The Role of Inflammatory Response in Stroke Associated Programmed Cell Death
Jazyk angličtina Země Spojené arabské emiráty Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
29473512
PubMed Central
PMC6251044
DOI
10.2174/1570159x16666180222155833
PII: CN-EPUB-88752
Knihovny.cz E-zdroje
- Klíčová slova
- Inflammation, apoptosis, autophagy, necroptosis, necrosis, pyroptosis., stroke.,
- MeSH
- buněčná smrt imunologie MeSH
- cévní mozková příhoda imunologie MeSH
- lidé MeSH
- zánět patofyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Stroke represents devastating pathology which is associated with a high morbidity and mortality. Initial damage caused directly by the onset of stroke, primary injury, may be eclipsed by secondary injury which may have a much more devastating effect on the brain. Primary injury is predominantly associated with necrotic cell death due to fatal insufficiency of oxygen and glucose. Secondary injury may on the contrary, lead apoptotic cell death due to structural damage which is not compatible with cellular functions or which may even represent the danger of malign transformation. The immune system is responsible for surveillance, defense and healing processes and the immune system plays a major role in triggering programmed cell death. Severe pathologies, such as stroke, are often associated with deregulation of the immune system, resulting in aggravation of secondary brain injury. The goal of this article is to overview the current knowledge about the role of immune system in the pathophysiology of stroke with respect to programmed neuronal cell death as well as to discuss current therapeutic strategies targeting inflammation after stroke.
Zobrazit více v PubMed
http://www.who.int/mediacentre/ factsheets/fs310/en/(Accessed Mar 31, 2017)
Mackay J., Mensah G.A. The Atlas of Heart Disease and Stroke. 1st ed. Geneva: World Health Organization; 2004. Global burden of stroke. p. 50.http://www.who.int/cardiovascular_diseases/ resources/atlas/
Hankey G. J. Stroke. Lancet. 2017;389(10069):641–654. [http:// dx.doi.org/10.1016/S0140-6736(16)30962-X]. [PMID: 27637676]. PubMed
Lau W.L., Huisa B.N., Fisher M. The Cerebrovascular-chronic kidney disease connection: perspectives and mechanisms. Transl. Stroke Res. 2017;8(1):67–76. [http://dx.doi.org/10.1007/s12975-016-0499-x]. [PMID: 27628245]. PubMed PMC
Cai W., Liu H., Zhao J., Chen L.Y., Chen J., Lu Z., Hu X. pericytes in brain injury and repair after ischemic stroke. Transl. Stroke Res. 2017;8(2):107–121. [http://dx.doi.org/10.1007/ s12975-016-0504-4]. [PMID: 27837475]. PubMed PMC
Dotson A.L., Chen Y., Zhu W., Libal N., Alkayed N.J., Offner H. Partial MHC constructs treat thromboembolic ischemic stroke characterized by early immune expansion. Transl. Stroke Res. 2016;7(1):70–78. [http://dx.doi.org/10.1007/s12975-015-0436-4]. [PMID: 26627498]. PubMed PMC
Brouns R., De Deyn P.P. The complexity of neurobiological processes in acute ischemic stroke. Clin. Neurol. Neurosurg. 2009;111(6):483–495. [http://dx.doi.org/10.1016/j.clineuro.2009.04.001]. [PMID: 19446389]. PubMed
Ames A. III CNS energy metabolism as related to function. Brain Res. Brain Res. Rev. 2000;34(1-2):42–68. [http://dx.doi.org/10. 1016/S0165-0173(00)00038-2]. [PMID: 11086186]. PubMed
Xi G., Keep R.F., Hoff J.T. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63. [http:// dx.doi.org/10.1016/S1474-4422(05)70283-0]. [PMID: 16361023]. PubMed
Aronowski J., Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke. 2011;42(6):1781–1786. [http://dx.doi.org/10.1161/STROKEAHA.110.596718]. [PMID: 21527759]. PubMed PMC
Ostrowski R.P., Colohan A.R., Zhang J.H. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol. Res. 2006;28(4):399–414. [http://dx.doi.org/10.1179/016164106 X115008]. [PMID: 16759443]. PubMed
Hossmann K.A. Viability thresholds and the penumbra of focal ischemia. Ann. Neurol. 1994;36(4):557–565. [http://dx.doi.org/ 10.1002/ana.410360404]. [PMID: 7944288]. PubMed
Folbergrová J., Memezawa H., Smith M.L., Siesjö B.K. Focal and perifocal changes in tissue energy state during middle cerebral artery occlusion in normo- and hyperglycemic rats. J. Cereb. Blood Flow Metab. 1992;12(1):25–33. [http://dx.doi.org/10.1038/jcbfm. 1992.4]. [PMID: 1727140]. PubMed
