Ag Nanoparticles/α-Ag2WO4 Composite Formed by Electron Beam and Femtosecond Irradiation as Potent Antifungal and Antitumor Agents
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31289314
PubMed Central
PMC6616383
DOI
10.1038/s41598-019-46159-y
PII: 10.1038/s41598-019-46159-y
Knihovny.cz E-zdroje
- MeSH
- antifungální látky farmakologie MeSH
- antitumorózní látky farmakologie MeSH
- apoptóza MeSH
- buňky BALB 3T3 MeSH
- Candida albicans účinky léků MeSH
- elektrony * MeSH
- kovové nanočástice aplikace a dávkování chemie účinky záření MeSH
- lidé MeSH
- myši MeSH
- nádorové buňky kultivované MeSH
- nádory močového měchýře farmakoterapie patologie MeSH
- oxidy chemie účinky záření MeSH
- proliferace buněk MeSH
- stříbro chemie účinky záření MeSH
- wolfram chemie účinky záření MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antifungální látky MeSH
- antitumorózní látky MeSH
- oxidy MeSH
- stříbro MeSH
- tungsten oxide MeSH Prohlížeč
- wolfram MeSH
The ability to manipulate the structure and function of promising systems via external stimuli is emerging with the development of reconfigurable and programmable multifunctional materials. Increasing antifungal and antitumor activity requires novel, effective treatments to be diligently sought. In this work, the synthesis, characterization, and in vitro biological screening of pure α-Ag2WO4, irradiated with electrons and with non-focused and focused femtosecond laser beams are reported. We demonstrate, for the first time, that Ag nanoparticles/α-Ag2WO4 composite displays potent antifungal and antitumor activity. This composite had an extreme low inhibition concentration against Candida albicans, cause the modulation of α-Ag2WO4 perform the fungicidal activity more efficient. For tumor activity, it was found that the composite showed a high selectivity against the cancer cells (MB49), thus depleting the populations of cancer cells by necrosis and apoptosis, without the healthy cells (BALB/3T3) being affected.
Department of Analytical and Physical Chemistry University Jaume 1 Castelló 12071 Spain
Department of Inorganic and Organic Chemistry University Jaume 1 Castelló 12071 Spain
GROC∙UJI Institut de Noves Tecnologies de la Imatge Castelló 12071 Spain
Zobrazit více v PubMed
Dong Z, et al. Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Applied Catalysis B: Environmental. 2014;158:129–135. doi: 10.1016/j.apcatb.2014.04.015. DOI
Yang G-W, Gao G-Y, Wang C, Xu C-L, Li H-L. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon. 2008;46:747–752. doi: 10.1016/j.carbon.2008.01.026. DOI
Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape‐controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie International Edition. 2009;48:60–103. doi: 10.1002/anie.200802248. PubMed DOI PMC
Pradhan N, Pal A, Pal T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir. 2001;17:1800–1802. doi: 10.1021/la000862d. DOI
Saha S, Pal A, Kundu S, Basu S, Pal T. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir. 2009;26:2885–2893. doi: 10.1021/la902950x. PubMed DOI
Signori AM, et al. Formation of catalytic silver nanoparticles supported on branched polyethyleneimine derivatives. Langmuir. 2010;26:17772–17779. doi: 10.1021/la103408s. PubMed DOI
Li Q, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water research. 2008;42:4591–4602. doi: 10.1016/j.watres.2008.08.015. PubMed DOI
Tolaymat TM, et al. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Science of the Total Environment. 2010;408:999–1006. doi: 10.1016/j.scitotenv.2009.11.003. PubMed DOI
Mitrano DM, et al. Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS nano. 2014;8:7208–7219. doi: 10.1021/nn502228w. PubMed DOI
Varner, K., El-Badawy, A., Feldhake, D. & Venkatapathy, R. State-of-the-science review: everything nanosilver and more. US Environmental Protection Agency, Washington, DC. (EPA/600/R-10/084, 2010).
Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances. 2009;27:76–83. doi: 10.1016/j.biotechadv.2008.09.002. PubMed DOI
Nowack, B., Krug, H. F. & Height, M. 120 years of nanosilver history: implications for policy makers. Environmental Science & Technology45, 1177–1183 (2011). PubMed
Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. International journal of nanomedicine. 2012;7:2767. PubMed PMC
Xiang D, et al. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. International journal of nanomedicine. 2013;8:4103. doi: 10.2147/IJN.S53622. PubMed DOI PMC
Maillard J-Y, Hartemann P. Silver as an antimicrobial: facts and gaps in knowledge. Critical reviews in microbiology. 2013;39:373–383. doi: 10.3109/1040841X.2012.713323. PubMed DOI
Morones JR, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346. doi: 10.1088/0957-4484/16/10/059. PubMed DOI
Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie International Edition. 2013;52:1636–1653. doi: 10.1002/anie.201205923. PubMed DOI
Kvitek L, et al. Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. The Journal of Physical Chemistry C. 2009;113:4296–4300. doi: 10.1021/jp808645e. DOI
Kim JS, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2007;3:95–101. doi: 10.1016/j.nano.2006.12.001. PubMed DOI
Wodka D, et al. Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS applied materials & interfaces. 2010;2:1945–1953. doi: 10.1021/am1002684. PubMed DOI
Panáček A, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30:6333–6340. doi: 10.1016/j.biomaterials.2009.07.065. PubMed DOI
Xiu Z-M, Zhang Q-B, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano letters. 2012;12:4271–4275. doi: 10.1021/nl301934w. PubMed DOI
Martinez-Gutierrez F, et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6:681–688. doi: 10.1016/j.nano.2010.02.001. PubMed DOI
Bhat R, et al. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. Journal of Photochemistry and Photobiology B: Biology. 2013;125:63–69. doi: 10.1016/j.jphotobiol.2013.05.002. PubMed DOI
Dipankar C, Murugan S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids and Surfaces B: Biointerfaces. 2012;98:112–119. doi: 10.1016/j.colsurfb.2012.04.006. PubMed DOI
Jeyaraj M, et al. Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids and surfaces B: Biointerfaces. 2013;106:86–92. doi: 10.1016/j.colsurfb.2013.01.027. PubMed DOI
Pugazhendhi S, Kirubha E, Palanisamy P, Gopalakrishnan R. Synthesis and characterization of silver nanoparticles from Alpinia calcarata by Green approach and its applications in bactericidal and nonlinear optics. Applied Surface Science. 2015;357:1801–1808. doi: 10.1016/j.apsusc.2015.09.237. DOI
Wang H, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews. 2014;43:5234–5244. doi: 10.1039/C4CS00126E. PubMed DOI
Mehdi A, Reye C, Corriu R. From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chemical Society Reviews. 2011;40:563–574. doi: 10.1039/B920516K. PubMed DOI
Emeline A, Kuznetsov V, Ryabchuk V, Serpone N. On the way to the creation of next generation photoactive materials. Environmental Science and Pollution Research. 2012;19:3666–3675. doi: 10.1007/s11356-011-0665-3. PubMed DOI
Zhang Y, et al. Surface-plasmon-driven hot electron photochemistry. Chemical reviews. 2017;118:2927–2954. doi: 10.1021/acs.chemrev.7b00430. PubMed DOI
Knight MW, Sobhani H, Nordlander P, Halas NJ. Photodetection with active optical antennas. Science. 2011;332:702–704. doi: 10.1126/science.1203056. PubMed DOI
Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics. 2014;8:95. doi: 10.1038/nphoton.2013.238. DOI
Andrés J, et al. Structural and electronic analysis of the atomic scale nucleation of Ag on α-Ag2WO4 induced by electron irradiation. Scientific reports. 2014;4:srep05391. PubMed PMC
Cavalcante L, et al. Cluster coordination and photoluminescence properties of α-Ag2WO4 microcrystals. Inorganic chemistry. 2012;51:10675–10687. doi: 10.1021/ic300948n. PubMed DOI
Assis M, et al. Towards the scale-up of the formation of nanoparticles on α-Ag2WO4 with bactericidal properties by femtosecond laser irradiation. Scientific reports. 2018;8:1884. doi: 10.1038/s41598-018-19270-9. PubMed DOI PMC
Zhang X-Y, Wang J-D, Liu J-K, Yang X-H, Lu Y. Construction of silver tungstate multilevel sphere clusters by controlling the energy distribution on the crystal surface. CrystEngComm. 2015;17:1129–1138. doi: 10.1039/C4CE02089H. DOI
