI PMC
Shen T., Benet E., Sridhar S. L., Abadie J., Piat E., Vernerey F. J. (2019). Separating the contributions of zona pellucida and cytoplasm in the viscoelastic response of human oocytes. Acta Biomater. 85, 253–262. 10.1016/j.actbio.2018.12.034 PubMed DOI
Shimoda Y., Kumagai J., Anzai M., Kabashima K., Togashi K., Miura Y., et al. (2016). Time-lapse monitoring reveals that vitrification increases the frequency of contraction during the pre-hatching stage in mouse embryos. J. Reprod. Dev. 62, 187–193. 10.1262/JRD.2015-150 PubMed DOI PMC
Silber S. J., Barbey N., Lenahan K., Silber D. Z. (2013). Applying clinically proven human techniques for contraception and fertility to endangered species and zoo animals: a review. J. Zoo. Wildl. Med. 44, 111–S122. 10.1638/1042-7260-44.4S.S111 PubMed DOI
Sirard M. A. (2018). 40 years of bovine IVF in the new genomic selection context. Reproduction 156, R1. 10.1530/REP-18-0008 PubMed DOI
Sjunnesson Y. (2020). In vitro fertilisation in domestic mammals—a brief overview. J. Med. Sci. 125, 68–76. 10.1080/03009734.2019.1697911 PubMed DOI PMC
Skora D., Frankfurter D. (2012). Adverse perinatal events associated with ART. Semin. Reprod. Med. 30, 84–91. 10.1055/s-0032-1307416 PubMed DOI
Skory R. M., Moverley A. A., Ardestani G., Alvarez Y., Domingo-Muelas A., Pomp O., et al. (2023). The nuclear lamina couples mechanical forces to cell fate in the preimplantation embryo via actin organization. Nat. Commun. 14, 3101–3114. 10.1038/s41467-023-38770-5 PubMed DOI PMC
Society for Assisted Reproductive Technology (SART) (2022). Final national summary report for 2020. Available from: https://sartcorsonline.com.
Solon J., Kaya-Çopur A., Colombelli J., Brunner D. (2009). Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342. 10.1016/j.cell.2009.03.050 PubMed DOI
Soreghan B. A., Yang F., Thomas S. N., Hsu J., Yang A. J. (2003). High-throughput proteomic-based identification of oxidatively induced protein carbonylation in mouse brain. Pharm. Res. 20, 1713–1720. 10.1023/B:PHAM.0000003366.25263.78 PubMed DOI
Stadtman E. R. (1992). Protein oxidation and aging. Science 257, 1220–1224. 10.1126/science.1355616 PubMed DOI
Stitzel M. L., Seydoux G. (2007). Regulation of the oocyte-to-zygote transition. Science 316, 407–408. 10.1126/science.1138236 PubMed DOI
Straight A. F., Cheung A., Limouze J., Chen I., Westwood N. J., Sellers J. R., et al. (2003). Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299, 1743–1747. 10.1126/science.1081412 PubMed DOI
Sun S. C., Gao W. W., Xu Y. N., Jin Y. X., Wang Q. L., Yin X. J., et al. (2012). Degradation of actin nucleators affects cortical polarity of aged mouse oocytes. Fertil. Steril. 97, 984–990. 10.1016/j.fertnstert.2012.01.101 PubMed DOI
Swann K., Windsor S., Campbell K., Elgmati K., Nomikos M., Zernicka-Goetz M., et al. (2012). Phospholipase C-ζ-induced Ca 2+ oscillations cause coincident cytoplasmic movements in human oocytes that failed to fertilize after intracytoplasmic sperm injection. Fertil. Steril. 97, 742–747. 10.1016/j.fertnstert.2011.12.013 PubMed DOI PMC
