A novel type I cystatin of parasite origin with atypical legumain-binding domain
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
29235483
PubMed Central
PMC5727476
DOI
10.1038/s41598-017-17598-2
PII: 10.1038/s41598-017-17598-2
Knihovny.cz E-zdroje
- MeSH
- cystatiny metabolismus MeSH
- cysteinové endopeptidasy metabolismus MeSH
- Escherichia coli MeSH
- fylogeneze MeSH
- kapři parazitologie MeSH
- klonování DNA MeSH
- konformace proteinů MeSH
- ploštěnci metabolismus MeSH
- počítačová simulace MeSH
- proteinové domény MeSH
- proteiny červů genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- sekvenční analýza proteinů MeSH
- sekvenční seřazení MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- asparaginylendopeptidase MeSH Prohlížeč
- cystatiny MeSH
- cysteinové endopeptidasy MeSH
- proteiny červů MeSH
- rekombinantní proteiny MeSH
Parasite inhibitors of cysteine peptidases are known to influence a vast range of processes linked to a degradation of either the parasites' own proteins or proteins native to their hosts. We characterise a novel type I cystatin (stefin) found in a sanguinivorous fish parasite Eudiplozoon nipponicum (Platyhelminthes: Monogenea). We have identified a transcript of its coding gene in the transcriptome of adult worms. Its amino acid sequence is similar to other stefins except for containing a legumain-binding domain, which is in this type of cystatins rather unusual. As expected, the recombinant form of E. nipponicum stefin (rEnStef) produced in Escherichia coli inhibits clan CA peptidases - cathepsins L and B of the worm - via the standard papain-binding domain. It also blocks haemoglobinolysis by cysteine peptidases in the worm's excretory-secretory products and soluble extracts. Furthermore, we had confirmed its ability to inhibit clan CD asparaginyl endopeptidase (legumain). The presence of a native EnStef in the excretory-secretory products of adult worms, detected by mass spectrometry, suggests that this protein has an important biological function at the host-parasite interface. We discuss the inhibitor's possible role in the regulation of blood digestion, modulation of antigen presentation, and in the regeneration of host tissues.
Central European Institute of Technology Masaryk University Brno 625 00 Czech Republic
Department of Botany and Zoology Faculty of Science Masaryk University Brno 611 37 Czech Republic
Department of Parasitology Faculty of Science Charles University Prague 128 44 Czech Republic
Zobrazit více v PubMed
Dalton JP, Skelly P, Halton DW. Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. Can. J. Zool. 2004;82:211–232. doi: 10.1139/z03-213. DOI
Wikel SK. Modulation of the host immune system by ectoparasitic arthropods: blood-feeding and tissue-dwelling arthropods manipulate host defenses to their advantage. Bioscience. 1999;49:311–320. doi: 10.2307/1313614. DOI
Lightowlers M, Rickard M. Excretory-secretory products of helminth parasites: effects on host immune responses. Parasitology. 1988;96:123–166. doi: 10.1017/S0031182000086017. PubMed DOI
Hewitson JP, Grainger JR, Maizels RM. Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol. Biochem. Parasitol. 2009;167:1–11. doi: 10.1016/j.molbiopara.2009.04.008. PubMed DOI PMC
Jedličková L, et al. Major acid endopeptidases of the blood-feeding monogenean Eudiplozoon nipponicum (Heteronchoinea: Diplozoidae) Parasitology. 2016;143:494–506. doi: 10.1017/S0031182015001808. PubMed DOI
Turk V, Bode W. The cystatins: Protein inhibitors of cysteine proteinases. FEBS Lett. 1991;285:213–219. doi: 10.1016/0014-5793(91)80804-C. PubMed DOI
Vray B, Hartmann S, Hoebeke J. Imunomodulatory properties of cystatins. Cell. Mol. Life Sci. 2002;59:1503–1512. doi: 10.1007/s00018-002-8525-4. PubMed DOI PMC
Klotz C, Ziegler T, Daniłowicz-Luebert E, Hartmann S. Cystatins of parasitic organisms. Adv. Exp. Med. Biol. 2011;712:208–21. doi: 10.1007/978-1-4419-8414-2_13. PubMed DOI
Turk V, et al. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta - Proteins Proteomics. 2012;1824:68–88. doi: 10.1016/j.bbapap.2011.10.002. PubMed DOI PMC
Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database. Nucleic Acids Res. 2009;38:227–233. doi: 10.1093/nar/gkp971. PubMed DOI PMC