Chen H, Xu Y. Photoactivity and stability of Ag2WO4 for organic degradation in aqueous suspensions. Applied Surface Science. 2014;319:319–323. doi: 10.1016/j.apsusc.2014.05.115. DOI
Lin Z, et al. Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis. ACS nano. 2015;9:7256–7265. doi: 10.1021/acsnano.5b02077. PubMed DOI
Zhang R, et al. Facile hydrothermal synthesis and photocatalytic activity of rod-like nanosized silver tungstate. Micro & Nano Letters. 2012;7:1285–1288. doi: 10.1049/mnl.2012.0765. DOI
Da Silva LF, et al. A novel ozone gas sensor based on one-dimensional (1D) α-Ag2WO4 nanostructures. Nanoscale. 2014;6:4058–4062. doi: 10.1039/C3NR05837A. PubMed DOI
Da Silva LF, et al. Acetone gas sensor based on α-Ag2WO4 nanorods obtained via a microwave-assisted hydrothermal route. Journal of Alloys and Compounds. 2016;683:186–190. doi: 10.1016/j.jallcom.2016.05.078. DOI
Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature materials. 2011;10:911. doi: 10.1038/nmat3151. PubMed DOI
Shi G, et al. Electron beam induced growth of silver nanoparticles. Scanning. 2013;35:69–74. doi: 10.1002/sca.21035. PubMed DOI
Mansourian A, Paknejad SA, Zayats AV, Mannan SH. Stereoscopic Nanoscale-Precision Growth of Free-Standing Silver Nanorods by Electron Beam Irradiation. The Journal of Physical Chemistry C. 2016;120:20310–20314. doi: 10.1021/acs.jpcc.6b05133. DOI
Li K, Zhang F-S. A novel approach for preparing silver nanoparticles under electron beam irradiation. Journal of Nanoparticle Research. 2010;12:1423–1428. doi: 10.1007/s11051-009-9690-2. DOI
Longo E, et al. Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag2WO4 crystals. Scientific reports. 2013;3:1676. doi: 10.1038/srep01676. PubMed DOI PMC
da Silva Pereira W, et al. Elucidating the real-time Ag nanoparticle growth on α-Ag2WO4 during electron beam irradiation: experimental evidence and theoretical insights. Physical chemistry chemical physics. 2015;17:5352–5359. doi: 10.1039/C4CP05849F. PubMed DOI
San-Miguel MA, et al. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles. Nanotechnology. 2016;27:225703. doi: 10.1088/0957-4484/27/22/225703. PubMed DOI
Longo E, Avansi W, Jr., Bettini J, Andrés J, Gracia L. In situ Transmission Electron Microscopy observation of Ag nanocrystal evolution by surfactant free electron-driven synthesis. Scientific reports. 2016;6:21498. doi: 10.1038/srep21498. PubMed DOI PMC
Faccin GM, San-Miguel MA, Andrés J, Longo E, da Silva EZ. Computational Modeling for the Ag Nanoparticle Coalescence Process: A Case of Surface Plasmon Resonance. The Journal of Physical Chemistry C. 2017;121:7030–7036. doi: 10.1021/acs.jpcc.7b00769. DOI
Andrés, J. et al. Formation of Ag nanoparticles under electron beam irradiation: Atomistic origins from first‐principles calculations. International Journal of Quantum Chemistry (2017).
Longo VrM, et al. Potentiated electron transference in α-Ag2WO4 microcrystals with Ag nanofilaments as microbial agent. J. Phys. Chem. A. 2014;118:5769–5778. doi: 10.1021/jp410564p. PubMed DOI
Foggi, C. C. et al. Tuning the morphology, optical and antimicrobial properties of α-Ag2WO4 microcrystals by using different solvents. Crystal Growth & Design (2017).
Foggi CC, et al. Synthesis and evaluation of α-Ag2WO4 as novel antifungal agent. Chemical Physics Letters. 2017;674:125–129. doi: 10.1016/j.cplett.2017.02.067. DOI
Turkovič A, Fox DL, Scott JF, Geller S, Ruse GF. High temperature Raman spectroscopy of silver tetratungstate, Ag8W4O16. Materials Research Bulletin. 1977;12:189–195. doi: 10.1016/0025-5408(77)90163-5. DOI
Pereira, P. et al. ZnWO4 nanocrystals: synthesis, morphology, photoluminescence and photocatalytic properties. Physical Chemistry Chemical Physics (2018). PubMed
Johnston HJ, et al. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Critical reviews in toxicology. 2010;40:328–346. doi: 10.3109/10408440903453074. PubMed DOI
Tung JC, et al. Tumor mechanics and metabolic dysfunction. Free Radical Biology and Medicine. 2015;79:269–280. doi: 10.1016/j.freeradbiomed.2014.11.020. PubMed DOI PMC
De Stefano, D., Carnuccio, R. & Maiuri, M. C. Nanomaterials toxicity and cell death modalities. Journal of drug delivery2012 (2012). PubMed PMC
Harrison JJ, Ceri H, Stremick CA, Turner RJ. Biofilm susceptibility to metal toxicity. Environmental Microbiology. 2004;6:1220–1227. doi: 10.1111/j.1462-2920.2004.00656.x. PubMed DOI