Szpila M., Walewska A., Sabat-Pośpiech D., Strączyńska P., Ishikawa T., Milewski R., et al. (2019). Postovulatory ageing modifies sperm-induced Ca2+ oscillations in mouse oocytes through a conditions-dependent, multi-pathway mechanism. Sci. Rep. 9, 11859. 10.1038/s41598-019-48281-3 PubMed DOI PMC
Takahashi T., Igarashi H., Amita M., Hara S., Matsuo K., Kurachi H. (2013). Molecular mechanism of poor embryo development in postovulatory aged oocytes: mini review. J. Obstet. Gynaecol. Res. 39, 1431–1439. 10.1111/jog.12111 PubMed DOI
Tamai Y., Ishikawa T. O., Bösl M. R., Mori M., Nozaki M., Baribault H., et al. (2000). Cytokeratins 8 and 19 in the mouse placental development. J. Cell Biol. 151, 563–572. 10.1083/jcb.151.3.563 PubMed DOI PMC
Tan J.-H. J. H., Wang H. L. H.-L., Sun X. S. X.-S., Liu Y., Sui H. S. H.-S., Zhang J. (2009). Chromatin configurations in the germinal vesicle of mammalian oocytes. Mol. Hum. Reprod. 15, 1–9. 10.1093/molehr/gan069 PubMed DOI
Taneja N., Burnette D. T. (2019). Myosin IIA drives membrane bleb retraction. Mol. Biol. Cell 30, 1051–1059. 10.1091/mbc.E18-11-0752 PubMed DOI PMC
Tang B. L. (2012). Membrane trafficking components in cytokinesis. Cell. Physiol. biochem. 30, 1097–1108. 10.1159/000343301 PubMed DOI
Tatone C., Di Emidio G., Vento M., Ciriminna R., Artini P. G. (2010). Cryopreservation and oxidative stress in reproductive cells. Gynecol. Endocrinol. 26, 563–567. 10.3109/09513591003686395 PubMed DOI
Thayil A., Jesacher A., Wilson T., Booth M., Watanabe T., Srinivas S. (2011). Long-term imaging of mouse embryos using adaptive harmonic generation microscopy. J. Biomed. Opt. 16, 046018. 10.1117/1.3569614 PubMed DOI PMC
Togashi K., Kumagai J., Sato E., Shirasawa H., Shimoda Y., Makino K., et al. (2015). Dysfunction in gap junction intercellular communication induces aberrant behavior of the inner cell mass and frequent collapses of expanded blastocysts in mouse embryos. J. Assist. Reprod. Genet. 32, 969–976. 10.1007/s10815-015-0479-1 PubMed DOI PMC
Toralova T., Kinterova V., Chmelikova E., Kanka J. (2020). The neglected part of early embryonic development: maternal protein degradation. Cell. Mol. Life Sci. 77, 3177–3194. 10.1007/s00018-020-03482-2 PubMed DOI PMC
Tsai T. Y. C., Collins S. R., Chan C. K., Hadjitheodorou A., Lam P. Y., Lou S. S., et al. (2019). Efficient front-rear coupling in neutrophil chemotaxis by dynamic myosin II localization. Dev. Cell 49, 189–205. 10.1016/j.devcel.2019.03.025 PubMed DOI PMC
Vander Borght M., Wyns C. (2018). Fertility and infertility: definition and epidemiology. Clin. Biochem. 62, 2–10. 10.1016/j.clinbiochem.2018.03.012 PubMed DOI
Venturas M., Shah J. S., Yang X., Sanchez T. H., Conway W., Sakkas D., et al. (2022). Metabolic state of human blastocysts measured by fluorescence lifetime imaging microscopy. Hum. Reprod. 37, 411–427. 10.1093/humrep/deab283 PubMed DOI
Venturas M., Yang X., Sakkas D., Needleman D. (2023). Noninvasive metabolic profiling of cumulus cells, oocytes, and embryos via fluorescence lifetime imaging microscopy: a mini-review. Hum. Reprod. 38, 799–810. 10.1093/humrep/dead063 PubMed DOI PMC
Viana J. H. (2019). 2018 Statistics of embryo production and transfer in domestic farm animals Embryo industry on a new level: over one million embryos produced in vitro . Embryo Technol. Newsl. 36, 8–25.
