Towards the scale-up of the formation of nanoparticles on α-Ag2WO4 with bactericidal properties by femtosecond laser irradiation

. 2018 Jan 30 ; 8 (1) : 1884. [epub] 20180130

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29382839
Odkazy

PubMed 29382839
PubMed Central PMC5789880
DOI 10.1038/s41598-018-19270-9
PII: 10.1038/s41598-018-19270-9
Knihovny.cz E-zdroje

In recent years, complex nanocomposites formed by Ag nanoparticles coupled to an α-Ag2WO4 semiconductor network have emerged as promising bactericides, where the semiconductor attracts bacterial agents and Ag nanoparticles neutralize them. However, the production rate of such materials has been limited to transmission electron microscope processing, making it difficult to cross the barrier from basic research to real applications. The interaction between pulsed laser radiation and α-Ag2WO4 has revealed a new processing alternative to scale up the production of the nanocomposite resulting in a 32-fold improvement of bactericidal performance, and at the same time obtaining a new class of spherical AgxWyOz nanoparticles.

Zobrazit více v PubMed

Heyer O, et al. A new multiferroic material: MnWO4. J. Physics: Condens. Matter. 2006;18:L471.

Andrés J, et al. Structural and electronic analysis of the atomic scale nucleation of Ag on α-Ag2WO4 induced by electron irradiation. Sci. Reports. 2014;4:5391. doi: 10.1038/srep05391. PubMed DOI PMC

Janáky C, Rajeshwar K, de Tacconi NR, Chanmanee W, Huda MN. Tungsten-based oxide semiconductors for solar hydrogen generation. Catal. Today. 2013;199:53–64. doi: 10.1016/j.cattod.2012.07.020. DOI

McGlone T, Streb C, Long D-L, Cronin L. Assembly of pure silver-tungsten-oxide frameworks from nanostructured solution processable clusters and their evolution into materials with a metallic component. Adv. Mater. 2010;22:4275–4279. doi: 10.1002/adma.201001398. PubMed DOI

Chen H, Xu Y. Photoactivity and stability of Ag2WO4 for organic degradation in aqueous suspensions. Appl. Surf. Sci. 2014;319:319–323. doi: 10.1016/j.apsusc.2014.05.115. DOI

Cheng L, Shao Q, Shao M, Wei X, Wu Z. Photoswitches of one-dimensional Ag2MO4 (M = Cr, Mo, and W) The J. Phys. Chem. C. 2009;113:1764–1768. doi: 10.1021/jp808907e. DOI

Zhang X-Y, Wang J-D, Liu J-K, Yang X-H, Lu Y. Construction of silver tungstate multilevel sphere clusters by controlling the energy distribution on the crystal surface. CrystEngComm. 2015;17:1129–1138. doi: 10.1039/C4CE02089H. DOI

Vafaeezadeh M, Hashemi MM. One pot oxidative cleavage of cyclohexene to adipic acid using silver tungstate nano-rods in a bronsted acidic ionic liquid. RSC Adv. 2015;5:31298–31302. doi: 10.1039/C5RA02339D. DOI

Ding Y, Wan Y, Min Y-L, Zhang W, Yu S-H. General synthesis and phase control of metal molybdate hydrates MMoO4 nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals by a hydrothermal approach: Magnetic, photocatalytic, and electrochemical properties. Inorg. Chem. 2008;47:7813–7823. doi: 10.1021/ic8007975. PubMed DOI

Wang X, Fu C, Wang P, Yu H, Yu J. Hierarchically porous metastable β-Ag2WO4 hollow nanospheres: controlled synthesis and high photocatalytic activity. Nanotechnol. 2013;24:165602. doi: 10.1088/0957-4484/24/16/165602. PubMed DOI

Yang X, et al. Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance. ACS Catal. 2013;3:363–369. doi: 10.1021/cs3008126. DOI

Abdurahman A, Nizamidin P, Yimit A. Optical and electrochemical gas sensing properties of yttrium–silver co-doped lithium iron phosphate thin films. Mater. Sci. Semicond. Process. 2014;22:21–27. doi: 10.1016/j.mssp.2013.12.014. DOI

Moshe AB, Markovich G. Synthesis of single crystal hollow silver nanoparticles in a fast reaction-diffusion process. Chem. Mater. 2011;23:1239–1245. doi: 10.1021/cm102991z. DOI

