Ag Nanoparticles/α-Ag2WO4 Composite Formed by Electron Beam and Femtosecond Irradiation as Potent Antifungal and Antitumor Agents

. 2019 Jul 09 ; 9 (1) : 9927. [epub] 20190709

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31289314
Odkazy

PubMed 31289314
PubMed Central PMC6616383
DOI 10.1038/s41598-019-46159-y
PII: 10.1038/s41598-019-46159-y
Knihovny.cz E-zdroje

The ability to manipulate the structure and function of promising systems via external stimuli is emerging with the development of reconfigurable and programmable multifunctional materials. Increasing antifungal and antitumor activity requires novel, effective treatments to be diligently sought. In this work, the synthesis, characterization, and in vitro biological screening of pure α-Ag2WO4, irradiated with electrons and with non-focused and focused femtosecond laser beams are reported. We demonstrate, for the first time, that Ag nanoparticles/α-Ag2WO4 composite displays potent antifungal and antitumor activity. This composite had an extreme low inhibition concentration against Candida albicans, cause the modulation of α-Ag2WO4 perform the fungicidal activity more efficient. For tumor activity, it was found that the composite showed a high selectivity against the cancer cells (MB49), thus depleting the populations of cancer cells by necrosis and apoptosis, without the healthy cells (BALB/3T3) being affected.

Zobrazit více v PubMed

Dong Z, et al. Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Applied Catalysis B: Environmental. 2014;158:129–135. doi: 10.1016/j.apcatb.2014.04.015. DOI

Yang G-W, Gao G-Y, Wang C, Xu C-L, Li H-L. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon. 2008;46:747–752. doi: 10.1016/j.carbon.2008.01.026. DOI

Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape‐controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie International Edition. 2009;48:60–103. doi: 10.1002/anie.200802248. PubMed DOI PMC

Pradhan N, Pal A, Pal T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir. 2001;17:1800–1802. doi: 10.1021/la000862d. DOI

Saha S, Pal A, Kundu S, Basu S, Pal T. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir. 2009;26:2885–2893. doi: 10.1021/la902950x. PubMed DOI

Signori AM, et al. Formation of catalytic silver nanoparticles supported on branched polyethyleneimine derivatives. Langmuir. 2010;26:17772–17779. doi: 10.1021/la103408s. PubMed DOI

Li Q, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water research. 2008;42:4591–4602. doi: 10.1016/j.watres.2008.08.015. PubMed DOI

Tolaymat TM, et al. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Science of the Total Environment. 2010;408:999–1006. doi: 10.1016/j.scitotenv.2009.11.003. PubMed DOI

Mitrano DM, et al. Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS nano. 2014;8:7208–7219. doi: 10.1021/nn502228w. PubMed DOI

Varner, K., El-Badawy, A., Feldhake, D. & Venkatapathy, R. State-of-the-science review: everything nanosilver and more. US Environmental Protection Agency, Washington, DC. (EPA/600/R-10/084, 2010).

Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances. 2009;27:76–83. doi: 10.1016/j.biotechadv.2008.09.002. PubMed DOI

Nowack, B., Krug, H. F. & Height, M. 120 years of nanosilver history: implications for policy makers. Environmental Science & Technology45, 1177–1183 (2011). PubMed

Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. International journal of nanomedicine. 2012;7:2767. PubMed PMC

Xiang D, et al. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. International journal of nanomedicine. 2013;8:4103. doi: 10.2147/IJN.S53622. PubMed DOI PMC

Maillard J-Y, Hartemann P. Silver as an antimicrobial: facts and gaps in knowledge. Critical reviews in microbiology. 2013;39:373–383. doi: 10.3109/1040841X.2012.713323. PubMed DOI

Morones JR, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346. doi: 10.1088/0957-4484/16/10/059. PubMed DOI

Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie International Edition. 2013;52:1636–1653. doi: 10.1002/anie.201205923. PubMed DOI

Kvitek L, et al. Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. The Journal of Physical Chemistry C. 2009;113:4296–4300. doi: 10.1021/jp808645e. DOI

Kim JS, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2007;3:95–101. doi: 10.1016/j.nano.2006.12.001. PubMed DOI

Wodka D, et al. Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS applied materials & interfaces. 2010;2:1945–1953. doi: 10.1021/am1002684. PubMed DOI

Panáček A, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30:6333–6340. doi: 10.1016/j.biomaterials.2009.07.065. PubMed DOI

