Aggregate Size Dependence of Amyloid Adsorption onto Charged Interfaces
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
340890
European Research Council - International
PubMed
29284092
PubMed Central
PMC5828364
DOI
10.1021/acs.langmuir.7b03155
Knihovny.cz E-zdroje
- MeSH
- adsorpce MeSH
- amyloid chemie MeSH
- amyloidní beta-protein chemie MeSH
- mikrorovnovážné techniky křemenného krystalu MeSH
- povrchové vlastnosti MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amyloid MeSH
- amyloidní beta-protein MeSH
Amyloid aggregates are associated with a range of human neurodegenerative disorders, and it has been shown that neurotoxicity is dependent on aggregate size. Combining molecular simulation with analytical theory, a predictive model is proposed for the adsorption of amyloid aggregates onto oppositely charged surfaces, where the interaction is governed by an interplay between electrostatic attraction and entropic repulsion. Predictions are experimentally validated against quartz crystal microbalance-dissipation experiments of amyloid beta peptides and fragmented fibrils in the presence of a supported lipid bilayer. Assuming amyloids as rigid, elongated particles, we observe nonmonotonic trends for the extent of adsorption with respect to aggregate size and preferential adsorption of smaller aggregates over larger ones. Our findings describe a general phenomenon with implications for stiff polyions and rodlike particles that are electrostatically attracted to a surface.
Zobrazit více v PubMed
Fändrich M. On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell. Mol. Life Sci. 2007, 64, 2066–2078. 10.1007/s00018-007-7110-2. PubMed DOI PMC
Pulawski W.; Ghoshdastider U.; Andrisano V.; Filipek S. Ubiquitous Amyloids. Appl. Biochem. Biotechnol. 2012, 166, 1626–1643. 10.1007/s12010-012-9549-3. PubMed DOI PMC
Salvatella X.Progress in Molecular Biology and Translational Science; Elsevier BV: 2013; pp 73–101. PubMed
Grey M.; Linse S.; Nilsson H.; Brundin P.; Sparr E. Membrane Interaction of α-Synuclein in Different Aggregation States. J. Parkinson’s Dis. 2011, 1, 359–371. PubMed
Hellstrand E.; Nowacka A.; Topgaard D.; Linse S.; Sparr E. Membrane Lipid Co-Aggregation with α-Synuclein Fibrils. PLoS One 2013, 8, e77235.10.1371/journal.pone.0077235. PubMed DOI PMC
Tycko R. Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci. 2014, 23, 1528–1539. 10.1002/pro.2544. PubMed DOI PMC
Tycko R. Amyloid Polymorphism: Structural Basis and Neurobiological Relevance. Neuron 2015, 86, 632–645. 10.1016/j.neuron.2015.03.017. PubMed DOI PMC
Williams T. L.; Serpell L. C. Membrane and surface interactions of Alzheimer’s Aβ peptide - insights into the mechanism of cytotoxicity. FEBS J. 2011, 278, 3905–3917. 10.1111/j.1742-4658.2011.08228.x. PubMed DOI
Jiang Z.; de Messieres M.; Lee J. C. Membrane Remodeling by α-Synuclein and Effects on Amyloid Formation. J. Am. Chem. Soc. 2013, 135, 15970–15973. 10.1021/ja405993r. PubMed DOI PMC
Schladitz C.; Vieira E. P.; Hermel H.; Möhwald H. Amyloid−β-Sheet Formation at the Air-Water Interface. Biophys. J. 1999, 77, 3305–3310. 10.1016/S0006-3495(99)77161-4. PubMed DOI PMC
Engel M. F. M.; Khemtemourian L.; Kleijer C. C.; Meeldijk H. J. D.; Jacobs J.; Verkleij A. J.; de Kruijff B.; Killian J. A.; Hoppener J. W. M. Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 6033–6038. 10.1073/pnas.0708354105. PubMed DOI PMC
Chi E. Y.; Frey S. L.; Winans A.; Lam K. L. H.; Kjaer K.; Majewski J.; Lee K. Y. C. Amyloid-β Fibrillogenesis Seeded by Interface-Induced Peptide Misfolding and Self-Assembly. Biophys. J. 2010, 98, 2299–2308. 10.1016/j.bpj.2010.01.056. PubMed DOI PMC
