Recent developments in genetics and medically assisted reproduction: from research to clinical applications
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
29199274
PubMed Central
PMC5839000
DOI
10.1038/s41431-017-0016-z
PII: 10.1038/s41431-017-0016-z
Knihovny.cz E-zdroje
- Klíčová slova
- Assisted reproductive technology, Epigenetics, Expanded carrier screening, Female infertility, Gamete donor anonymity, Germline genome editing, Male infertility, Mitochondrial replacement therapy, Non-invasive prenatal testing, Preimplantation genetic testing,
- MeSH
- asistovaná reprodukce * MeSH
- genetické testování metody MeSH
- kongresy jako téma MeSH
- lékařská genetika metody MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved.
Althea Science Inc Livingston NJ USA
Bioethics Institute Ghent Department of Philosophy and Moral Science Ghent University Ghent Belgium
Center for Medical Genetics UZ Brussels Brussels Belgium
Department of Human Genetics KU Leuven Leuven Belgium
Helsinki Biobank Helsinki University Central Hospital Helsinki Finland
Institute for Women's Health University College London London UK
Institute of Parasitology and Pathology University of Strasbourg Strasbourg France
Laboratory of Genetics Helsinki University Hospital Helsinki Finland
Reproductive Medicine Sahlgrenska University Hospital Göteborg Sweden
Reproductive Medicine Service of Dexeus Woman Health Barcelona Spain
Research Group Reproduction and Genetics Vrije Universiteit Brussel Brussels Belgium
Zobrazit více v PubMed
ESHG: European Society for Human Genetics. (2017).https://www.eshg.org (Accessed 14 Sep 2017).
ESHRE: European Society for Human Reproduction and Embryology. (2017). https://www.eshre.eu (Accessed 14 Sep 2017).
Harper JC, Geraedts J, Borry P,, et al. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policyeuropean society of human genetics and european society of human reproduction and embryology. Eur J Hum Genet. 2013;21::S1–21. doi: 10.1038/ejhg.2013.219. PubMed DOI PMC
Soini S, Ibarreta D, Anastasiadou V,, et al. The interface between assisted reproductive technologies and genetics: technical, social, ethical and legal issues. Eur J Hum Genet. 2006;14:588–645. doi: 10.1038/sj.ejhg.5201598. PubMed DOI
Calhaz-Jorge C, de Geyter C, et al. European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Assisted reproductive technology in Europe, 2012: results generated from European registers by ESHRE. Hum Reprod. 2016; 31: 1638–52. PubMed
Brownstein CA, Beggs AH, Homer N,, et al. An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY challenge. Genome Biol. 2014;15:R53. doi: 10.1186/gb-2014-15-3-r53. PubMed DOI PMC
Harper J, Jackson E, Sermon K,, et al. Adjuncts in the IVF laboratory: where is the evidence for ‘add-on’ interventions? Hum Reprod. 2017;32:485–91. doi: 10.1093/humrep/dex004. PubMed DOI
Committee Committee opinion no. 646 summary. Obstet Gynecol. 2015;126:1127–8. doi: 10.1097/AOG.0000000000001145. PubMed DOI
Edwards JG, Feldman G, Goldberg J,, et al. Expanded carrier screening in reproductive medicine—points to consider. Obstet Gynecol. 2015;125:653–62. doi: 10.1097/AOG.0000000000000666. PubMed DOI
Henneman L, Borry P, Chokoshvili D,, et al. Responsible implementation of expanded carrier screening. Eur J Hum Genet. 2016;24:e1–12. doi: 10.1038/ejhg.2015.271. PubMed DOI PMC
Abulí A, Boada M, Rodríguez-Santiago B,, et al. NGS-based assay for the identification of individuals carrying recessive genetic mutations in reproductive medicine. Hum Mutat. 2016;37:516–23. doi: 10.1002/humu.22989. PubMed DOI
Borry P, Henneman L, Lakeman P, ten Kate LP, Cornel MC, Howard HC. Preconceptional genetic carrier testing and the commercial offer directly-to-consumers. Hum Reprod. 2011;26:972–7. doi: 10.1093/humrep/der042. PubMed DOI PMC
Castellani C, Picci L, Tridello G,, et al. Cystic fibrosis carrier screening effects on birth prevalence and newborn screening. Genet Med. 2016;18:145–51. doi: 10.1038/gim.2015.68. PubMed DOI
Janssens S, Chokoshvili D, Vears D, De Paepe A, Borry P. Attitudes of european geneticists regarding expanded carrier screening. J Obstet Gynecol neonatal Nurs. 2017;46:63–71. doi: 10.1016/j.jogn.2016.08.012. PubMed DOI
De Wert G, Dondorp W, Pennings G, Shenfield F, Devroey P, Tarlatzis B, Barri P, Diedrich K. ESHRE Task Force on Ethics and Law. Intrafamilial medically assisted reproduction. Hum Reprod 2011;26(3):504–509. PubMed
Holtkamp KCA, Mathijssen IB, Lakeman P,, et al. Factors for successful implementation of population-based expanded carrier screening: learning from existing initiatives. Eur J Public Health. 2017;27:372–7. PubMed PMC
Acuna-Hidalgo R, Veltman JA, Hoischen A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 2016;17:241. doi: 10.1186/s13059-016-1110-1. PubMed DOI PMC
Dubov T, Toledano-Alhadef H, Bokstein F, Constantini S, Ben-Shachar S. The effect of parental age on the presence of de novo mutations - Lessons from neurofibromatosis type I. Mol Genet genomic Med. 2016;4:480–6. doi: 10.1002/mgg3.222. PubMed DOI PMC
Howard HC, Knoppers BM, Cornel MC,, et al. Whole-genome sequencing in newborn screening? A statement on the continued importance of targeted approaches in newborn screening programmes. Eur J Hum Genet. 2015;23:1593–600. doi: 10.1038/ejhg.2014.289. PubMed DOI PMC
ESHG: Staffing of medical genetics centres across Europe. 201). https://www.eshg.org/index.php?id=111. (Accessed 14 Sep 2017).