Brindley PJ, et al. Proteolytic degradation of host hemoglobin by schistosomes. Mol. Biochem. Parasitol. 1997;89:1–9. doi: 10.1016/S0166-6851(97)00098-4. PubMed DOI
Manoury B, et al. Asparagine endopeptidase can initiate the removal of the MHC class II invariant chain chaperone. Immunity. 2003;18:489–498. doi: 10.1016/S1074-7613(03)00085-2. PubMed DOI
Sepulveda FE, et al. Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells. Immunity. 2009;31:737–48. doi: 10.1016/j.immuni.2009.09.013. PubMed DOI
Dall E, Brandstetter H. Structure and function of legumain in health and disease. Biochimie. 2016;122:126–150. doi: 10.1016/j.biochi.2015.09.022. PubMed DOI
Kordis D, Turk V. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol. Biol. 2009;9:266. doi: 10.1186/1471-2148-9-266. PubMed DOI PMC
Alvarez-Fernandez M, et al. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 1999;274:19195–19203. doi: 10.1074/jbc.274.27.19195. PubMed DOI
Morales FC, Furtado DR, Rumjanek FD. The N-terminus moiety of the cystatin SmCys from Schistosoma mansoni regulates its inhibitory activity in vitro and in vivo. Mol. Biochem. Parasitol. 2004;134:65–73. doi: 10.1016/j.molbiopara.2003.10.016. PubMed DOI
Zhou J, et al. A secreted cystatin from the tick Haemaphysalis longicornis and its distinct expression patterns in relation to innate immunity. Insect Biochem. Mol. Biol. 2006;36:527–535. doi: 10.1016/j.ibmb.2006.03.003. PubMed DOI
Grunclová L, et al. Two secreted cystatins of the soft tick Ornithodoros moubata: differential expression pattern and inhibitory specificity. Biol. Chem. 2006;387:1635–1644. doi: 10.1515/BC.2006.204. PubMed DOI
Kang J-M, et al. Identification and characterization of the second cysteine protease inhibitor of Clonorchis sinensis (CsStefin-2) Parasitol. Res. 2014;113:47–58. doi: 10.1007/s00436-013-3624-8. PubMed DOI
Lustigman S, Brotman B, Huima T, Prince AM, McKerrow JH. Molecular cloning and characterization of onchocystatin, a cysteine proteinase inhibitor of Onchocerca volvulus. J. Biol. Chem. 1992;267:17339–17346. PubMed
Lefebvre C, et al. Cathepsin L and cystatin B gene expression discriminates immune coelomic cells in the leech Theromyzon tessulatum. Dev. Comp. Immunol. 2008;32:795–807. doi: 10.1016/j.dci.2007.11.007. PubMed DOI PMC
Schönemeyer A, et al. Modulation of human T cell responses and macrophage functions by onchocystatin, a secreted protein of the filarial nematode Onchocerca volvulus. J. Immunol. 2001;167:3207–3215. doi: 10.4049/jimmunol.167.6.3207. PubMed DOI
Hirazawa N, Umeda N, Hatanaka A, Kuroda A. Characterization of serine proteases in the monogenean Neobenedenia girellae. Aquaculture. 2006;255:188–195. doi: 10.1016/j.aquaculture.2006.01.024. DOI
Rao Y, Yang T. cDNA cloning, mRNA expression and recombinant expression of a cathepsin L-like cysteine protease from Neobenedenia melleni (Monogenea: Capsalidae) Aquaculture. 2007;269:41–53. doi: 10.1016/j.aquaculture.2007.03.013. DOI
Choi SH, Kwon SR, Lee EH, Kim KH. Molecular cloning, functional characterization and localization of an annexin from a fish gill fluke Microcotyle sebastis (Platyhelminthes: Monogenea) Mol. Biochem. Parasitol. 2009;163:48–53. doi: 10.1016/j.molbiopara.2008.09.009. PubMed DOI
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015;10:845–858. doi: 10.1038/nprot.2015.053. PubMed DOI PMC
Jenko S, et al. Crystal structure of stefin A in complex with cathepsin H: N-terminal residues of inhibitors can adapt to the active sites of endo- and exopeptidases. J. Mol. Biol. 2003;326:875–885. doi: 10.1016/S0022-2836(02)01432-8. PubMed DOI
Stubbs MT, et al. The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 1990;9:1939–1947. PubMed PMC
Zurawski ATH, et al. Microscopical evaluation of neural connectivity between paired stages of Eudiplozoon nipponicum (Monogenea: Diplozoidae) J. Parasitol. 2003;89:198–200. doi: 10.1645/0022-3395(2003)089[0198:MEONCB]2.0.CO;2. PubMed DOI
Zurawski T, et al. Immunomicroscopical observations on the nervous system of adult Eudiplozoon nipponicum (Monogenea: Diplozoidae) Int. J. Parasitol. 2001;31:783–792. doi: 10.1016/S0020-7519(01)00192-8. PubMed DOI
Hodová I, Matejusova I, Gelnar M. The surface topography of Eudiplozoon nipponicum (Monogenea) developmental stages parasitizing carp (Cyprinus carpio L.) Cent. Eur. J. Biol. 2010;5:702–709.
