First delivery and ovariectomy affect biomechanical and structural properties of the vagina in the ovine model
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29313089
DOI
10.1007/s00192-017-3535-9
PII: 10.1007/s00192-017-3535-9
Knihovny.cz E-zdroje
- Klíčová slova
- Animal model, Biomechanics, Contractility, Sheep vagina, Vaginal delivery,
- MeSH
- aktiny metabolismus MeSH
- alfa receptor estrogenů metabolismus MeSH
- biomechanika MeSH
- elastin metabolismus MeSH
- epitel metabolismus patologie MeSH
- glykogen metabolismus MeSH
- hladké svalstvo patofyziologie MeSH
- hormonální substituční terapie MeSH
- kolagen metabolismus MeSH
- modely nemocí na zvířatech MeSH
- onemocnění dna pánevního etiologie MeSH
- ovarektomie škodlivé účinky MeSH
- ovce MeSH
- parita MeSH
- porod * MeSH
- svalová kontrakce MeSH
- vagina patologie patofyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ACTA2 protein, human MeSH Prohlížeč
- aktiny MeSH
- alfa receptor estrogenů MeSH
- elastin MeSH
- glykogen MeSH
- kolagen MeSH
INTRODUCTION AND HYPOTHESIS: Animal models are useful for investigating the genesis of pelvic floor dysfunction and for developing novel therapies for its treatment. There is a need for an alternative large-animal model to the nonhuman primate. Therefore we studied the effects of the first vaginal delivery, ovariectomy and systemic hormonal replacement therapy (HRT) on the biomechanical and structural properties of the ovine vagina. METHODS: We examined the gross anatomical properties of nulliparous, primiparous, ovariectomized multiparous, and ovariectomized hormone-replaced multiparous sheep (six animals per group). We also harvested mid-vaginal and distal vaginal tissue to determine smooth muscle contractility and passive biomechanical properties, for morphometric assessment of the vaginal wall layers, to determine collagen and elastin content, and for immunostaining for α-smooth muscle actin and estrogen receptor-α. RESULTS: There were no regional differences in the nulliparous vagina. One year after the first vaginal delivery, stiffness and contractility of the distal vagina were decreased, whereas the elastin content increased. The mid-vagina of ovariectomized sheep was stiff, and its epithelium was thin and lacked glycogen. HRT decreased the stiffness of the mid-vagina by 45% but had no measurable effect on contractility or elastin content, and increased epithelial thickness and glycogen content. HRT also increased the epithelial thickness and glycogen content of the distal vagina. At this location, there were no changes in morphology or stiffness. CONCLUSION: In sheep, life events including delivery and ovariectomy affect the biomechanical properties of the vagina in a region-specific way. Vaginal delivery mainly affects the distal region by decreasing stiffness and contractility. HRT can reverse the increase in stiffness of the mid-vagina observed after surgical induction of menopause. These observations are in line with scanty biomechanical measurements in comparable clinical specimens.
Centre for Surgical Technologies Faculty of Medicine KU Leuven Leuven Belgium
Department of Obstetrics and Gynaecology University of Liège Liège Belgium
Institute for Women's Health University College London London UK
Zobrazit více v PubMed
Biol Reprod. 2003 Oct;69(4):1273-80 PubMed
Int J Impot Res. 2004 Feb;16(1):43-50 PubMed
J Sex Med. 2006 Mar;3(2):233-41 PubMed
Int Urogynecol J Pelvic Floor Dysfunct. 2007 May;18(5):513-20 PubMed
Int Urogynecol J Pelvic Floor Dysfunct. 2007 Sep;18(9):1077-85 PubMed
J Urol. 2007 Jul;178(1):320-5; discussion 325 PubMed
Acta Obstet Gynecol Scand. 2007;86(11):1377-84 PubMed
Am J Obstet Gynecol. 2008 Aug;199(2):161.e1-8 PubMed
Am J Obstet Gynecol. 2008 Dec;199(6):610.e1-5 PubMed
Menopause Int. 2008 Sep;14(3):111-6 PubMed
Endocrinology. 2009 Jul;150(7):3228-36 PubMed
Am J Obstet Gynecol. 2010 Dec;203(6):595.e1-8 PubMed
Ann Biomed Eng. 2011 Jan;39(1):549-58 PubMed
Obstet Gynecol. 2010 Nov;116(5):1096-100 PubMed
Int Urogynecol J. 2011 Sep;22(9):1099-108 PubMed
ISRN Obstet Gynecol. 2011;2011:354861 PubMed
Expert Rev Obstet Gynecol. 2012 May 1;7(3):249-260 PubMed
BJOG. 2013 Jan;120(2):161-168 PubMed
Int Urogynecol J. 2014 Jul;25(7):915-20 PubMed
Gerontology. 1988;34(5-6):291-6 PubMed
PLoS One. 2014 Apr 07;9(4):e93172 PubMed
Int Urogynecol J. 2014 Dec;25(12):1673-81 PubMed
Int Urogynecol J. 2014 Nov;25(11):1547-53 PubMed
PLoS One. 2014 Aug 22;9(8):e104972 PubMed
Am J Obstet Gynecol. 2015 Apr;212(4):474.e1-8 PubMed
Eur J Obstet Gynecol Reprod Biol. 2015 Apr;187:45-50 PubMed
BJOG. 2016 Apr;123(5):678-81 PubMed
Int Urogynecol J. 2016 Aug;27(8):1255-63 PubMed
Am J Obstet Gynecol. 2016 Dec;215(6):704-711 PubMed
Gynecol Obstet Invest. 2017;82(6):582-591 PubMed
J Vis Exp. 2017 Jul 27;(125): PubMed
Vet J. 1998 Sep;156(2):133-43 PubMed
Animal models for pelvic organ prolapse: systematic review