Viljoen A., Mathelié-Guinlet M., Ray A., Strohmeyer N., Oh Y. J., Hinterdorfer P., et al. (2021). Force spectroscopy of single cells using atomic force microscopy. Nat. Rev. Methods Prim. 11 (1), 63–24. 10.1038/s43586-021-00062-x DOI
Walls M. L., Hunter T., Ryan J. P., Keelan J. A., Nathan E., Hart R. J. (2015). In vitro maturation as an alternative to standard in vitro fertilization for patients diagnosed with polycystic ovaries: a comparative analysis of fresh, frozen and cumulative cycle outcomes. Hum. Reprod. 30, 88–96. 10.1093/humrep/deu248 PubMed DOI
Watanabe Y., Miyasaka K. Y., Kubo A., Kida Y. S., Nakagawa O., Hirate Y., et al. (2017). Notch and Hippo signaling converge on Strawberry Notch 1 (Sbno1) to synergistically activate Cdx2 during specification of the trophectoderm. Sci. Rep. 7, 46135–46217. 10.1038/srep46135 PubMed DOI PMC
Westerweel J. (1997). Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8, 1379–1392. 10.1088/0957-0233/8/12/002 DOI
Winkel G. K., Ferguson J. E., Takeichi M., Nuccitelli R. (1990). Activation of protein kinase C triggers premature compaction in the four-cell stage mouse embryo. Dev. Biol. 138, 1–15. 10.1016/0012-1606(90)90171-E PubMed DOI
Xie H.-L. L., Wang Y.-B. B., Jiao G.-Z. Z., Kong D.-L. L., Li Q., Li H., et al. (2016). Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes. Sci. Rep. 6, 20764. 10.1038/srep20764 PubMed DOI PMC
Yamamoto K., Miura H., Ishida M., Mii Y., Kinoshita N., Takada S., et al. (2021). Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis. Nat. Commun. 12, 7145. 10.1038/s41467-021-27458-3 PubMed DOI PMC
Yanez L. Z., Han J., Behr B. B., Pera R. A. R., Camarillo D. B. (2016). Human oocyte developmental potential is predicted by mechanical properties within hours after fertilization. Nat. Commun. 7, 10809–10812. 10.1038/ncomms10809 PubMed DOI PMC
Yin H., Jiang H., He R., Wang C., Zhu J., Li Y. (2016). The effects of blastocyst morphological score and blastocoele re-expansion speed after warming on pregnancy outcomes. Clin. Exp. Reprod. Med. 43, 31–37. 10.5653/cerm.2016.43.1.31 PubMed DOI PMC
Yu C. H., Langowitz N., Wu H. Y., Farhadifar R., Brugues J., Yoo T. Y., et al. (2014). Measuring microtubule polarity in spindles with second-harmonic generation. Biophys. J. 106, 1578–1587. 10.1016/j.bpj.2014.03.009 PubMed DOI PMC
Zaninovic N., Rosenwaks Z. (2020). Artificial intelligence in human in vitro fertilization and embryology. Fert. Steril. 114, 914–920. 10.1016/j.fertnstert.2020.09.157 PubMed DOI
Zenker J., White M. D., Gasnier M., Alvarez Y. D., Lim H. Y. G., Bissiere S., et al. (2018). Expanding actin rings zipper the mouse embryo for blastocyst formation. Cell 173, 776–791. 10.1016/j.cell.2018.02.035 PubMed DOI
Zenker J., White M. D., Templin R. M., Parton R. G., Thorn-Seshold O., Bissiere S., et al. (2017). A microtubule-organizing center directing intracellular transport in the early mouse embryo. Science 357, 925–928. 10.1126/science.aam9335 PubMed DOI
Zhao J., Yan Y., Huang X., Sun L., Li Y. (2019). Blastocoele expansion: an important parameter for predicting clinical success pregnancy after frozen-warmed blastocysts transfer. Reprod. Biol. Endocrinol. 17, 15–18. 10.1186/s12958-019-0454-2 PubMed DOI PMC
Zhao Q., Yin T., Peng J., Zou Y., Yang J., Shen A., et al. (2013). Noninvasive metabolomic profiling of human embryo culture media using a simple spectroscopy adjunct to morphology for embryo assessment in in vitro fertilization (IVF). Int. J. Mol. Sci. 14, 6556–6570. 10.3390/ijms14046556 PubMed DOI PMC
Zhu M., Leung C. Y., Shahbazi M. N., Zernicka-Goetz M. (2017). Actomyosin polarisation through PLC-PKC triggers symmetry breaking of the mouse embryo. Nat. Commun. 8, 921–1016. 10.1038/s41467-017-00977-8 PubMed DOI PMC
Zumbusch A., Langbein W., Borri P. (2013). Nonlinear vibrational microscopy applied to lipid biology. Prog. Lipid Res. 52, 615–632. 10.1016/j.plipres.2013.07.003 PubMed DOI