Boeldt DL, Schork NJ, Topol EJ, Bloss CS. Influence of individual differences in disease perception on consumer response to direct-to-consumer genomic testing. Clin Genet. 2015;87:225–32. doi: 10.1111/cge.12419. PubMed DOI PMC
El-Hazmi MAF. Ethics of genetic counseling - basic concepts and relevance to Islamic communities. Ann. Saudi Med. 2004;24:84–92. doi: 10.5144/0256-4947.2004.84. PubMed DOI PMC
Dondorp W, De Wert G, Pennings G, et al. ESHRE Task Force 1394 on Ethics and Law 21: genetic screening of gamete donors: 1395 ethical issues. Hum Reprod. 2014;29:1353–9. doi: 10.1093/humrep/deu111. PubMed DOI
Bachelot A, Grouthier V, Courtillot C, Dulon J, Touraine P. MANAGEMENT OF ENDOCRINE DISEASE: Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: update on the management of adult patients and prenatal treatment. Eur J Endocrinol. 2017;176:R167–81. doi: 10.1530/EJE-16-0888. PubMed DOI
Simpson JL, Rechitsky S. Preimplantation diagnosis and other modern methods for prenatal diagnosis. J Steroid Biochem Mol Biol. 2017;165:124–30. doi: 10.1016/j.jsbmb.2016.03.022. PubMed DOI
Campbell IM, Shaw CA, Stankiewicz P, Lupski JR. Somatic mosaicism: implications for disease and transmission genetics. Trends Genet. 2015;31:382–92. doi: 10.1016/j.tig.2015.03.013. PubMed DOI PMC
Campbell IM, Stewart JR, James RA, et al. Parent of origin, mosaicism, and recurrence risk: probabilistic modeling explains the broken symmetry of transmission genetics. Am J Hum Genet. 2014;95:345–59. doi: 10.1016/j.ajhg.2014.08.010. PubMed DOI PMC
Blake L, Jadva V, Golombok S. Parent psychological adjustment, donor conception and disclosure: a follow-up over 10 years. Hum Reprod. 2014;29:2487–96. doi: 10.1093/humrep/deu231. PubMed DOI PMC
Sälevaara M, Suikkari A-M, Söderström-Anttila V. Attitudes and disclosure decisions of Finnish parents with children conceived using donor sperm. Hum Reprod. 2013;28:2746–54. doi: 10.1093/humrep/det313. PubMed DOI
Harper JC, Kennett D, Reisel D. The end of donor anonymity: how genetic testing is likely to drive anonymous gamete donation out of business. Hum Reprod. 2016;31:1135–40. doi: 10.1093/humrep/dew065. PubMed DOI
DSR: Donor Sibling Registry. 2017. www.donorsiblingregistry.com (Accessed 14 Sep 2017).
DCR: Donor Conceived Registry. 2017. www.donorconceiveregistry.org.uk (Accessed 14 Sep 2017).
FTDNA: Family Tree DNA. https://www.familytreedna.com (Accessed 14 Sep 2017).
Baptista NM, Christensen KD, Carere DA, Broadley SA, Roberts JS, Green RC. Adopting genetics: motivations and outcomes of personal genomic testing in adult adoptees. Genet Med. 2016;18:924–32. doi: 10.1038/gim.2015.192. PubMed DOI PMC
Zadeh S. Disclosure of donor conception in the era of non-anonymity: safeguarding and promoting the interests of donor-conceived individuals? Hum Reprod. 2016;31:2416–20. doi: 10.1093/humrep/dew240. PubMed DOI
Abbott A. Genome test slammed for assessing ‘racial purity’. Nature. 2012;486:167. doi: 10.1038/486167a. PubMed DOI
Patrinos GP, Baker DJ, Al-Mulla F, Vasiliou V, Cooper DN. Genetic tests obtainable through pharmacies: the good, the bad, and the ugly. Hum Genomics. 2013;7:17. doi: 10.1186/1479-7364-7-17. PubMed DOI PMC
Borry P, Rusu O, Dondorp W, De Wert G, Knoppers BM, Howard HC. Anonymity 2.0: direct-to-consumer genetic testing and donor conception. Fertil Steril. 2014;101:630–2. doi: 10.1016/j.fertnstert.2013.11.035. PubMed DOI
Millbank J. Numerical limits in donor conception regimes: genetic links and ‘extended family’ in the era of identity disclosure. Med Law Rev. 2014;22:325–56. doi: 10.1093/medlaw/fwt044. PubMed DOI
Bieniek JM, Lo KC. Recent advances in understanding & amp; managing male infertility. F1000Research. 2016;5:2756. doi: 10.12688/f1000research.9375.1. PubMed DOI PMC
Hanson B, Johnstone E, Dorais J, Silver B, Peterson CM, Hotaling J. Female infertility, infertility-associated diagnoses, and comorbidities: a review. J Assist Reprod Genet. 2017;34:167–77. doi: 10.1007/s10815-016-0836-8. PubMed DOI PMC
Krausz C, Escamilla AR, Chianese C. Genetics of male infertility: from research to clinic. Reproduction. 2015;150:R159–74. doi: 10.1530/REP-15-0261. PubMed DOI
Ankolkar M, Balasinor NH. Endocrine control of epigenetic mechanisms in male reproduction. Horm Mol Biol Clin Investig. 2016;25:65–70. PubMed
Girard SL, Bourassa CV, Lemieux Perreault L-P, et al. Paternal age explains a major portion of de novo germline mutation rate variability in healthy individuals. PLoS One. 2016;11:e0164212. doi: 10.1371/journal.pone.0164212. PubMed DOI PMC
Punab M, Poolamets O, Paju P,, et al. Causes of male infertility: a 9-year prospective monocentre study on 1737 patients with reduced total sperm counts. Hum Reprod. 2017;32:18–31. PubMed PMC
Carrell DT, Aston KI, Oliva R, Emery BR, De Jonge CJ. The ‘omics’ of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res. 2016;363:295–12. doi: 10.1007/s00441-015-2320-7. PubMed DOI
MGI: Mouse Genome Informatics. 2017. http://www.informatics.jax.org/. (Accessed 20 Apr 2017).
