A novel type I cystatin of parasite origin with atypical legumain-binding domain

. 2017 Dec 13 ; 7 (1) : 17526. [epub] 20171213

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29235483
Odkazy

PubMed 29235483
PubMed Central PMC5727476
DOI 10.1038/s41598-017-17598-2
PII: 10.1038/s41598-017-17598-2
Knihovny.cz E-zdroje

Parasite inhibitors of cysteine peptidases are known to influence a vast range of processes linked to a degradation of either the parasites' own proteins or proteins native to their hosts. We characterise a novel type I cystatin (stefin) found in a sanguinivorous fish parasite Eudiplozoon nipponicum (Platyhelminthes: Monogenea). We have identified a transcript of its coding gene in the transcriptome of adult worms. Its amino acid sequence is similar to other stefins except for containing a legumain-binding domain, which is in this type of cystatins rather unusual. As expected, the recombinant form of E. nipponicum stefin (rEnStef) produced in Escherichia coli inhibits clan CA peptidases - cathepsins L and B of the worm - via the standard papain-binding domain. It also blocks haemoglobinolysis by cysteine peptidases in the worm's excretory-secretory products and soluble extracts. Furthermore, we had confirmed its ability to inhibit clan CD asparaginyl endopeptidase (legumain). The presence of a native EnStef in the excretory-secretory products of adult worms, detected by mass spectrometry, suggests that this protein has an important biological function at the host-parasite interface. We discuss the inhibitor's possible role in the regulation of blood digestion, modulation of antigen presentation, and in the regeneration of host tissues.

Zobrazit více v PubMed

Dalton JP, Skelly P, Halton DW. Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. Can. J. Zool. 2004;82:211–232. doi: 10.1139/z03-213. DOI

Wikel SK. Modulation of the host immune system by ectoparasitic arthropods: blood-feeding and tissue-dwelling arthropods manipulate host defenses to their advantage. Bioscience. 1999;49:311–320. doi: 10.2307/1313614. DOI

Lightowlers M, Rickard M. Excretory-secretory products of helminth parasites: effects on host immune responses. Parasitology. 1988;96:123–166. doi: 10.1017/S0031182000086017. PubMed DOI

Hewitson JP, Grainger JR, Maizels RM. Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol. Biochem. Parasitol. 2009;167:1–11. doi: 10.1016/j.molbiopara.2009.04.008. PubMed DOI PMC

Jedličková L, et al. Major acid endopeptidases of the blood-feeding monogenean Eudiplozoon nipponicum (Heteronchoinea: Diplozoidae) Parasitology. 2016;143:494–506. doi: 10.1017/S0031182015001808. PubMed DOI

Turk V, Bode W. The cystatins: Protein inhibitors of cysteine proteinases. FEBS Lett. 1991;285:213–219. doi: 10.1016/0014-5793(91)80804-C. PubMed DOI

Vray B, Hartmann S, Hoebeke J. Imunomodulatory properties of cystatins. Cell. Mol. Life Sci. 2002;59:1503–1512. doi: 10.1007/s00018-002-8525-4. PubMed DOI PMC

Klotz C, Ziegler T, Daniłowicz-Luebert E, Hartmann S. Cystatins of parasitic organisms. Adv. Exp. Med. Biol. 2011;712:208–21. doi: 10.1007/978-1-4419-8414-2_13. PubMed DOI

Turk V, et al. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta - Proteins Proteomics. 2012;1824:68–88. doi: 10.1016/j.bbapap.2011.10.002. PubMed DOI PMC

Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database. Nucleic Acids Res. 2009;38:227–233. doi: 10.1093/nar/gkp971. PubMed DOI PMC

Brindley PJ, et al. Proteolytic degradation of host hemoglobin by schistosomes. Mol. Biochem. Parasitol. 1997;89:1–9. doi: 10.1016/S0166-6851(97)00098-4. PubMed DOI

Manoury B, et al. Asparagine endopeptidase can initiate the removal of the MHC class II invariant chain chaperone. Immunity. 2003;18:489–498. doi: 10.1016/S1074-7613(03)00085-2. PubMed DOI

Sepulveda FE, et al. Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells. Immunity. 2009;31:737–48. doi: 10.1016/j.immuni.2009.09.013. PubMed DOI

Dall E, Brandstetter H. Structure and function of legumain in health and disease. Biochimie. 2016;122:126–150. doi: 10.1016/j.biochi.2015.09.022. PubMed DOI

Kordis D, Turk V. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol. Biol. 2009;9:266. doi: 10.1186/1471-2148-9-266. PubMed DOI PMC

Alvarez-Fernandez M, et al. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 1999;274:19195–19203. doi: 10.1074/jbc.274.27.19195. PubMed DOI

Morales FC, Furtado DR, Rumjanek FD. The N-terminus moiety of the cystatin SmCys from Schistosoma mansoni regulates its inhibitory activity in vitro and in vivo. Mol. Biochem. Parasitol. 2004;134:65–73. doi: 10.1016/j.molbiopara.2003.10.016. PubMed DOI