Xiu Z-M, Zhang Q-B, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano letters. 2012;12:4271–4275. doi: 10.1021/nl301934w. PubMed DOI

Martinez-Gutierrez F, et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6:681–688. doi: 10.1016/j.nano.2010.02.001. PubMed DOI

Bhat R, et al. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. Journal of Photochemistry and Photobiology B: Biology. 2013;125:63–69. doi: 10.1016/j.jphotobiol.2013.05.002. PubMed DOI

Dipankar C, Murugan S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids and Surfaces B: Biointerfaces. 2012;98:112–119. doi: 10.1016/j.colsurfb.2012.04.006. PubMed DOI

Jeyaraj M, et al. Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids and surfaces B: Biointerfaces. 2013;106:86–92. doi: 10.1016/j.colsurfb.2013.01.027. PubMed DOI

Pugazhendhi S, Kirubha E, Palanisamy P, Gopalakrishnan R. Synthesis and characterization of silver nanoparticles from Alpinia calcarata by Green approach and its applications in bactericidal and nonlinear optics. Applied Surface Science. 2015;357:1801–1808. doi: 10.1016/j.apsusc.2015.09.237. DOI

Wang H, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews. 2014;43:5234–5244. doi: 10.1039/C4CS00126E. PubMed DOI

Mehdi A, Reye C, Corriu R. From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chemical Society Reviews. 2011;40:563–574. doi: 10.1039/B920516K. PubMed DOI

Emeline A, Kuznetsov V, Ryabchuk V, Serpone N. On the way to the creation of next generation photoactive materials. Environmental Science and Pollution Research. 2012;19:3666–3675. doi: 10.1007/s11356-011-0665-3. PubMed DOI

Zhang Y, et al. Surface-plasmon-driven hot electron photochemistry. Chemical reviews. 2017;118:2927–2954. doi: 10.1021/acs.chemrev.7b00430. PubMed DOI

Knight MW, Sobhani H, Nordlander P, Halas NJ. Photodetection with active optical antennas. Science. 2011;332:702–704. doi: 10.1126/science.1203056. PubMed DOI

Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics. 2014;8:95. doi: 10.1038/nphoton.2013.238. DOI

Andrés J, et al. Structural and electronic analysis of the atomic scale nucleation of Ag on α-Ag2WO4 induced by electron irradiation. Scientific reports. 2014;4:srep05391. PubMed PMC

Cavalcante L, et al. Cluster coordination and photoluminescence properties of α-Ag2WO4 microcrystals. Inorganic chemistry. 2012;51:10675–10687. doi: 10.1021/ic300948n. PubMed DOI

Assis M, et al. Towards the scale-up of the formation of nanoparticles on α-Ag2WO4 with bactericidal properties by femtosecond laser irradiation. Scientific reports. 2018;8:1884. doi: 10.1038/s41598-018-19270-9. PubMed DOI PMC

Zhang X-Y, Wang J-D, Liu J-K, Yang X-H, Lu Y. Construction of silver tungstate multilevel sphere clusters by controlling the energy distribution on the crystal surface. CrystEngComm. 2015;17:1129–1138. doi: 10.1039/C4CE02089H. DOI

Chen H, Xu Y. Photoactivity and stability of Ag2WO4 for organic degradation in aqueous suspensions. Applied Surface Science. 2014;319:319–323. doi: 10.1016/j.apsusc.2014.05.115. DOI

Lin Z, et al. Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis. ACS nano. 2015;9:7256–7265. doi: 10.1021/acsnano.5b02077. PubMed DOI

Zhang R, et al. Facile hydrothermal synthesis and photocatalytic activity of rod-like nanosized silver tungstate. Micro & Nano Letters. 2012;7:1285–1288. doi: 10.1049/mnl.2012.0765. DOI

Da Silva LF, et al. A novel ozone gas sensor based on one-dimensional (1D) α-Ag2WO4 nanostructures. Nanoscale. 2014;6:4058–4062. doi: 10.1039/C3NR05837A. PubMed DOI

Da Silva LF, et al. Acetone gas sensor based on α-Ag2WO4 nanorods obtained via a microwave-assisted hydrothermal route. Journal of Alloys and Compounds. 2016;683:186–190. doi: 10.1016/j.jallcom.2016.05.078. DOI

Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature materials. 2011;10:911. doi: 10.1038/nmat3151. PubMed DOI