Franasiak JM, Scott RT. Reproductive tract microbiome in assisted reproductive technologies. Fertil Steril. 2015;104:1364–71. doi: 10.1016/j.fertnstert.2015.10.012. PubMed DOI
Hotaling J, Carrell DT. Clinical genetic testing for male factor infertility: current applications and future directions. Andrology. 2014;2:339–50. doi: 10.1111/j.2047-2927.2014.00200.x. PubMed DOI
Aston KI. Genetic susceptibility to male infertility: news from genome-wide association studies. Andrology. 2014;2:315–21. doi: 10.1111/j.2047-2927.2014.00188.x. PubMed DOI
Ghédir H, Ibala-Romdhane S, Okutman O, Viot G, Saad A, Viville S. Identification of a new DPY19L2 mutation and a better definition of DPY19L2 deletion breakpoints leading to globozoospermia. Mol Hum Reprod. 2016;22:35–45. doi: 10.1093/molehr/gav061. PubMed DOI
ElInati E, Fossard C, Okutman O,, et al. A new mutation identified in SPATA16 in two globozoospermic patients. J Assist Reprod Genet. 2016;33:815–20. doi: 10.1007/s10815-016-0715-3. PubMed DOI PMC
Ben Khelifa M, Coutton C, Blum MGB,, et al. Identification of a new recurrent aurora kinase C mutation in both European and African men with macrozoospermia. Hum Reprod. 2012;27:3337–46. doi: 10.1093/humrep/des296. PubMed DOI
Amiri-Yekta A, Coutton C, Kherraf Z-E,, et al. Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new DNAH1 mutations. Hum Reprod. 2016;31:2872–80. doi: 10.1093/humrep/dew262. PubMed DOI
Takasaki N, Tachibana K, Ogasawara S,, et al. A heterozygous mutation of GALNTL5 affects male infertility with impairment of sperm motility. Proc Natl Acad Sci U S A. 2014;111:1120–5. doi: 10.1073/pnas.1310777111. PubMed DOI PMC
Okutman O, Muller J, Baert Y,, et al. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family. Hum Mol Genet. 2015;24:5581–8. doi: 10.1093/hmg/ddv290. PubMed DOI
Yatsenko AN, Georgiadis AP, Röpke A,, et al. X-Linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N Engl J Med. 2015;372:2097–107. doi: 10.1056/NEJMoa1406192. PubMed DOI PMC
Quaynor SD, Bosley ME, Duckworth CG,, et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and kallmann syndrome. Mol Cell Endocrinol. 2016;437:86–96. doi: 10.1016/j.mce.2016.08.007. PubMed DOI
D’Aurora M, Ferlin A, Di Nicola M,, et al. Deregulation of sertoli and leydig cells function in patients with Klinefelter syndrome as evidenced by testis transcriptome analysis. BMC Genomics. 2015;16:156. doi: 10.1186/s12864-015-1356-0. PubMed DOI PMC
Pevec U, Rozman N, Gorsek B, Kunej T. RASopathies: presentation at the genome, interactome, and phenome levels. Mol Syndromol. 2016;7:72–9. doi: 10.1159/000445733. PubMed DOI PMC
Guo Y-W, Chiu C-Y, Liu C-L, Jap T-S, Lin L-Y. Novel mutation of RUNX2 gene in a patient with cleidocranial dysplasia. Int J Clin Exp Pathol. 2015;8:1057–62. PubMed PMC
Liu T, Huang J. DNA end resection: facts and mechanisms. Genomics Proteomics Bioinformatics. 2016;14:126–30. doi: 10.1016/j.gpb.2016.05.002. PubMed DOI PMC
Giabicani E, Netchine I, Brioude F. New clinical and molecular insights into silver–russell syndrome. Curr Opin Pediatr. 2016;28:529–35. doi: 10.1097/MOP.0000000000000379. PubMed DOI
Marshall CR, Scherer SW, Zariwala MA,, et al. Whole-exome sequencing and targeted copy number analysis in primary ciliary dyskinesia. G3 (Bethesda). 2015;5:1775–81. doi: 10.1534/g3.115.019851. PubMed DOI PMC
Santoro M, Masciullo M, Silvestri G, Novelli G, Botta A. Myotonic dystrophy type 1: role of CCG, CTC and CGG interruptions within DMPK alleles in the pathogenesis and molecular diagnosis. Clin Genet. 2016. http://oi:10.1111/cge.12954. PubMed
Laissue P. Aetiological coding sequence variants in non-syndromic premature ovarian failure: From genetic linkage analysis to next generation sequencing. Mol Cell Endocrinol. 2015;411:243–57. doi: 10.1016/j.mce.2015.05.005. PubMed DOI
Pelosi E, Forabosco A, Schlessinger D. Genetics of the ovarian reserve. Front Genet. 2015;6:308. doi: 10.3389/fgene.2015.00308. PubMed DOI PMC
Yatsenko SA, Rajkovic A. Chromosomal causes of infertility: the story continues. In: Sermon K, Viville S,, editors. Textbook of Human Reproductive Genetics. Cambridge;: Cambridge University Press; 2014. p. 97.
Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH. Premature ovarian insufficiency: new perspectives on genetic cause and phenotypic spectrum. Endocr Rev. 2016;37:609–35. doi: 10.1210/er.2016-1047. PubMed DOI
El Inati ELLI. Genes and infertility. In: Sermon K, Viville S,, editors. Textbook of Human Reproductive Genetics. Cambridge;: Cambridge University Press; 2014.
McAllister JM, Legro RS, Modi BP, Strauss JF. Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends Endocrinol Metab. 2015;26:118–24. doi: 10.1016/j.tem.2014.12.004. PubMed DOI PMC
Pau CT, Mosbruger T, Saxena R, Welt CK. Phenotype and tissue expression as a function of genetic risk in polycystic ovary syndrome. PLoS One. 2017;12:e0168870. doi: 10.1371/journal.pone.0168870. PubMed DOI PMC
Yotova I, Hsu E, Do C,, et al. Epigenetic alterations affecting transcription factors and signaling pathways in stromal cells of endometriosis. PLoS One. 2017;12:e0170859. doi: 10.1371/journal.pone.0170859. PubMed DOI PMC
Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. Clin Genet. 2017;91:183–98. doi: 10.1111/cge.12921. PubMed DOI
Qin Y, Jiao X, Simpson JL, Chen Z-J. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21:787–808. doi: 10.1093/humupd/dmv036. PubMed DOI PMC
Bouilly J, Beau I, Barraud S,, et al. Identification of multiple gene mutations accounts for a new genetic architecture of primary ovarian insufficiency. J Clin Endocrinol Metab. 2016;101:4541–50. doi: 10.1210/jc.2016-2152. PubMed DOI
Caburet S, Arboleda VA, Llano E,, et al. Mutant cohesin in premature ovarian failure. N Engl J Med. 2014;370:943–49. doi: 10.1056/NEJMoa1309635. PubMed DOI PMC
de Vries L, Behar DM, Smirin-Yosef P, Lagovsky I, Tzur S, Basel-Vanagaite L. Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency. J Clin Endocrinol Metab. 2014;99:E2129–32. doi: 10.1210/jc.2014-1268. PubMed DOI