Prabhakaran S., Naidech A.M. Ischemic brain injury after intracerebral hemorrhage: a critical review. Stroke. 2012;43(8):2258–2263. [http://dx.doi.org/10.1161/STROKEAHA.112.655910]. [PMID: 22821611]. PubMed
Arsava E.M., Topcuoglu M.A. Letter by Arsava and Topcuoglu regarding article, “Ischemic brain injury following intracerebral hemorrhage--a critical review. Stroke. 2012;43(12):e174–e174. [http://dx.doi.org/10.1161/STROKEAHA.112.672915]. [PMID: 23093612]. PubMed
Qureshi A.I., Wilson D.A., Hanley D.F., Traystman R.J. No evidence for an ischemic penumbra in massive experimental intracerebral hemorrhage. Neurology. 1999;52(2):266–272. [http://dx. doi.org/10.1212/WNL.52.2.266]. [PMID: 9932942]. PubMed
Qureshi A.I., Ali Z., Suri M.F.K., Shuaib A., Baker G., Todd K., Guterman L.R., Hopkins L.N. Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: an in vivo microdialysis study. Crit. Care Med. 2003;31(5):1482–1489. [http://dx.doi.org/10.1097/01.CCM.0000063047.63862.99]. [PMID: 12771622]. PubMed
Bederson J.B., Germano I.M., Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke. 1995;26(6):1086–1091. [http://dx.doi.org/10.1161/01.STR.26.6.1086]. [PMID: 7762027]. PubMed
Hazell A.S. Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies. Neurochem. Int. 2007;50(7-8):941–953. [http://dx.doi.org/10.1016/j.neuint.2007.04.026]. [PMID: 17576023]. PubMed
Zhang L., Wu J., Duan X., Tian X., Shen H., Sun Q., Chen G. NADPH oxidase: A potential target for treatment of stroke. Oxid. Med. Cell. Longev. 2016;2016:5026984. [http://dx.doi.org/10. 1155/2016/5026984]. [PMID: 26941888]. PubMed PMC
Abramov A.Y., Scorziello A., Duchen M.R. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J. Neurosci. 2007;27(5):1129–1138. [http://dx.doi.org/10.1523/JNEUROSCI. 4468-06.2007]. [PMID: 17267568]. PubMed PMC
Bedard K., Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 2007;87(1):245–313. [http://dx.doi.org/10.1152/physrev.00044.2005]. [PMID: 17237347]. PubMed
Chen H., Song Y.S., Chan P.H. Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J. Cereb. Blood Flow Metab. 2009;29(7):1262–1272. [http://dx.doi.org/10.1038/jcbfm. 2009.47]. [PMID: 19417757]. PubMed PMC
Cherubini A., Ruggiero C., Polidori M.C., Mecocci P. Potential markers of oxidative stress in stroke. Free Radic. Biol. Med. 2005;39(7):841–852. [http://dx.doi.org/10.1016/j.freeradbiomed.2005. 06.025]. [PMID: 16140205]. PubMed
Wu J., Hua Y., Keep R.F., Nakamura T., Hoff J.T., Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34(12):2964–2969. [http://dx.doi.org/10.1161/ 01.STR.0000103140.52838.45]. [PMID: 14615611]. PubMed
Meguro T., Klett C.P., Chen B., Parent A.D., Zhang J.H. Role of calcium channels in oxyhemoglobin-induced apoptosis in endothelial cells. J. Neurosurg. 2000;93(4):640–646. [http://dx.doi.org/ 10.3171/jns.2000.93.4.0640]. [PMID: 11014543]. PubMed
Park S., Yamaguchi M., Zhou C., Calvert J.W., Tang J., Zhang J.H. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke. 2004;35(10):2412–2417. [http:// dx.doi.org/10.1161/01.STR.0000141162.29864.e9]. [PMID: 15322302]. PubMed
Sugawara T., Ayer R., Jadhav V., Chen W., Tsubokawa T., Zhang J.H. Simvastatin attenuation of cerebral vasospasm after subarachnoid hemorrhage in rats via increased phosphorylation of Akt and endothelial nitric oxide synthase. J. Neurosci. Res. 2008;86(16):3635–3643. [http://dx.doi.org/10.1002/jnr.21807]. [PMID: 18683242]. PubMed PMC
Al-Tamimi Y.Z., Orsi N.M., Quinn A.C., Homer-Vanniasinkam S., Ross S.A. A review of delayed ischemic neurologic deficit following aneurysmal subarachnoid hemorrhage: historical overview, current treatment, and pathophysiology. World Neurosurg. 2010;73(6):654–667. [http://dx.doi.org/10.1016/j.wneu.2010.02.005]. [PMID: 20934153]. PubMed
Fujii M., Yan J., Rolland W.B., Soejima Y., Caner B., Zhang J.H. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl. Stroke Res. 2013;4(4):432–446. [http://dx. doi.org/10.1007/s12975-013-0257-2]. [PMID: 23894255]. PubMed PMC
Caner B., Hou J., Altay O., Fujii M., Zhang J.H. Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J. Neurochem. 2012;123(Suppl. 2):12–21. [http:// dx.doi.org/10.1111/j.1471-4159.2012.07939.x]. [PMID: 23050638]. PubMed