Shi G, et al. Electron beam induced growth of silver nanoparticles. Scanning. 2013;35:69–74. doi: 10.1002/sca.21035. PubMed DOI

Mansourian A, Paknejad SA, Zayats AV, Mannan SH. Stereoscopic Nanoscale-Precision Growth of Free-Standing Silver Nanorods by Electron Beam Irradiation. The Journal of Physical Chemistry C. 2016;120:20310–20314. doi: 10.1021/acs.jpcc.6b05133. DOI

Li K, Zhang F-S. A novel approach for preparing silver nanoparticles under electron beam irradiation. Journal of Nanoparticle Research. 2010;12:1423–1428. doi: 10.1007/s11051-009-9690-2. DOI

Longo E, et al. Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag2WO4 crystals. Scientific reports. 2013;3:1676. doi: 10.1038/srep01676. PubMed DOI PMC

da Silva Pereira W, et al. Elucidating the real-time Ag nanoparticle growth on α-Ag2WO4 during electron beam irradiation: experimental evidence and theoretical insights. Physical chemistry chemical physics. 2015;17:5352–5359. doi: 10.1039/C4CP05849F. PubMed DOI

San-Miguel MA, et al. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles. Nanotechnology. 2016;27:225703. doi: 10.1088/0957-4484/27/22/225703. PubMed DOI

Longo E, Avansi W, Jr., Bettini J, Andrés J, Gracia L. In situ Transmission Electron Microscopy observation of Ag nanocrystal evolution by surfactant free electron-driven synthesis. Scientific reports. 2016;6:21498. doi: 10.1038/srep21498. PubMed DOI PMC

Faccin GM, San-Miguel MA, Andrés J, Longo E, da Silva EZ. Computational Modeling for the Ag Nanoparticle Coalescence Process: A Case of Surface Plasmon Resonance. The Journal of Physical Chemistry C. 2017;121:7030–7036. doi: 10.1021/acs.jpcc.7b00769. DOI

Andrés, J. et al. Formation of Ag nanoparticles under electron beam irradiation: Atomistic origins from first‐principles calculations. International Journal of Quantum Chemistry (2017).

Longo VrM, et al. Potentiated electron transference in α-Ag2WO4 microcrystals with Ag nanofilaments as microbial agent. J. Phys. Chem. A. 2014;118:5769–5778. doi: 10.1021/jp410564p. PubMed DOI

Foggi, C. C. et al. Tuning the morphology, optical and antimicrobial properties of α-Ag2WO4 microcrystals by using different solvents. Crystal Growth & Design (2017).

Foggi CC, et al. Synthesis and evaluation of α-Ag2WO4 as novel antifungal agent. Chemical Physics Letters. 2017;674:125–129. doi: 10.1016/j.cplett.2017.02.067. DOI

Turkovič A, Fox DL, Scott JF, Geller S, Ruse GF. High temperature Raman spectroscopy of silver tetratungstate, Ag8W4O16. Materials Research Bulletin. 1977;12:189–195. doi: 10.1016/0025-5408(77)90163-5. DOI

Pereira, P. et al. ZnWO4 nanocrystals: synthesis, morphology, photoluminescence and photocatalytic properties. Physical Chemistry Chemical Physics (2018). PubMed

Johnston HJ, et al. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Critical reviews in toxicology. 2010;40:328–346. doi: 10.3109/10408440903453074. PubMed DOI

Tung JC, et al. Tumor mechanics and metabolic dysfunction. Free Radical Biology and Medicine. 2015;79:269–280. doi: 10.1016/j.freeradbiomed.2014.11.020. PubMed DOI PMC

De Stefano, D., Carnuccio, R. & Maiuri, M. C. Nanomaterials toxicity and cell death modalities. Journal of drug delivery2012 (2012). PubMed PMC

Harrison JJ, Ceri H, Stremick CA, Turner RJ. Biofilm susceptibility to metal toxicity. Environmental Microbiology. 2004;6:1220–1227. doi: 10.1111/j.1462-2920.2004.00656.x. PubMed DOI

Xu FF, Imlay JA. Silver (I), mercury (II), cadmium (II), and zinc (II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Applied and environmental microbiology. 2012;78:3614–3621. doi: 10.1128/AEM.07368-11. PubMed DOI PMC

Wei L, et al. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discovery Today. 2015;20:595–601. doi: 10.1016/j.drudis.2014.11.014. PubMed DOI PMC

Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology. 2013;11:371. doi: 10.1038/nrmicro3028. PubMed DOI