Pfefferkorn C. M.; Heinrich F.; Sodt A. J.; Maltsev A. S.; Pastor R. W.; Lee J. C. Depth of α-Synuclein in a Bilayer Determined by Fluorescence, Neutron Reflectometry, and Computation. Biophys. J. 2012, 102, 613–621. 10.1016/j.bpj.2011.12.051. PubMed DOI PMC
Campioni S.; Carret G.; Jordens S.; Nicoud L.; Mezzenga R.; Riek R. The Presence of an Air–Water Interface Affects Formation and Elongation of α-Synuclein Fibrils. J. Am. Chem. Soc. 2014, 136, 2866–2875. 10.1021/ja412105t. PubMed DOI
Walsh D. M.; Selkoe D. J. Aβ Oligomers - a decade of discovery. J. Neurochem. 2007, 101, 1172–1184. 10.1111/j.1471-4159.2006.04426.x. PubMed DOI
Xue W.-F.; Hellewell A. L.; Hewitt E. W.; Radford S. E. Fibril fragmentation in amyloid assembly and cytotoxicity. Prion 2010, 4, 20–25. 10.4161/pri.4.1.11378. PubMed DOI PMC
Winner B.; et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 4194–4199. 10.1073/pnas.1100976108. PubMed DOI PMC
Cohen S. I. A.; Linse S.; Luheshi L. M.; Hellstrand E.; White D. A.; Rajah L.; Otzen D. E.; Vendruscolo M.; Dobson C. M.; Knowles T. P. J. Proliferation of amyloid- 42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 9758–9763. 10.1073/pnas.1218402110. PubMed DOI PMC
Xue W.-F.; Hellewell A. L.; Gosal W. S.; Homans S. W.; Hewitt E. W.; Radford S. E. Fibril Fragmentation Enhances Amyloid Cytotoxicity. J. Biol. Chem. 2009, 284, 34272–34282. 10.1074/jbc.M109.049809. PubMed DOI PMC
Milanesi L.; Sheynis T.; Xue W.-F.; Orlova E. V.; Hellewell A. L.; Jelinek R.; Hewitt E. W.; Radford S. E.; Saibil H. R. Direct three-dimensional visualization of membrane disruption by amyloid fibrils. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 20455–20460. 10.1073/pnas.1206325109. PubMed DOI PMC
Monsellier E.; Bousset L.; Melki R. α-Synuclein and huntingtin exon 1 amyloid fibrils bind laterally to the cellular membrane. Sci. Rep. 2016, 6, 19180.10.1038/srep19180. PubMed DOI PMC
Höök F.; Rodahl M.; Brzezinski P.; Kasemo B. Energy Dissipation Kinetics for Protein and Antibody-Antigen Adsorption under Shear Oscillation on a Quartz Crystal Microbalance. Langmuir 1998, 14, 729–734. 10.1021/la970815u. DOI
Walsh D. M.; Thulin E.; Minogue A. M.; Gustavsson N.; Pang E.; Teplow D. B.; Linse S. A facile method for expression and purification of the Alzheimer’s disease-associated amyloid β-peptide. FEBS J. 2009, 276, 1266–1281. 10.1111/j.1742-4658.2008.06862.x. PubMed DOI PMC
Hellstrand E.; Grey M.; Ainalem M.-L.; Ankner J.; Forsyth V. T.; Fragneto G.; Haertlein M.; Dauvergne M.-T.; Nilsson H.; Brundin P.; Linse S.; Nylander T.; Sparr E. Adsorption of α-Synuclein to Supported Lipid Bilayers: Positioning and Role of Electrostatics. ACS Chem. Neurosci. 2013, 4, 1339–1351. 10.1021/cn400066t. PubMed DOI PMC
Wang J.; Cao Y.; Li Q.; Liu L.; Dong M. Size Effect of Graphene Oxide on Modulating Amyloid Peptide Assembly. Chem. - Eur. J. 2015, 21, 9632–9637. 10.1002/chem.201500577. PubMed DOI
Wang J.; Zhu Z.; Bortolini C.; Hoffmann S. V.; Amari A.; Zhang H. X.; Liu L.; Dong M. D. Dimensionality of carbon nanomaterial impacting on the modulation of amyloid peptide assembly. Nanotechnology 2016, 27, 304001.10.1088/0957-4484/27/30/304001. PubMed DOI
Stenqvist B.; Thuresson A.; Kurut A.; Vácha R.; Lund M. Faunus– a flexible framework for Monte Carlo simulation. Mol. Simul. 2013, 39, 1233–1239. 10.1080/08927022.2013.828207. DOI
Evans D. F.; Wennerström H.. The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet; Advances in Interfacial Engineering; Wiley-VCH: New York, 1999.