Cavalcante LS, et al. Cluster coordination and photoluminescence properties of α-Ag2WO4 microcrystals. Inorg. Chem. 2012;51:10675–10687. doi: 10.1021/ic300948n. PubMed DOI

Longo VM, et al. Potentiated electron transference in α-Ag2WO4 microcrystals with Ag nanofilaments as microbial agent. The J. Phys. Chem. A. 2014;118:5769–5778. doi: 10.1021/jp410564p. PubMed DOI

da Silva LF, et al. novel ozone gas sensor based on one-dimensional (1d) α-Ag2WO4 nanostructures. Nanoscale. 2014;6:4058–4062. doi: 10.1039/C3NR05837A. PubMed DOI

Longo E, et al. Toward an understanding of the growth of Ag filaments on α-Ag2WO4 and their photoluminescent properties: A combined experimental and theoretical study. The J. Phys. Chem. C. 2014;118:1229–1239. doi: 10.1021/jp408167v. DOI

Zhang R, et al. Facile hydrothermal synthesis and photocatalytic activity of rod-like nanosized silver tungstate. IET Micro Nano Lett. 2012;7:1285–1288. doi: 10.1049/mnl.2012.0765. DOI

Dutta DP, Singh A, Ballal A, Tyagi AK. High adsorption capacity for cationic dye removal and antibacterial properties of sonochemically synthesized Ag2WO4 nanorods. Eur. J. Inorg. Chem. 2014;2014:5724–5732. doi: 10.1002/ejic.201402612. DOI

Pan L, Li L, Chen Y. Synthesis and electrocatalytic properties of microsized Ag2WO4 and nanoscaled MWO4 (M = Co, Mn) J. Sol-Gel Sci. Technol. 2013;66:330–336. doi: 10.1007/s10971-013-3014-9. DOI

Lin Z, et al. Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis. ACS Nano. 2015;9:7256–7265. doi: 10.1021/acsnano.5b02077. PubMed DOI

da Silva LF, et al. Acetone gas sensor based on α-Ag2WO4 nanorods obtained via a microwave-assisted hydrothermal route. J. Alloy. Compd. 2016;683:186–190. doi: 10.1016/j.jallcom.2016.05.078. DOI

Longo E, et al. Direct in situ observation of the electron-driven synthesis of Ag filaments α-Ag2WO4crystals. Sci. Reports. 2013;3:1676. doi: 10.1038/srep01676. PubMed DOI PMC

Pereira WdS, et al. Elucidating the real-time ag nanoparticle growth on α-Ag2WO4 during electron beam irradiation: experimental evidence and theoretical insights. Phys. Chem. Chem. Phys. 2015;17:5352–5359. doi: 10.1039/C4CP05849F. PubMed DOI

San-Miguel MA, et al. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles. Nanotechnol. 2016;27:225703. doi: 10.1088/0957-4484/27/22/225703. PubMed DOI

Longo E, et al. In situ transmission electron microscopy observation of Ag nanocrystal evolution by surfactant free electron-driven synthesis. Sci. Reports. 2016;6:21498. doi: 10.1038/srep21498. PubMed DOI PMC

Shi G, et al. Electron beam induced growth of silver nanoparticles. Scanning. 2013;35:69–74. doi: 10.1002/sca.21035. PubMed DOI

Umalas M, et al. Electron beam induced growth of silver nanowhiskers. J. Cryst. Growth. 2015;410:63–68. doi: 10.1016/j.jcrysgro.2014.10.021. DOI

Pattabi M, Pattabi RM, Sanjeev G. Studies on the growth and stability of silver nanoparticles synthesized by electron beam irradiation. J. Mater. Sci. Mater. Electron. 2009;20:1233. doi: 10.1007/s10854-009-9858-7. DOI

Li K, Zhang F-S. A novel approach for preparing silver nanoparticles under electron beam irradiation. J. Nanoparticle Res. 2010;12:1423–1428. doi: 10.1007/s11051-009-9690-2. DOI

Mansourian A, Paknejad SA, Zayats AV, Mannan SH. Stereoscopic nanoscale-precision growth of free-standing silver nanorods by electron beam irradiation. The J. Phys. Chem. C. 2016;120:20310–20314. doi: 10.1021/acs.jpcc.6b05133. DOI

Bonse J, Rosenfeld A, Krüger J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J. Appl. Phys. 2009;106:104910. doi: 10.1063/1.3261734. DOI