Sarkar A, Das J, Manna P, Sil PC. Nano-copper induces oxidative stress and apoptosis in kidney via both extrinsic and intrinsic pathways. Toxicology. 2011;290:208–217. doi: 10.1016/j.tox.2011.09.086. PubMed DOI

Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. science. 2006;311:622–627. doi: 10.1126/science.1114397. PubMed DOI

Shvedova AA, Kagan VE, Fadeel B. Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annual review of pharmacology and toxicology. 2010;50:63–88. doi: 10.1146/annurev.pharmtox.010909.105819. PubMed DOI

Orrenius S, Nicotera P, Zhivotovsky B. Cell death mechanisms and their implications in toxicology. Toxicological Sciences. 2010;119:3–19. doi: 10.1093/toxsci/kfq268. PubMed DOI

Manna P, Ghosh M, Ghosh J, Das J, Sil PC. Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: Role of IκBα/NF-κB, MAPKs and mitochondrial signal. Nanotoxicology. 2012;6:1–21. doi: 10.3109/17435390.2011.552124. PubMed DOI

Avalos A, Haza AI, Mateo D, Morales P. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. Journal of applied toxicology. 2014;34:413–423. doi: 10.1002/jat.2957. PubMed DOI

Hussain S, et al. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology. 2009;260:142–149. doi: 10.1016/j.tox.2009.04.001. PubMed DOI

Matés JM, Pérez-Gómez C, De Castro IN. Antioxidant enzymes and human diseases. Clinical biochemistry. 1999;32:595–603. doi: 10.1016/S0009-9120(99)00075-2. PubMed DOI

Hempel N, Ye H, Abessi B, Mian B, Melendez JA. Altered redox status accompanies progression to metastatic human bladder cancer. Free Radical Biology and Medicine. 2009;46:42–50. doi: 10.1016/j.freeradbiomed.2008.09.020. PubMed DOI PMC

Kim YS, Gupta Vallur P, Phaëton R, Mythreye K, Hempel N. Insights into the Dichotomous Regulation of SOD2 in Cancer. Antioxidants. 2017;6:86. doi: 10.3390/antiox6040086. PubMed DOI PMC

Bendale Y, Bendale V, Paul S. Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integrative medicine research. 2017;6:141–148. doi: 10.1016/j.imr.2017.01.006. PubMed DOI PMC

Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological interactions. 2006;160:1–40. doi: 10.1016/j.cbi.2005.12.009. PubMed DOI

Arora S, Jain J, Rajwade J, Paknikar K. Cellular responses induced by silver nanoparticles: in vitro studies. Toxicology letters. 2008;179:93–100. doi: 10.1016/j.toxlet.2008.04.009. PubMed DOI

Gaillet S, Rouanet J-M. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms–a review. Food and Chemical Toxicology. 2015;77:58–63. doi: 10.1016/j.fct.2014.12.019. PubMed DOI

Dai X, et al. Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing. ACS applied materials & interfaces. 2016;8:25798–25807. doi: 10.1021/acsami.6b09267. PubMed DOI

Huma Z-e, et al. Cationic Silver Nanoclusters as Potent Antimicrobials against Multidrug-Resistant Bacteria. ACS omega. 2018;3:16721–16727. doi: 10.1021/acsomega.8b02438. PubMed DOI PMC

Rizzello L, Pompa PP. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chemical Society Reviews. 2014;43:1501–1518. doi: 10.1039/C3CS60218D. PubMed DOI

Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano today. 2015;10:339–354. doi: 10.1016/j.nantod.2015.04.002. DOI

Wang L-S, Gupta A, Rotello VM. Nanomaterials for the treatment of bacterial biofilms. ACS infectious diseases. 2015;2:3–4. doi: 10.1021/acsinfecdis.5b00116. PubMed DOI PMC

Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release. 2011;156:128–145. doi: 10.1016/j.jconrel.2011.07.002. PubMed DOI

Jeeva K, Thiyagarajan M, Elangovan V, Geetha N, Venkatachalam P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Industrial Crops and Products. 2014;52:714–720. doi: 10.1016/j.indcrop.2013.11.037. DOI

Khatoon N, Ahmad R, Sardar M. Robust and fluorescent silver nanoparticles using Artemisia annua: biosynthesis, characterization and antibacterial activity. Biochemical engineering journal. 2015;102:91–97. doi: 10.1016/j.bej.2015.02.019. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...