Wang J, Zhang W, Jiang H, Wu B-L. Primary ovarian insufficiency collaboration. mutations in HFM1 in recessive primary ovarian insufficiency. N Engl J Med. 2014;370:972–4. doi: 10.1056/NEJMc1310150. PubMed DOI
Desai S, Wood-Trageser M, Matic J,, et al. MCM8 and MCM9 nucleotide variants in women with primary ovarian insufficiency. J Clin Endocrinol Metab. 2017;102:576–82. PubMed PMC
Laven J. Genetics of early and normal menopause. Semin Reprod Med. 2015;33:377–83. doi: 10.1055/s-0035-1567825. PubMed DOI
Demain LAM, Conway GS, Newman WG. Genetics of mitochondrial dysfunction and infertility. Clin Genet. 2017;91:199–207. doi: 10.1111/cge.12896. PubMed DOI
Demain LAM, Urquhart JE, O’Sullivan J,, et al. Expanding the genotypic spectrum of Perrault syndrome. Clin Genet. 2017;91:302–12. doi: 10.1111/cge.12776. PubMed DOI
Feng R, Yan Z, Li B,, et al. Mutations in TUBB8 cause a multiplicity of phenotypes in human oocytes and early embryos. J Med Genet. 2016;53:662–71. doi: 10.1136/jmedgenet-2016-103891. PubMed DOI PMC
Alazami AM, Awad SM, Coskun S,, et al. TLE6 mutation causes the earliest known human embryonic lethality. Genome Biol. 2015;16:240. doi: 10.1186/s13059-015-0792-0. PubMed DOI PMC
Yuan P, He Z, Zheng L,, et al. Genetic evidence of ‘genuine’ empty follicle syndrome: a novel effective mutation in the LHCGR gene and review of the literature. Hum Reprod. 2017;32:1–10. doi: 10.1093/humrep/dex015. PubMed DOI
Tang H, Yan Y, Wang T, Zhang T, Shi W, Fan R, Yao Y, Zhai S. Effect of follicle-stimulating hormone receptor Asn680Ser polymorphism on the outcomes of controlled ovarian hyperstimulation: an updated meta-analysis of 16 cohort studies. J Assist Reprod Genet. 2015;32(12):1801-10. 10.1007/s10815-015-0600-5. Epub 2015 Oct 19. PubMed PMC
Cordts EB, Santos MC, Bianco B, Barbosa CP, Christofolini DM. Are FSHR polymorphisms risk factors to premature ovarian insufficiency? Gynecol Endocrinol. 2015;31:663–6. doi: 10.3109/09513590.2015.1032933. PubMed DOI
Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, et al. The International Glossary on Infertility and Fertility Care, 2017. Fertil Steril. 2017;108(3):393–406. doi: 10.1016/j.fertnstert.2017.06.005. PubMed DOI
Traeger-Synodinos J. Pre-implantation genetic diagnosis. Best Pract Res Clin Obstet Gynaecol. 2017;39:74–88. doi: 10.1016/j.bpobgyn.2016.10.010. PubMed DOI
Geraedts J, Sermon K. Preimplantation genetic screening 2.0: the theory. Mol Hum Reprod. 2016;22:839–44. doi: 10.1093/molehr/gaw033. PubMed DOI PMC
Dahdouh EM, Balayla J, García-Velasco JA. Comprehensive chromosome screening improves embryo selection: a meta-analysis. Fertil Steril. 2015;104:1503–12. doi: 10.1016/j.fertnstert.2015.08.038. PubMed DOI
Vajta G, Rienzi L, Ubaldi FM. Open versus closed systems for vitrification of human oocytes and embryos. Reprod Biomed Online. 2015;30:325–33. doi: 10.1016/j.rbmo.2014.12.012. PubMed DOI
Coates A, Kung A, Mounts E,, et al. Optimal euploid embryo transfer strategy, fresh versus frozen, after preimplantation genetic screening with next generation sequencing: a randomized controlled trial. Fertil Steril. 2017;107:723–e3. doi: 10.1016/j.fertnstert.2016.12.022. PubMed DOI
Wilkinson J, Roberts SA, Vail A. Developments in IVF warrant the adoption of new performance indicators for ART clinics, but do not justify the abandonment of patient-centred measures. Hum Reprod. 2017; 1–5. PubMed
Natesan SA, Handyside AH, Thornhill AR,, et al. Live birth after PGD with confirmation by a comprehensive approach (karyomapping) for simultaneous detection of monogenic and chromosomal disorders. Reprod Biomed Online. 2014;29:600–5. doi: 10.1016/j.rbmo.2014.07.007. PubMed DOI
Natesan SA, Bladon AJ, Coskun S,, et al. Genome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitro. Genet Med. 2014;16:838–45. doi: 10.1038/gim.2014.45. PubMed DOI PMC
Thornhill AR, Handyside AH, Ottolini C,, et al. Karyomapping-a comprehensive means of simultaneous monogenic and cytogenetic PGD: comparison with standard approaches in real time for Marfan syndrome. J Assist Reprod Genet. 2015;32:347–56. doi: 10.1007/s10815-014-0405-y. PubMed DOI PMC
Zamani Esteki M, Dimitriadou E, Mateiu L,, et al. Concurrent whole-genome haplotyping and copy-number profiling of single cells. Am J Hum Genet. 2015;96:894–912. doi: 10.1016/j.ajhg.2015.04.011. PubMed DOI PMC
Zheng H, Jin H, Liu L, Liu J, Wang W-H. Application of next-generation sequencing for 24-chromosome aneuploidy screening of human preimplantation embryos. Mol Cytogenet. 2015;8:38. doi: 10.1186/s13039-015-0143-6. PubMed DOI PMC
Sermon K, Capalbo A, Cohen J,, et al. The why, the how and the when of PGS 2.0: current practices and expert opinions of fertility specialists, molecular biologists, and embryologists. Mol Hum Reprod. 2016;22:845–57. doi: 10.1093/molehr/gaw034. PubMed DOI PMC
Vermeesch JR, Voet T, Devriendt K. Prenatal and pre-implantation genetic diagnosis. Nat Rev Genet. 2016;17:643–56. doi: 10.1038/nrg.2016.97. PubMed DOI
Hens K, Dondorp W, Handyside AH,, et al. Dynamics and ethics of comprehensive preimplantation genetic testing: a review of the challenges. Hum Reprod Update. 2013;19:366–75. doi: 10.1093/humupd/dmt009. PubMed DOI
Van den Veyver IB. Recent advances in prenatal genetic screening and testing. F1000Research. 2016;5:2591. doi: 10.12688/f1000research.9215.1. PubMed DOI PMC
Harper JC, SenGupta S, Vesela K,, et al. Accreditation of the PGD laboratory. Hum Reprod. 2010;25:1051–65. doi: 10.1093/humrep/dep450. PubMed DOI
Marianowski P, Dąbrowski FA, Zyguła A, Wielgoś M, Szymusik I. Do we pay enough attention to culture conditions in context of perinatal outcome after in vitro fertilization? up-to-date literature review. Biomed Res Int. 2016;2016:3285179. doi: 10.1155/2016/3285179. PubMed DOI PMC
Matthijs G, Souche E, Alders M,, et al. Guidelines for diagnostic next-generation sequencing. Eur J Hum Genet. 2016;24:1515–15. doi: 10.1038/ejhg.2016.63. PubMed DOI PMC
Richards S, Aziz N, Bale S,, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17:405–23. doi: 10.1038/gim.2015.30. PubMed DOI PMC
HGVS: Human Genome Variation Society. 2017. http://varnomen.hgvs.org (Accessed 14 Sep 2017).