Xu FF, Imlay JA. Silver (I), mercury (II), cadmium (II), and zinc (II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Applied and environmental microbiology. 2012;78:3614–3621. doi: 10.1128/AEM.07368-11. PubMed DOI PMC
Wei L, et al. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discovery Today. 2015;20:595–601. doi: 10.1016/j.drudis.2014.11.014. PubMed DOI PMC
Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology. 2013;11:371. doi: 10.1038/nrmicro3028. PubMed DOI
Sarkar A, Das J, Manna P, Sil PC. Nano-copper induces oxidative stress and apoptosis in kidney via both extrinsic and intrinsic pathways. Toxicology. 2011;290:208–217. doi: 10.1016/j.tox.2011.09.086. PubMed DOI
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. science. 2006;311:622–627. doi: 10.1126/science.1114397. PubMed DOI
Shvedova AA, Kagan VE, Fadeel B. Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annual review of pharmacology and toxicology. 2010;50:63–88. doi: 10.1146/annurev.pharmtox.010909.105819. PubMed DOI
Orrenius S, Nicotera P, Zhivotovsky B. Cell death mechanisms and their implications in toxicology. Toxicological Sciences. 2010;119:3–19. doi: 10.1093/toxsci/kfq268. PubMed DOI
Manna P, Ghosh M, Ghosh J, Das J, Sil PC. Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: Role of IκBα/NF-κB, MAPKs and mitochondrial signal. Nanotoxicology. 2012;6:1–21. doi: 10.3109/17435390.2011.552124. PubMed DOI
Avalos A, Haza AI, Mateo D, Morales P. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. Journal of applied toxicology. 2014;34:413–423. doi: 10.1002/jat.2957. PubMed DOI
Hussain S, et al. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology. 2009;260:142–149. doi: 10.1016/j.tox.2009.04.001. PubMed DOI
Matés JM, Pérez-Gómez C, De Castro IN. Antioxidant enzymes and human diseases. Clinical biochemistry. 1999;32:595–603. doi: 10.1016/S0009-9120(99)00075-2. PubMed DOI
Hempel N, Ye H, Abessi B, Mian B, Melendez JA. Altered redox status accompanies progression to metastatic human bladder cancer. Free Radical Biology and Medicine. 2009;46:42–50. doi: 10.1016/j.freeradbiomed.2008.09.020. PubMed DOI PMC
Kim YS, Gupta Vallur P, Phaëton R, Mythreye K, Hempel N. Insights into the Dichotomous Regulation of SOD2 in Cancer. Antioxidants. 2017;6:86. doi: 10.3390/antiox6040086. PubMed DOI PMC
Bendale Y, Bendale V, Paul S. Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integrative medicine research. 2017;6:141–148. doi: 10.1016/j.imr.2017.01.006. PubMed DOI PMC
Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological interactions. 2006;160:1–40. doi: 10.1016/j.cbi.2005.12.009. PubMed DOI
Arora S, Jain J, Rajwade J, Paknikar K. Cellular responses induced by silver nanoparticles: in vitro studies. Toxicology letters. 2008;179:93–100. doi: 10.1016/j.toxlet.2008.04.009. PubMed DOI
Gaillet S, Rouanet J-M. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms–a review. Food and Chemical Toxicology. 2015;77:58–63. doi: 10.1016/j.fct.2014.12.019. PubMed DOI
Dai X, et al. Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing. ACS applied materials & interfaces. 2016;8:25798–25807. doi: 10.1021/acsami.6b09267. PubMed DOI
Huma Z-e, et al. Cationic Silver Nanoclusters as Potent Antimicrobials against Multidrug-Resistant Bacteria. ACS omega. 2018;3:16721–16727. doi: 10.1021/acsomega.8b02438. PubMed DOI PMC
Rizzello L, Pompa PP. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chemical Society Reviews. 2014;43:1501–1518. doi: 10.1039/C3CS60218D. PubMed DOI
Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano today. 2015;10:339–354. doi: 10.1016/j.nantod.2015.04.002. DOI
Wang L-S, Gupta A, Rotello VM. Nanomaterials for the treatment of bacterial biofilms. ACS infectious diseases. 2015;2:3–4. doi: 10.1021/acsinfecdis.5b00116. PubMed DOI PMC
Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release. 2011;156:128–145. doi: 10.1016/j.jconrel.2011.07.002. PubMed DOI
Jeeva K, Thiyagarajan M, Elangovan V, Geetha N, Venkatachalam P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Industrial Crops and Products. 2014;52:714–720. doi: 10.1016/j.indcrop.2013.11.037. DOI
Khatoon N, Ahmad R, Sardar M. Robust and fluorescent silver nanoparticles using Artemisia annua: biosynthesis, characterization and antibacterial activity. Biochemical engineering journal. 2015;102:91–97. doi: 10.1016/j.bej.2015.02.019. DOI