Valigurová A, Hodová I, Sonnek R, Koubková B, Gelnar M. Eudiplozoon nipponicum in focus: monogenean exhibiting a highly specialized adaptation for ectoparasitic lifestyle. Parasitol. Res. 2011;108:383–394. doi: 10.1007/s00436-010-2077-6. PubMed DOI
Klotz C, Ziegler T, Luebert ED, Hartmann S. Cystatins of parasitic organisms. Adv. Exp. Med. Biol. 2011;712:208–221. doi: 10.1007/978-1-4419-8414-2_13. PubMed DOI
Cuesta-Astroz Y, Scholte LLS, Pais FS-M, Oliveira G, Nahum LA. Evolutionary analysis of the cystatin family in three Schistosoma species. Front. Genet. 2014;5:206. doi: 10.3389/fgene.2014.00206. PubMed DOI PMC
Martinez M, Diaz-Mendoza M, Carrillo L, Diaz I. Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases. FEBS Lett. 2007;581:2914–2918. doi: 10.1016/j.febslet.2007.05.042. PubMed DOI
Abrahamson, M., Alvarez-Fernandez, M. & Nathanson, C.-M. Cystatins. Biochem. Soc. Symp. 179–199 (2003). PubMed
Musil D, et al. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 1991;10:2321–2330. PubMed PMC
Siricoon S, Grams SV, Grams R. Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica. Mol. Biochem. Parasitol. 2012;186:126–133. doi: 10.1016/j.molbiopara.2012.10.003. PubMed DOI
Tarasuk M, Vichasri Grams S, Viyanant V, Grams R. Type I cystatin (stefin) is a major component of Fasciola gigantica excretion/secretion product. Mol. Biochem. Parasitol. 2009;167:60–71. doi: 10.1016/j.molbiopara.2009.04.010. PubMed DOI
Abrahamson M, Barrett AJ, Salvesen G, Grubb A. Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J. Biol. Chem. 1986;261:11282–11289. PubMed
Sojka D, et al. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013;29:276–285. doi: 10.1016/j.pt.2013.04.002. PubMed DOI
Konstanzová V, et al. Ultrastructure of the digestive tract of Paradiplozoon homoion (Monogenea) Parasitol. Res. 2015;114:1485–1494. doi: 10.1007/s00436-015-4331-4. PubMed DOI
Halton DW. Hemoglobin absorption in the gut of a monogenetic trematode. Diclidophora merlangi. J. Parasitol. 1974;60:59–66. doi: 10.2307/3278679. PubMed DOI
Halton D. Intracellular digestion and cellular defecation in a monogenean. Diclidophora merlangi. Parasitology. 1975;70:331–340. doi: 10.1017/S0031182000052100. DOI
Yamaji K, et al. Hlcyst-1 and Hlcyst-2 are potential inhibitors of HlCPL-A in the midgut of the ixodid tick Haemaphysalis longicornis. J. Vet. Med. Sci. 2010;72:599–604. doi: 10.1292/jvms.09-0561. PubMed DOI
Dalton JP, Brindley PJ, Donnelly S, Robinson MW. The enigmatic asparaginyl endopeptidase of helminth parasites. Trends Parasitol. 2009;25:59–61. doi: 10.1016/j.pt.2008.11.002. PubMed DOI
Jílková A, et al. Activation route of the Schistosoma mansoni cathepsin B1 drug target: structural map with a glycosaminoglycan switch. Structure. 2014;22:1786–1798. doi: 10.1016/j.str.2014.09.015. PubMed DOI
Feist SW, Longshaw M. Histopathology of fish parasite infections - importance for populations. J. Fish Biol. 2008;73:2143–2160. doi: 10.1111/j.1095-8649.2008.02060.x. DOI
Buchmann K. Immune mechanisms in fish skin against monogeneans - a model. Folia Parasitol. (Praha). 1999;46:1–9. PubMed
Halton DW, Jennings JB. Observations on the nutrition of the monogenetic trematodes. Biol. Bull. 1965;129:257–272. doi: 10.2307/1539843. PubMed DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Gasteiger, E. et al. In The proteomics protocols handbook (ed. Walker, J. M.) 571–607 (Humana Press, 2005).
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. PubMed DOI
Pettersen EF, et al. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Keane TM, Creevey CJ, Pentony MM, Naughton TJ, Mclnerney JO. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 2006;6:29. doi: 10.1186/1471-2148-6-29. PubMed DOI PMC
Ronquist F, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Kearse M, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Stejskal K, Potěšil D, Zdráhal Z. Suppression of peptide sample losses in autosampler vials. J. Proteome Res. 2013;12:3057–3062. doi: 10.1021/pr400183v. PubMed DOI
Sojka D, et al. IrAE: an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol. 2007;37:713–724. doi: 10.1016/j.ijpara.2006.12.020. PubMed DOI PMC