Claustres M, Kožich V, Dequeker E,, et al. Recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic) Eur J Hum Genet. 2014;22:160–70. doi: 10.1038/ejhg.2013.125. PubMed DOI PMC
Kamps R, Brandão R, Bosch B,, et al. Next-generation sequencing in oncology: genetic diagnosis, risk prediction and cancer classification. Int J Mol Sci. 2017;18:308. doi: 10.3390/ijms18020308. PubMed DOI PMC
Fragouli E, Wells D. Aneuploidy in the human blastocyst. Cytogenet Genome Res. 2011;133:149–59. doi: 10.1159/000323500. PubMed DOI
Scott RT, Galliano D. The challenge of embryonic mosaicism in preimplantation genetic screening. Fertil Steril. 2016;105:1150–52. doi: 10.1016/j.fertnstert.2016.01.007. PubMed DOI
Greco E, Minasi MG, Fiorentino F. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N Engl J Med. 2015;373:2089–90. doi: 10.1056/NEJMc1500421. PubMed DOI
Albertini DF, Gleicher N. A detour in the quest for oogonial stem cells: methods matter. Nat Med. 2015;21:1126–7. doi: 10.1038/nm.3969. PubMed DOI
PGDIS. Preimplantation Genetic Diagnosis International Society Position Statement on Chromosome Mosaicism and Preimplantation Aneuploidy Testing at the Blastocyst Stage. 2016. 1–2. http://www.pgdis.org/docs/newsletter_071816.html (Accessed 14 Sep 2017).
Maxwell SM, Colls P, Hodes-Wertz B,, et al. Why do euploid embryos miscarry? A case-control study comparing the rate of aneuploidy within presumed euploid embryos that resulted in miscarriage or live birth using next-generation sequencing. Fertil Steril. 2016;106:1414–19.e5. doi: 10.1016/j.fertnstert.2016.08.017. PubMed DOI
Munné S, Cohen J. Advanced maternal age patients benefit from preimplantation genetic diagnosis of aneuploidy. Fertil Steril. 2017; http://oi:10.1016/j.fertnstert.2017.03.015. PubMed
Gleicher N, Kushnir VA, Barad DH. Preimplantation genetic screening (PGS) still in search of a clinical application: a systematic review. Reprod Biol Endocrinol. 2014;12:22. doi: 10.1186/1477-7827-12-22. PubMed DOI PMC
Murugappan G, Shahine LK, Perfetto CO, Hickok LR, Lathi RB. Intent to treat analysis of in vitro fertilization and preimplantation genetic screening versus expectant management in patients with recurrent pregnancy loss. Hum Reprod. 2016;31:1668–74. doi: 10.1093/humrep/dew135. PubMed DOI
Gleicher N, Orvieto R. Is the hypothesis of preimplantation genetic screening (PGS) still supportable? A review. J Ovarian Res. 2017;10:21. doi: 10.1186/s13048-017-0318-3. PubMed DOI PMC
Gianaroli L, Magli MC, Pomante A,, et al. Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study. Fertil Steril. 2014;102:1692–9.e6. doi: 10.1016/j.fertnstert.2014.08.021. PubMed DOI
Magli MC, Pomante A, Cafueri G,, et al. Preimplantation genetic testing: polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid? Fertil Steril. 2016;105:676–83.e5. doi: 10.1016/j.fertnstert.2015.11.018. PubMed DOI
Zhang Y, Li N, Wang L,, et al. Molecular analysis of DNA in blastocoele fluid using next-generation sequencing. J Assist Reprod Genet. 2016;33:637–45. doi: 10.1007/s10815-016-0667-7. PubMed DOI PMC
Lin R, Feng G, Shu J,, et al. Blastocoele re-expansion time in vitrified-warmed cycles is a strong predictor of clinical pregnancy outcome. J Obstet Gynaecol Res. 2017;43:689–95. doi: 10.1111/jog.13257. PubMed DOI
Galluzzi L, Palini S, Stefani SDe,, et al. Extracellular embryo genomic DNA and its potential for genotyping applications. Futur Sci OA. 2015;1:FSO62. doi: 10.4155/fso.15.62. PubMed DOI PMC
Hammond ER, McGillivray BC, Wicker SM,, et al. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified. Fertil Steril. 2017;107:220–28.e5. doi: 10.1016/j.fertnstert.2016.10.015. PubMed DOI
Lo YMD, Corbetta N, Chamberlain PF,, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–87. doi: 10.1016/S0140-6736(97)02174-0. PubMed DOI
Tamminga S, van Maarle M, Henneman L, Oudejans CBM, Cornel MC, Sistermans EA. Maternal plasma DNA and RNA sequencing for prenatal testing. In: Advances in clinical chemistry. 2016; p. 63–102. PubMed
Van Opstal D, Srebniak MI. Cytogenetic confirmation of a positive NIPT result: evidence-based choice between chorionic villus sampling and amniocentesis depending on chromosome aberration. Expert Rev Mol Diagn. 2016;16:513–20. doi: 10.1586/14737159.2016.1152890. PubMed DOI
Drury S, Hill M, Chitty LS. Cell-free fetal DNA testing for prenatal diagnosis. Adv Clin Chem. 2016;76:1–35. doi: 10.1016/bs.acc.2016.05.004. PubMed DOI
Verhoef TI, Hill M, Drury S, et al. Non-invasive prenatal diagnosis (NIPD) for single gene disorders: cost analysis of NIPD and invasive testing pathways. Prenat Diagn. 2016;36:636–42. doi: 10.1002/pd.4832. PubMed DOI PMC
Gregg AR, Skotko BG, Benkendorf JL, et al. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet Med. 2016;18:1056–65. doi: 10.1038/gim.2016.97. PubMed DOI
Wilson KL, Czerwinski JL, Hoskovec JM,, et al. NSGC practice guideline: prenatal screening and diagnostic testing options for chromosome aneuploidy. J Genet Couns. 2013;22:4–15. doi: 10.1007/s10897-012-9545-3. PubMed DOI
ISPD: International Society of Prenatal Diagnosis - “Position statement from the chromosome abnormality screening committee on behalf of the board of the International Society for Prenatal Diagnosis. 2015. https://www.ispdhome.org/docs/ISPD/SocietyStatements/PositionStatement_Current_8Apr2015.pdf (Accessed 14 Sep 2017). PubMed
Brewer J, Demers L, Musci T. Survey of US obstetrician opinions regarding NIPT use in general practice: implementation and barriers. J Matern Fetal Neonatal Med. 2016;30:1–4. PubMed
Minear MA, Lewis C, Pradhan S, Chandrasekharan S. Global perspectives on clinical adoption of NIPT. Prenat Diagn. 2015;35:959–67. doi: 10.1002/pd.4637. PubMed DOI PMC
Bustamante-Aragones A, Perlado-Marina S, Trujillo-Tiebas MJ,, et al. Non-invasive prenatal diagnosis in the management of preimplantation genetic diagnosis pregnancies. J Clin Med. 2014;3:913–22. doi: 10.3390/jcm3030913. PubMed DOI PMC
Dondorp W, de Wert G, Bombard Y,, et al. Non-invasive prenatal testing for aneuploidy and beyond: challenges of responsible innovation in prenatal screening. Eur J Hum Genet. 2015;23:1592–92. doi: 10.1038/ejhg.2015.109. PubMed DOI PMC
Nuffield Council on Bioethics. Non-invasive prenatal testing: ethical issues. 2017. http://nuffieldbioethics.org/wp-content/uploads/NIPT-ethical-issues-full-report.pdf (Accessed 14 Sep 2017).