Bonse J, Höhm S, Rosenfeld A, Krüger J. Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by ti:sapphire femtosecond laser pulses in air. Appl. Phys. A. 2013;110:547–551. doi: 10.1007/s00339-012-7140-y. DOI

Rebollar E, et al. Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films. Appl. Phys. Lett. 2012;100:041106. doi: 10.1063/1.3679103. DOI

Kaempfe M, Rainer T, Berg K-J, Seifert G, Graener H. Ultrashort laser pulse induced deformation of silver nanoparticles in glass. Appl. Phys. Lett. 1999;74:1200–1202. doi: 10.1063/1.123498. DOI

Do J, Fedoruk M, Jäckel F, Feldmann J. Two-color laser printing of individual gold nanorods. Nano Lett. 2013;13:4164–4168. doi: 10.1021/nl401788w. PubMed DOI

Chou SS, et al. Laser direct write synthesis of lead halide perovskites. The J. Phys. Chem. Lett. 2016;7:3736–3741. doi: 10.1021/acs.jpclett.6b01557. PubMed DOI

Torres-Mendieta R, et al. In situ decoration of graphene sheets with gold nanoparticles synthetized by pulsed laser ablation in liquids. Sci. Reports. 2016;6:30478. doi: 10.1038/srep30478. PubMed DOI PMC

Goutaland F, Sow M, Ollier N, Vocanson F. Growth of highly concentrated silver nanoparticles and nanoholes in silver-exchanged glass by ultraviolet continuous wave laser exposure. Opt. Mater. Express. 2012;2:350–357. doi: 10.1364/OME.2.000350. DOI

Baraldi G, Gonzalo J, Solis J, Siegel J. Reorganizing and shaping of embedded near-coalescence silver nanoparticles with off-resonance femtosecond laser pulses. Nanotechnol. 2013;24:255301. doi: 10.1088/0957-4484/24/25/255301. PubMed DOI

Doster J, et al. Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses. Appl. Phys. Lett. 2014;104:153106. doi: 10.1063/1.4871507. DOI

Semaltianos NG. Nanoparticles by laser ablation. Critical Rev. Solid State Mater. Sci. 2010;35:105–124. doi: 10.1080/10408431003788233. DOI

Cortie MB, McDonagh AM. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 2011;111:3713–3735. doi: 10.1021/cr1002529. PubMed DOI

Zhang D, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem. Rev. 2017;117:3990–4103. doi: 10.1021/acs.chemrev.6b00468. PubMed DOI

Longo VM, et al. Potentiated electron transference in α-Ag2WO4 microcrystals with ag nanofilaments as microbial agent. The J. Phys. Chem. A. 2014;118:5769–5778. doi: 10.1021/jp410564p. PubMed DOI

Feng QL, et al. A mechanistic study of the antibacterial effect of silver ions on escherichia coli and staphylococcus aureus. J. biomedical materials research. 2000;52:662–668. doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3. PubMed DOI

Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4:707–716. doi: 10.1016/j.actbio.2007.11.006. PubMed DOI

Panáček A, et al. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. The J. Phys. Chem. B. 2006;110:16248–16253. doi: 10.1021/jp063826h. PubMed DOI

Sotiriou GA, et al. Nanosilver on nanostructured silica: Antibacterial activity and ag surface area. Chem. Eng. J. 2011;170:547–554. doi: 10.1016/j.cej.2011.01.099. PubMed DOI PMC

Gallais L, et al. Transient interference implications on the subpicosecond laser damage of multidielectrics. Appl. Phys. Lett. 2010;97:051112. doi: 10.1063/1.3477961. DOI

Correa DS, et al. Ultrafast laser pulses for structuring materials at micro/nano scale: From waveguides to superhydrophobic surfaces. Photonics. 2017;4:8. doi: 10.3390/photonics4010008. DOI

Stoian R, Ashkenasi D, Rosenfeld A, Campbell EEB. Coulomb explosion in ultrashort pulsed laser ablation of Al2O3. Phys. Rev. B. 2000;62:13167–13173. doi: 10.1103/PhysRevB.62.13167. DOI

Joglekar AP, Liu H-H, Meyhöfer E, Mourou G, Hunt AJ. Optics at critical intensity: Applications to nanomorphing. Proc. Natl. Acad. Sci. United States Am. 2003;101:5856–5861. doi: 10.1073/pnas.0307470101. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...