Heberle F. A.; Pan J.; Standaert R. F.; Drazba P.; Kuc̆erka N.; Katsaras J. Model-based approaches for the determination of lipid bilayer structure from small-angle neutron and X-ray scattering data. Eur. Biophys. J. 2012, 41, 875–890. 10.1007/s00249-012-0817-5. PubMed DOI
Wang F.; Landau D. P. Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2001, 64, 056101.10.1103/PhysRevE.64.056101. PubMed DOI
Pasquier C.; Vazdar M.; Forsman J.; Jungwirth P.; Lund M. Anomalous ProteinâĂŞProtein Interactions in Multivalent Salt Solution. J. Phys. Chem. B 2017, 121, 3000–3006. 10.1021/acs.jpcb.7b01051. PubMed DOI
Wälti M. A.; Ravotti F.; Arai H.; Glabe C. G.; Wall J. S.; Böckmann A.; Güntert P.; Meier B. H.; Riek R. Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, E4976–E4984. 10.1073/pnas.1600749113. PubMed DOI PMC
Colvin M. T.; Silvers R.; Ni Q. Z.; Can T. V.; Sergeyev I.; Rosay M.; Donovan K. J.; Michael B.; Wall J.; Linse S.; Griffin R. G. Atomic Resolution Structure of Monomorphic Aβ42 Amyloid Fibrils. J. Am. Chem. Soc. 2016, 138, 9663–9674. 10.1021/jacs.6b05129. PubMed DOI PMC
Hellstrand E.Protein-lipid association and aggregation: from neurodegenerative disease to nanosafety. Doctoral Thesis, Division of Biophysical Chemistry, Lund University, Lund, 2012.
Höök F.; Kasemo B.; Nylander T.; Fant C.; Sott K.; Elwing H. Variations in Coupled Water, Viscoelastic Properties, and Film Thickness of a Mefp-1 Protein Film during Adsorption and Cross-Linking: A Quartz Crystal Microbalance with Dissipation Monitoring, Ellipsometry, and Surface Plasmon Resonance Study. Anal. Chem. 2001, 73, 5796–5804. 10.1021/ac0106501. PubMed DOI
Patel A. R.; Kanazawa K. K.; Frank C. W. Antibody Binding to a Tethered Vesicle Assembly Using QCM-D. Anal. Chem. 2009, 81, 6021–6029. 10.1021/ac802756v. PubMed DOI
Larsson C.; Rodahl M.; Höök F. Characterization of DNA Immobilization and Subsequent Hybridization on a 2D Arrangement of Streptavidin on a Biotin-Modified Lipid Bilayer Supported on SiO2. Anal. Chem. 2003, 75, 5080–5087. 10.1021/ac034269n. PubMed DOI
Ahmed M.; Davis J.; Aucoin D.; Sato T.; Ahuja S.; Aimoto S.; Elliott J. I.; Van Nostrand W. E.; Smith S. O. Structural conversion of neurotoxic amyloid-β1–42 oligomers to fibrils. Nat. Struct. Mol. Biol. 2010, 17, 561–567. 10.1038/nsmb.1799. PubMed DOI PMC
Dubnovitsky A.; Sandberg A.; Rahman M. M.; Benilova I.; Lendel C.; Härd T. Amyloid-β Protofibrils: Size, Morphology and Synaptotoxicity of an Engineered Mimic. PLoS One 2013, 8, e66101.10.1371/journal.pone.0066101. PubMed DOI PMC