Chitty LS, Bianchi DW. Next generation sequencing and the next generation: how genomics is revolutionizing reproduction. Prenat Diagn. 2015;35:929–30. doi: 10.1002/pd.4679. PubMed DOI
Mersy E, Smits LJM, van Winden LAAP,, et al. Noninvasive detection of fetal trisomy 21: systematic review and report of quality and outcomes of diagnostic accuracy studies performed between 1997 and 2012. Hum Reprod Update. 2013;19:318–29. doi: 10.1093/humupd/dmt001. PubMed DOI
Wald NJ, Bestwick JP, Huttly WJ. Improvements in antenatal screening for Down’s syndrome. J Med Screen. 2013;20:7–14. doi: 10.1177/0969141313476496. PubMed DOI PMC
Gil M, Accurti V, Santacruz B, Plana M, Nicolaides K. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol. 2017. http://doi:10.1002/uog.17484. PubMed
Norton ME, Wapner RJ. Cell-free DNA analysis for noninvasive examination of trisomy. N Engl J Med. 2015;373:2581–82. doi: 10.1056/NEJMc1509344. PubMed DOI
Taylor-Phillips S, Freeman K, Geppert J,, et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open. 2016;6:e010002. doi: 10.1136/bmjopen-2015-010002. PubMed DOI PMC
Wald NJ, Huttly WJ, Bestwick JP, Aquilina J, Peregrine E. Reflex antenatal DNA screening for Down syndrome. Prenat Diagn. 2015;35:1154–1154. doi: 10.1002/pd.4658. PubMed DOI
Gil MM, Revello R, Poon LC, Akolekar R, Nicolaides KH. Clinical implementation of routine screening for fetal trisomies in the UKNHS: cell-free DNA test contingent on results from first-trimester combined test. Ultrasound Obstet Gynecol. 2016;47:45–52. doi: 10.1002/uog.15783. PubMed DOI
Hill M, Wright D, Daley R,, et al. Evaluation of non-invasive prenatal testing (NIPT) for aneuploidy in an NHS setting: a reliable accurate prenatal non-invasive diagnosis (RAPID) protocol. BMC Pregnancy Childbirth. 2014;14:229. doi: 10.1186/1471-2393-14-229. PubMed DOI PMC
Liehr T, Lauten A, Schneider U, Schleussner EWA. Noninvasive prenataltesting - when is it advantageous to apply? Biomed Hub. 2017;2:458432. doi: 10.1159/000458432. PubMed DOI PMC
Amant F, Verheecke M, Wlodarska I,, et al. Presymptomatic identification of cancers in pregnant women during noninvasive prenatal testing. JAMA Oncol. 2015;1:814–9. doi: 10.1001/jamaoncol.2015.1883. PubMed DOI
Bianchi DW, Chudova D, Sehnert AJ,, et al. Noninvasive prenatal testing and incidental detection of occult maternal malignancies. JAMA. 2015;314:162–9. doi: 10.1001/jama.2015.7120. PubMed DOI
Salvi S, Gurioli G, De Giorgi U,, et al. Cell-free DNA as a diagnostic marker for cancer: current insights. Onco Targets Ther. 2016;9:6549–59. doi: 10.2147/OTT.S100901. PubMed DOI PMC
Morris S, Karlsen S, Chung N, Hill M, Chitty LS. Model-based analysis of costs and outcomes of non-invasive prenatal testing for Down’s syndrome using cell free fetal DNA in the UK national health service. PLoS One. 2014;9:e93559. doi: 10.1371/journal.pone.0093559. PubMed DOI PMC
Gyselaers W, Hulstaert F, Neyt M. Contingent non-invasive prenatal testing: an opportunity to improve non-genetic aspects of fetal aneuploidy screening. Prenat Diagn. 2015;35:1347–52. doi: 10.1002/pd.4704. PubMed DOI
Petersen OB, Vogel I, Ekelund C, et al. Potential diagnostic consequences of applying non-invasive prenatal testing: population-based study from a country with existing first-trimester screening. Ultrasound Obstet Gynecol. 2014;43:265–71. doi: 10.1002/uog.13270. PubMed DOI
O’Brien BM, Halliday J, Lambert-Messerlian G, Eklund EE, Kloza E, Palomaki GE. Nuchal translucency measurement in the era of prenatal screening for aneuploidy using cell free (cf)DNA. Prenat Diagn. 2017;37:303–05. doi: 10.1002/pd.5010. PubMed DOI
Palomaki GE, Kloza EM, O’Brien BM, Eklund EE, Lambert-Messerlian GM. The clinical utility of DNA-based screening for fetal aneuploidy by primary obstetrical care providers in the general pregnancy population. Genet Med. 2017. http://doi:10.1038/gim.2016.194. PubMed PMC
Benn P. Expanding non-invasive prenatal testing beyond chromosomes 21, 18, 13, X and Y. Clin Genet. 2016;90:477–85. doi: 10.1111/cge.12818. PubMed DOI
Rose NC, Benn P, Milunsky A. Current controversies in prenatal diagnosis 1: should NIPT routinely include microdeletions/microduplications? Prenat Diagn. 2016;36:10–4. doi: 10.1002/pd.4710. PubMed DOI
Rijnders RJ, van der Schoot CE, Bossers B, de Vroede MA, Christiaens GC. Fetal sex determination from maternal plasma in pregnancies at risk for congenital adrenal hyperplasia. Obstet Gynecol. 2001;98:374–8. PubMed
Miura K, Higashijima A, Shimada T,, et al. Clinical application of fetal sex determination using cell-free fetal DNA in pregnant carriers of X-linked genetic disorders. J Hum Genet. 2011;56:296–9. doi: 10.1038/jhg.2011.7. PubMed DOI
Donley G, Hull SC, Berkman BE. Prenatal whole genome sequencing: just because we can, should we? Hastings Cent Rep. 2012;42:28–40. doi: 10.1002/hast.50. PubMed DOI PMC
Deans Z, Clarke AJ, Newson AJ. For your interest? The ethical acceptability of using non-invasive prenatal testing to test ‘purely for information’. Bioethics. 2015;29:19–25. doi: 10.1111/bioe.12125. PubMed DOI
de Wert G, Dondorp W, Bianchi DW. Fetal therapy for Down syndrome: an ethical exploration. Prenat Diagn. 2017;37:222–28. doi: 10.1002/pd.4995. PubMed DOI PMC