Zhou J, et al. A secreted cystatin from the tick Haemaphysalis longicornis and its distinct expression patterns in relation to innate immunity. Insect Biochem. Mol. Biol. 2006;36:527–535. doi: 10.1016/j.ibmb.2006.03.003. PubMed DOI

Grunclová L, et al. Two secreted cystatins of the soft tick Ornithodoros moubata: differential expression pattern and inhibitory specificity. Biol. Chem. 2006;387:1635–1644. doi: 10.1515/BC.2006.204. PubMed DOI

Kang J-M, et al. Identification and characterization of the second cysteine protease inhibitor of Clonorchis sinensis (CsStefin-2) Parasitol. Res. 2014;113:47–58. doi: 10.1007/s00436-013-3624-8. PubMed DOI

Lustigman S, Brotman B, Huima T, Prince AM, McKerrow JH. Molecular cloning and characterization of onchocystatin, a cysteine proteinase inhibitor of Onchocerca volvulus. J. Biol. Chem. 1992;267:17339–17346. PubMed

Lefebvre C, et al. Cathepsin L and cystatin B gene expression discriminates immune coelomic cells in the leech Theromyzon tessulatum. Dev. Comp. Immunol. 2008;32:795–807. doi: 10.1016/j.dci.2007.11.007. PubMed DOI PMC

Schönemeyer A, et al. Modulation of human T cell responses and macrophage functions by onchocystatin, a secreted protein of the filarial nematode Onchocerca volvulus. J. Immunol. 2001;167:3207–3215. doi: 10.4049/jimmunol.167.6.3207. PubMed DOI

Hirazawa N, Umeda N, Hatanaka A, Kuroda A. Characterization of serine proteases in the monogenean Neobenedenia girellae. Aquaculture. 2006;255:188–195. doi: 10.1016/j.aquaculture.2006.01.024. DOI

Rao Y, Yang T. cDNA cloning, mRNA expression and recombinant expression of a cathepsin L-like cysteine protease from Neobenedenia melleni (Monogenea: Capsalidae) Aquaculture. 2007;269:41–53. doi: 10.1016/j.aquaculture.2007.03.013. DOI

Choi SH, Kwon SR, Lee EH, Kim KH. Molecular cloning, functional characterization and localization of an annexin from a fish gill fluke Microcotyle sebastis (Platyhelminthes: Monogenea) Mol. Biochem. Parasitol. 2009;163:48–53. doi: 10.1016/j.molbiopara.2008.09.009. PubMed DOI

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015;10:845–858. doi: 10.1038/nprot.2015.053. PubMed DOI PMC

Jenko S, et al. Crystal structure of stefin A in complex with cathepsin H: N-terminal residues of inhibitors can adapt to the active sites of endo- and exopeptidases. J. Mol. Biol. 2003;326:875–885. doi: 10.1016/S0022-2836(02)01432-8. PubMed DOI

Stubbs MT, et al. The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 1990;9:1939–1947. PubMed PMC

Zurawski ATH, et al. Microscopical evaluation of neural connectivity between paired stages of Eudiplozoon nipponicum (Monogenea: Diplozoidae) J. Parasitol. 2003;89:198–200. doi: 10.1645/0022-3395(2003)089[0198:MEONCB]2.0.CO;2. PubMed DOI

Zurawski T, et al. Immunomicroscopical observations on the nervous system of adult Eudiplozoon nipponicum (Monogenea: Diplozoidae) Int. J. Parasitol. 2001;31:783–792. doi: 10.1016/S0020-7519(01)00192-8. PubMed DOI

Hodová I, Matejusova I, Gelnar M. The surface topography of Eudiplozoon nipponicum (Monogenea) developmental stages parasitizing carp (Cyprinus carpio L.) Cent. Eur. J. Biol. 2010;5:702–709.

Valigurová A, Hodová I, Sonnek R, Koubková B, Gelnar M. Eudiplozoon nipponicum in focus: monogenean exhibiting a highly specialized adaptation for ectoparasitic lifestyle. Parasitol. Res. 2011;108:383–394. doi: 10.1007/s00436-010-2077-6. PubMed DOI

Klotz C, Ziegler T, Luebert ED, Hartmann S. Cystatins of parasitic organisms. Adv. Exp. Med. Biol. 2011;712:208–221. doi: 10.1007/978-1-4419-8414-2_13. PubMed DOI

Cuesta-Astroz Y, Scholte LLS, Pais FS-M, Oliveira G, Nahum LA. Evolutionary analysis of the cystatin family in three Schistosoma species. Front. Genet. 2014;5:206. doi: 10.3389/fgene.2014.00206. PubMed DOI PMC

Martinez M, Diaz-Mendoza M, Carrillo L, Diaz I. Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases. FEBS Lett. 2007;581:2914–2918. doi: 10.1016/j.febslet.2007.05.042. PubMed DOI

Abrahamson, M., Alvarez-Fernandez, M. & Nathanson, C.-M. Cystatins. Biochem. Soc. Symp. 179–199 (2003). PubMed