Lendel C.; Bjerring M.; Dubnovitsky A.; Kelly R. T.; Filippov A.; Antzutkin O. N.; Nielsen N. C.; Härd T. A Hexameric Peptide Barrel as Building Block of Amyloid-β Protofibrils. Angew. Chem., Int. Ed. 2014, 53, 12756–12760. 10.1002/anie.201406357. PubMed DOI
Luhrs T.; Ritter C.; Adrian M.; Riek-Loher D.; Bohrmann B.; Dobeli H.; Schubert D.; Riek R. 3D structure of Alzheimer’s amyloid- (1–42) fibrils. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 17342–17347. 10.1073/pnas.0506723102. PubMed DOI PMC
Zheng J.; Jang H.; Ma B.; Tsai C.-J.; Nussinov R. Modeling the Alzheimer Aβ17–42 Fibril Architecture: Tight Intermolecular Sheet-Sheet Association and Intramolecular Hydrated Cavities. Biophys. J. 2007, 93, 3046–3057. 10.1529/biophysj.107.110700. PubMed DOI PMC
Xu Z.; Paparcone R.; Buehler M. J. Alzheimer’s Aβ(1–40) Amyloid Fibrils Feature Size-Dependent Mechanical Properties. Biophys. J. 2010, 98, 2053–2062. 10.1016/j.bpj.2009.12.4317. PubMed DOI PMC
Lu J.-X.; Qiang W.; Yau W.-M.; Schwieters C. D.; Meredith S. C.; Tycko R. Molecular Structure of β-Amyloid Fibrils in Alzheimer’s Disease Brain Tissue. Cell 2013, 154, 1257–1268. 10.1016/j.cell.2013.08.035. PubMed DOI PMC
Kirkpatrick S.; Gelatt C. D.; Vecchi M. P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. 10.1126/science.220.4598.671. PubMed DOI
Manning G. S. Correlation of polymer persistence length with Euler buckling fluctuations. Phys. Rev. A: At., Mol., Opt. Phys. 1986, 34, 4467–4468. 10.1103/PhysRevA.34.4467. PubMed DOI
Knowles T. P.; Fitzpatrick A. W.; Meehan S.; Mott H. R.; Vendruscolo M.; Dobson C. M.; Welland M. E. Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils. Science 2007, 318, 1900–1903. 10.1126/science.1150057. PubMed DOI
Arosio P.; Knowles T. P. J.; Linse S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys. 2015, 17, 7606–7618. 10.1039/C4CP05563B. PubMed DOI PMC
Fleck C.; Netz R. R.; von Grünberg H. H. Poisson-Boltzmann theory for membranes with mobile charged lipids and the pH-dependent interaction of a DNA molecule with a membrane. Biophys. J. 2002, 82, 76–92. 10.1016/S0006-3495(02)75375-7. PubMed DOI PMC
Abraham F. F.; Singh Y. The structure of a hard-sphere fluid in contact with a soft repulsive wall. J. Chem. Phys. 1977, 67, 2384.10.1063/1.435080. DOI
Brenner S. L.; Parsegian V. A Physical Method for Deriving the Electrostatic Interaction between Rod-Like Polyions at All Mutual Angles. Biophys. J. 1974, 14, 327–334. 10.1016/S0006-3495(74)85919-9. PubMed DOI PMC
Nordholm S.Properties of Molecular Fluids in Equilibrium. Lecture Notes; University of Gothenburg: 2004.