Otten ABC, Smeets HJM. Evolutionary defined role of the mitochondrial DNA in fertility, disease and ageing. Hum Reprod Update. 2015;21:671–89. doi: 10.1093/humupd/dmv024. PubMed DOI
Richardson J, Irving L, Hyslop LA,, et al. Concise reviews: Assisted reproductive technologies to prevent transmission of mitochondrial DNA disease. Stem Cells. 2015;33:639–45. doi: 10.1002/stem.1887. PubMed DOI PMC
Hellebrekers DMEI, Wolfe R, Hendrickx ATM, et al. PGD and heteroplasmic mitochondrial DNA point mutations: a systematic review estimating the chance of healthy offspring. Hum Reprod Update. 2012;18:341–9. doi: 10.1093/humupd/dms008. PubMed DOI
Reznichenko A, Huyser C, Pepper M. Mitochondrial transfer: Implications for assisted reproductive technologies. Appl Transl Genomics. 2016;11:40–47. doi: 10.1016/j.atg.2016.10.001. PubMed DOI PMC
Wolf DP, Mitalipov N, Mitalipov S. Mitochondrial replacement therapy in reproductive medicine. Trends Mol Med. 2015;21:68–76. doi: 10.1016/j.molmed.2014.12.001. PubMed DOI PMC
McGrath J, Solter D. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science. 1983;220:1300–2. doi: 10.1126/science.6857250. PubMed DOI
Hyslop LA, Blakeley P, Craven L,, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534:383–86. doi: 10.1038/nature18303. PubMed DOI PMC
Tachibana M, Sparman M, Sritanaudomchai H,, et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009;461:367–72. doi: 10.1038/nature08368. PubMed DOI PMC
Tachibana M, Amato P, Sparman M,, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153:1228–38. doi: 10.1016/j.cell.2013.05.006. PubMed DOI PMC
Tachibana M, Amato P, Sparman M,, et al. Towards germline gene therapy of inherited mitochondrial diseases. Nature. 2012;493:627–31. doi: 10.1038/nature11647. PubMed DOI PMC
Zhang J, Liu H, Luo S,, et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online. 2017;34:361–68. doi: 10.1016/j.rbmo.2017.01.013. PubMed DOI
Zhang J, Zhuang G, Zeng Y,, et al. Pregnancy derived from human zygote pronuclear transfer in a patient who had arrested embryos after IVF. Reprod Biomed Online. 2016;33:529–33. doi: 10.1016/j.rbmo.2016.07.008. PubMed DOI
Zhang S-P, Lu C-F, Gong F et al. Polar body transfer restores the developmental potential of oocytes to blastocyst stage in a case of repeated embryo fragmentation. J Assist Reprod Genet. 2017. http://doi:10.1007/s10815-017-0881-y. PubMed PMC
Palacios-González C. Ethics of mitochondrial replacement techniques: a habermasian perspective. Bioethics. 2017;31:27–36. doi: 10.1111/bioe.12307. PubMed DOI PMC
Nuffield Council on Bioethics. Novel techniques for the prevention of mitochondrial DNA disorders: an ethical review - 2012. http://nuffieldbioethics.org/project/mitochondrial-dna-disorders (Accessed 14 Sep 2017).
Bredenoord AL, Hyun I. The road to mitochondrial gene transfer: follow the middle lane. Mol Ther. 2015;23:975–6. doi: 10.1038/mt.2015.79. PubMed DOI PMC
Fogleman S, Santana C, Bishop C, Miller A, Capco DG. CRISPR/Cas9 and mitochondrial gene replacement therapy: promising techniques and ethical considerations. Am J Stem Cells. 2016;5:39–52. PubMed PMC
Gómez-Tatay L, Hernández-Andreu J, Aznar J. Mitochondrial modification techniques and ethical issues. J Clin Med. 2017;6:25. doi: 10.3390/jcm6030025. PubMed DOI PMC
Barritt JA, Willadsen S, Brenner C, Cohen J. Cytoplasmic transfer in assisted reproduction. Hum Reprod Update. 2001;7:428–35. doi: 10.1093/humupd/7.4.428. PubMed DOI
White YAR, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18:413–21. doi: 10.1038/nm.2669. PubMed DOI PMC
Woods DC, Tilly JL. Autologous germline mitochondrial energy transfer (AUGMENT) in human assisted reproduction. Semin Reprod Med. 2015;33:410–21. doi: 10.1055/s-0035-1567826. PubMed DOI PMC
Erler P, Sweeney A, Monaghan JR. Regulation of injury-induced ovarian regeneration by activation of oogonial stem cells. Stem Cells. 2017;35:236–47. doi: 10.1002/stem.2504. PubMed DOI
Diez-Juan A, Rubio C, Marin C,, et al. Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertil Steril. 2015;104:534–41.e1. doi: 10.1016/j.fertnstert.2015.05.022. PubMed DOI
Fragouli E, Wells D. Mitochondrial DNA assessment to determine oocyte and embryo viability. Semin Reprod Med. 2015;33:401–09. doi: 10.1055/s-0035-1567821. PubMed DOI
Victor AR, Brake AJ, Tyndall JC,, et al. Accurate quantitation of mitochondrial DNA reveals uniform levels in human blastocysts irrespective of ploidy, age, or implantation potential. Fertil Steril. 2017;107:34–42.e3. doi: 10.1016/j.fertnstert.2016.09.028. PubMed DOI
St. John JC. Mitochondrial DNA copy number and replication in reprogramming and differentiation. Semin Cell Dev Biol. 2016;52:93–101. doi: 10.1016/j.semcdb.2016.01.028. PubMed DOI
Stigliani S, Persico L, Lagazio C, Anserini P, Venturini PL, Scaruffi P. Mitochondrial DNA in Day 3 embryo culture medium is a novel, non-invasive biomarker of blastocyst potential and implantation outcome. Mol Hum Reprod. 2014;20:1238–46. doi: 10.1093/molehr/gau086. PubMed DOI
Hammoud SS, Cairns BR, Carrell DT. Analysis of gene-specific and genome-wide sperm DNA methylation. Methods Mol Biol 2013;927:451–458. PubMed
Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci. 2013;368:20110330. doi: 10.1098/rstb.2011.0330. PubMed DOI PMC
Smith ZD, Chan MM, Humm KC,, et al. DNA methylation dynamics of the human preimplantation embryo. Nature. 2014;511:611–15. doi: 10.1038/nature13581. PubMed DOI PMC
Kelsey G, Feil R. New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos Trans R Soc B Biol Sci. 2012;368:20110336–20110336. doi: 10.1098/rstb.2011.0336. PubMed DOI PMC
Smallwood SA, Kelsey G. De novo DNA methylation: a germ cell perspective. Trends Genet. 2012;28:33–42. doi: 10.1016/j.tig.2011.09.004. PubMed DOI
Fleming TP, Kwong WY, Porter R,, et al. The Embryo and Its Future1. Biol Reprod. 2004;71:1046–54. doi: 10.1095/biolreprod.104.030957. PubMed DOI
Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13:97–109. doi: 10.1038/nrg3142. PubMed DOI
Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460:473–8. doi: 10.1038/nature08162. PubMed DOI PMC
Krausz C, Sandoval J, Sayols S,, et al. Novel insights into DNA methylation features in spermatozoa: stability and peculiarities. PLoS One. 2012;7:e44479. doi: 10.1371/journal.pone.0044479. PubMed DOI PMC
Clarke HJ, Vieux K-F. Epigenetic inheritance through the female germ-line: The known, the unknown, and the possible. Semin Cell Dev Biol. 2015;43:106–16. doi: 10.1016/j.semcdb.2015.07.003. PubMed DOI
Smallwood SA, Tomizawa S-I, Krueger F,, et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet. 2011;43:811–4. doi: 10.1038/ng.864. PubMed DOI PMC
Gifford WD, Pfaff SL, Macfarlan TS. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol. 2013;23:218–26. doi: 10.1016/j.tcb.2013.01.001. PubMed DOI PMC
Zamudio N, Barau J, Teissandier A,, et al. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes Dev. 2015;29:1256–70. doi: 10.1101/gad.257840.114. PubMed DOI PMC
Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA. 2016;7:9. doi: 10.1186/s13100-016-0065-9. PubMed DOI PMC
Sunde A, Brison D, Dumoulin J,, et al. Time to take human embryo culture seriously. Hum Reprod. 2016;31:2174–82. doi: 10.1093/humrep/dew157. PubMed DOI
van Montfoort APA, Hanssen LLP, de Sutter P, Viville S, Geraedts JPM, de Boer P. Assisted reproduction treatment and epigenetic inheritance. Hum Reprod Update. 2012;18:171–97. doi: 10.1093/humupd/dmr047. PubMed DOI PMC
Bunkar N, Pathak N, Lohiya NK, Mishra PK. Epigenetics: A key paradigm in reproductive health. Clin Exp Reprod Med. 2016;43:59. doi: 10.5653/cerm.2016.43.2.59. PubMed DOI PMC
Ghosh J, Mainigi M, Coutifaris C, Sapienza C. Outlier DNA methylation levels as an indicator of environmental exposure and risk of undesirable birth outcome. Hum Mol Genet. 2016;25:123–9. doi: 10.1093/hmg/ddv458. PubMed DOI PMC
de Waal E, Mak W, Calhoun S,, et al. In vitro culture increases the frequency of stochastic epigenetic errors at imprinted genes in placental tissues from mouse concepti produced through assisted reproductive technologies. Biol Reprod. 2014;90:22. PubMed PMC
Pennisi E. The CRISPR Craze. Science. 2013;341:833–36. doi: 10.1126/science.341.6148.833. PubMed DOI
Vassena R, Heindryckx B, Peco R,, et al. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells. Hum Reprod Update. 2016;22:411–9. doi: 10.1093/humupd/dmw005. PubMed DOI
Liang P, Xu Y, Zhang X,, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6:363–72. doi: 10.1007/s13238-015-0153-5. PubMed DOI PMC
Kang X, He W, Huang Y,, et al. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet. 2016;33:581–8. doi: 10.1007/s10815-016-0710-8. PubMed DOI PMC
Ishii T. Reproductive medicine involving genome editing: clinical uncertainties and embryological needs. Reprod Biomed Online. 2017;34:27–31. doi: 10.1016/j.rbmo.2016.09.009. PubMed DOI
Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548:413–419. doi: 10.1038/nature23305. PubMed DOI
Strong A, Musunuru K. Genome editing in cardiovascular diseases. Nat Rev Cardiol. 2016;14:11–20. doi: 10.1038/nrcardio.2016.139. PubMed DOI
Ormond KE, Mortlock DP, Scholes DT, Bombard Y, Brody LC, Faucett WA, Garrison NA, Hercher L, Isasi R, Middleton A, Musunuru K, Shriner D, Virani A, Young CE. Human Germline Genome Editing. Am J Hum Genet. 2017;101(2):167–176. doi: 10.1016/j.ajhg.2017.06.012. PubMed DOI PMC
Evitt NH, Mascharak S, Altman RB. Human germline CRISPR-cas modification: toward a regulatory framework. Am J Bioeth. 2015;15:25–29. doi: 10.1080/15265161.2015.1104160. PubMed DOI PMC
Hildt E. Human germline interventions-think first. Front Genet. 2016;7:81. doi: 10.3389/fgene.2016.00081. PubMed DOI PMC
Lunshof JE. Human germ line editing-roles and responsibilities. Protein Cell. 2016;7:7–10. doi: 10.1007/s13238-015-0224-7. PubMed DOI PMC
Nuffield Council on Bioethics - Genome editing: an ethical review 2016. http://nuffieldbioethics.org/project/genome-editing/ethical-review-published-september-2016 (Accessed 14 Sep 2017).
Sherkow JS. CRISPR: Pursuit of profit poisons collaboration. Nature. 2016;532:172–3. doi: 10.1038/532172a. PubMed DOI
Walton D. The slippery slope argument in the ethical debate on genetic engineering of humans. Sci Eng Ethics. 2016. 10.1007/s11948-016-9861-3. PubMed
The future of cystic fibrosis care: a global perspective