Musil D, et al. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 1991;10:2321–2330. PubMed PMC

Siricoon S, Grams SV, Grams R. Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica. Mol. Biochem. Parasitol. 2012;186:126–133. doi: 10.1016/j.molbiopara.2012.10.003. PubMed DOI

Tarasuk M, Vichasri Grams S, Viyanant V, Grams R. Type I cystatin (stefin) is a major component of Fasciola gigantica excretion/secretion product. Mol. Biochem. Parasitol. 2009;167:60–71. doi: 10.1016/j.molbiopara.2009.04.010. PubMed DOI

Abrahamson M, Barrett AJ, Salvesen G, Grubb A. Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J. Biol. Chem. 1986;261:11282–11289. PubMed

Sojka D, et al. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013;29:276–285. doi: 10.1016/j.pt.2013.04.002. PubMed DOI

Konstanzová V, et al. Ultrastructure of the digestive tract of Paradiplozoon homoion (Monogenea) Parasitol. Res. 2015;114:1485–1494. doi: 10.1007/s00436-015-4331-4. PubMed DOI

Halton DW. Hemoglobin absorption in the gut of a monogenetic trematode. Diclidophora merlangi. J. Parasitol. 1974;60:59–66. doi: 10.2307/3278679. PubMed DOI

Halton D. Intracellular digestion and cellular defecation in a monogenean. Diclidophora merlangi. Parasitology. 1975;70:331–340. doi: 10.1017/S0031182000052100. DOI

Yamaji K, et al. Hlcyst-1 and Hlcyst-2 are potential inhibitors of HlCPL-A in the midgut of the ixodid tick Haemaphysalis longicornis. J. Vet. Med. Sci. 2010;72:599–604. doi: 10.1292/jvms.09-0561. PubMed DOI

Dalton JP, Brindley PJ, Donnelly S, Robinson MW. The enigmatic asparaginyl endopeptidase of helminth parasites. Trends Parasitol. 2009;25:59–61. doi: 10.1016/j.pt.2008.11.002. PubMed DOI

Jílková A, et al. Activation route of the Schistosoma mansoni cathepsin B1 drug target: structural map with a glycosaminoglycan switch. Structure. 2014;22:1786–1798. doi: 10.1016/j.str.2014.09.015. PubMed DOI

Feist SW, Longshaw M. Histopathology of fish parasite infections - importance for populations. J. Fish Biol. 2008;73:2143–2160. doi: 10.1111/j.1095-8649.2008.02060.x. DOI

Buchmann K. Immune mechanisms in fish skin against monogeneans - a model. Folia Parasitol. (Praha). 1999;46:1–9. PubMed

Halton DW, Jennings JB. Observations on the nutrition of the monogenetic trematodes. Biol. Bull. 1965;129:257–272. doi: 10.2307/1539843. PubMed DOI

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Gasteiger, E. et al. In The proteomics protocols handbook (ed. Walker, J. M.) 571–607 (Humana Press, 2005).

Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. PubMed DOI

Pettersen EF, et al. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI

Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Keane TM, Creevey CJ, Pentony MM, Naughton TJ, Mclnerney JO. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 2006;6:29. doi: 10.1186/1471-2148-6-29. PubMed DOI PMC

Ronquist F, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Kearse M, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Stejskal K, Potěšil D, Zdráhal Z. Suppression of peptide sample losses in autosampler vials. J. Proteome Res. 2013;12:3057–3062. doi: 10.1021/pr400183v. PubMed DOI

Sojka D, et al. IrAE: an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol. 2007;37:713–724. doi: 10.1016/j.ijpara.2006.12.020. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

An inside out journey: biogenesis, ultrastructure and proteomic characterisation of the ectoparasitic flatworm Sparicotyle chrysophrii extracellular vesicles

. 2024 Apr 03 ; 17 (1) : 175. [epub] 20240403

An insight into the functional genomics and species classification of Eudiplozoon nipponicum (Monogenea, Diplozoidae), a haematophagous parasite of the common carp Cyprinus carpio

. 2023 Jun 29 ; 24 (1) : 363. [epub] 20230629

Eudiplozoon nipponicum (Monogenea, Diplozoidae) and its adaptation to haematophagy as revealed by transcriptome and secretome profiling

. 2021 Apr 15 ; 22 (1) : 274. [epub] 20210415

Evolutionary Analysis of Cystatins of Early-Emerging Metazoans Reveals a Novel Subtype in Parasitic Cnidarians

. 2021 Feb 03 ; 10 (2) : . [epub] 20210203

Laser capture microdissection in combination with mass spectrometry: Approach to characterization of tissue-specific proteomes of Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea)

. 2020 ; 15 (6) : e0231681. [epub] 20200617

Identification and partial characterization of a novel serpin from Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea)

. 2018 ; 25 () : 61. [epub] 20181205

Architecture of Paradiplozoon homoion: A diplozoid monogenean exhibiting highly-developed equipment for ectoparasitism

. 2018 ; 13 (2) : e0192285. [epub] 20180207

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...