Deserno M.; Holm C.; May S. Fraction of Condensed Counterions around a Charged Rod: Comparison of Poisson-Boltzmann Theory and Computer Simulations. Macromolecules 2000, 33, 199–206. 10.1021/ma990897o. DOI
Manning G. S. Counterion Condensation on Charged Spheres, Cylinders, and Planes. J. Phys. Chem. B 2007, 111, 8554–8559. 10.1021/jp0670844. PubMed DOI
Cheng H.; Olvera de la Cruz M. Adsorption of rod-like polyelectrolytes onto weakly charged surfaces. J. Chem. Phys. 2003, 119, 12635–12644. 10.1063/1.1626630. DOI
Campioni S.; Mannini B.; Zampagni M.; Pensalfini A.; Parrini C.; Evangelisti E.; Relini A.; Stefani M.; Dobson C. M.; Cecchi C.; Chiti F. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 2010, 6, 140–147. 10.1038/nchembio.283. PubMed DOI
Koltover I.; Wagner K.; Safinya C. R. DNA condensation in two dimensions. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 14046–14051. 10.1073/pnas.97.26.14046. PubMed DOI PMC
Dias R. S.; Pais A. A. C. C.; Linse P.; Miguel M. G.; Lindman B. Polyion Adsorption onto Catanionic Surfaces. A Monte Carlo Study. J. Phys. Chem. B 2005, 109, 11781–11788. 10.1021/jp050158b. PubMed DOI
Tzlil S.; Ben-Shaul A. Flexible Charged Macromolecules on Mixed Fluid Lipid Membranes: Theory and Monte Carlo Simulations. Biophys. J. 2005, 89, 2972–2987. 10.1529/biophysj.105.068387. PubMed DOI PMC
Duan X.; Ding M.; Zhang R.; Li L.; Shi T.; An L.; Huang Q.; Xu W.-S. Effects of Chain Rigidity on the Adsorption of a Polyelectrolyte Chain on Mixed Lipid Monolayer: A Monte Carlo Study. J. Phys. Chem. B 2015, 119, 6041–6049. 10.1021/acs.jpcb.5b00515. PubMed DOI
Caetano D. L. Z.; de Carvalho S. J.; Metzler R.; Cherstvy A. G. Critical adsorption of periodic and random polyampholytes onto charged surfaces. Phys. Chem. Chem. Phys. 2017, 19, 23397–23413. 10.1039/C7CP04040G. PubMed DOI
Britt D. W.; Buijs J.; Hlady V. Tobacco mosaic virus adsorption on self-assembled and Langmuir–Blodgett monolayers studied by TIRF and SFM. Thin Solid Films 1998, 327–329, 824–828. 10.1016/S0040-6090(98)00770-6. PubMed DOI PMC
Ghosh S. K.; Cherstvy A. G.; Petrov E. P.; Metzler R. Interactions of rod-like particles on responsive elastic sheets. Soft Matter 2016, 12, 7908–7919. 10.1039/C6SM01522K. PubMed DOI
Petrova A. B.; Herold C.; Petrov E. P. Conformations and membrane-driven self-organization of rodlike fd virus particles on freestanding lipid membranes. Soft Matter 2017, 13, 7172–7187. 10.1039/C7SM00829E. PubMed DOI
Fowler D. M.; Koulov A. V.; Balch W. E.; Kelly J. W. Functional amyloid - from bacteria to humans. Trends Biochem. Sci. 2007, 32, 217–224. 10.1016/j.tibs.2007.03.003. PubMed DOI
Slotta U.; Hess S.; Spieß K.; Stromer T.; Serpell L.; Scheibel T. Spider Silk and Amyloid Fibrils: A Structural Comparison. Macromol. Biosci. 2007, 7, 183–188. 10.1002/mabi.200600201. PubMed DOI
Larsen P.; Nielsen J. L.; Dueholm M. S.; Wetzel R.; Otzen D.; Nielsen P. H. Amyloid adhesins are abundant in natural biofilms. Environ. Microbiol. 2007, 9, 3077–3090. 10.1111/j.1462-2920.2007.01418.x. PubMed DOI