Yan T., Chopp M., Chen J. Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neurosci. Bull. 2015;31(6):717–734. [http://dx.doi. org/10.1007/s12264-015-1567-z]. [PMID: 26625873]. PubMed PMC
Kim J.Y., Kawabori M., Yenari M.A. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets. Curr. Med. Chem. 2014;21(18):2076–2097. [http://dx.doi.org/ 10.2174/0929867321666131228205146]. [PMID: 24372209]. PubMed PMC
Wang Q., Tang X.N., Yenari M.A. The inflammatory response in stroke. J. Neuroimmunol. 2007;184(1-2):53–68. [http://dx.doi.org/ 10.1016/j.jneuroim.2006.11.014]. [PMID: 17188755]. PubMed PMC
Wang J., Doré S. Inflammation after intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 2007;27(5):894–908. [http://dx.doi. org/10.1038/sj.jcbfm.9600403]. [PMID: 17033693]. PubMed
Lucke-Wold B.P., Logsdon A.F., Manoranjan B., Turner R.C., McConnell E., Vates G.E., Huber J.D., Rosen C.L., Simard J.M. aneurysmal subarachnoid hemorrhage and neuroinflammation: A comprehensive review. Int. J. Mol. Sci. 2016;17(4):497. [http:// dx.doi.org/10.3390/ijms17040497]. [PMID: 27049383]. PubMed PMC
Chen S., Yang Q., Chen G., Zhang J.H. An update on inflammation in the acute phase of intracerebral hemorrhage. Transl. Stroke Res. 2015;6(1):4–8. [http://dx.doi.org/10.1007/s12975-014-0384-4]. [PMID: 25533878]. PubMed
Kreutzberg G.W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19(8):312–318. [http://dx.doi.org/ 10.1016/0166-2236(96)10049-7]. [PMID: 8843599]. PubMed
Denes A., Vidyasagar R., Feng J., Narvainen J., McColl B.W., Kauppinen R.A., Allan S.M. Proliferating resident microglia after focal cerebral ischaemia in mice. J. Cereb. Blood Flow Metab. 2007;27(12):1941–1953. [http://dx.doi.org/10.1038/sj.jcbfm.9600495]. [PMID: 17440490]. PubMed
Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog. Neurobiol. 2010;92(4):463–477. [http://dx.doi.org/10.1016/j.pneurobio.2010.08.001]. [PMID: 20713126]. PubMed PMC
Murakami K., Koide M., Dumont T.M., Russell S.R., Tranmer B.I., Wellman G.C. Subarachnoid hemorrhage induces gliosis and increased expression of the pro-inflammatory cytokine high mobility group box 1 protein. Transl. Stroke Res. 2011;2(1):72–79. [http://dx.doi.org/10.1007/s12975-010-0052-2]. [PMID: 21479116]. PubMed PMC
Atangana E., Schneider U.C., Blecharz K., Magrini S., Wagner J., Nieminen-Kelhä M., Kremenetskaia I., Heppner F.L., Engelhardt B., Vajkoczy P. Intravascular inflammation triggers intracerebral activated microglia and contributes to secondary brain injury after experimental subarachnoid hemorrhage (eSAH). Transl. Stroke Res. 2017;8(2):144–156. [http://dx.doi.org/10.1007/s12975-016-0485-3]. [PMID: 27477569]. PubMed
Schilling M., Strecker J-K., Schäbitz W-R., Ringelstein E.B., Kiefer R. Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience. 2009;161(3):806–812. [http://dx.doi.org/10. 1016/j.neuroscience.2009.04.025]. [PMID: 19374937]. PubMed
Wood P.L. Microglia as a unique cellular target in the treatment of stroke: potential neurotoxic mediators produced by activated microglia. Neurol. Res. 1995;17(4):242–248. [http://dx.doi.org/10. 1080/01616412.1995.11740321]. [PMID: 7477737]. PubMed
Stoll G. Inflammatory cytokines in the nervous system: multifunctional mediators in autoimmunity and cerebral ischemia. Rev. Neurol. 2002;158(10 Pt 1):887–891. [PMID: 12407295]. PubMed
Kim J.S. Cytokines and adhesion molecules in stroke and related diseases. J. Neurol. Sci. 1996;137(2):69–78. [http://dx.doi.org/10. 1016/0022-510X(95)00338-3]. [PMID: 8782158]. PubMed
Huang J., Choudhri T.F., Winfree C.J., McTaggart R.A., Kiss S., Mocco J., Kim L.J., Protopsaltis T.S., Zhang Y., Pinsky D.J., Connolly E.S. Jr Postischemic cerebrovascular E-selectin expression mediates tissue injury in murine stroke. Stroke. 2000;31(12):3047–3053. [http://dx.doi.org/10.1161/01.STR.31.12.3047]. [PMID: 11108771]. PubMed
Goussev A.V., Zhang Z., Anderson D.C., Chopp M. P-selectin antibody reduces hemorrhage and infarct volume resulting from MCA occlusion in the rat. J. Neurol. Sci. 1998;161(1):16–22. [http:// dx.doi.org/10.1016/S0022-510X(98)00262-7]. [PMID: 9879676]. PubMed
Yenari M.A., Sun G.H., Kunis D.M., Onley D., Vexler V. L-selectin inhibition does not reduce injury in a rabbit model of transient focal cerebral ischemia. Neurol. Res. 2001;23(1):72–78. [http:// dx.doi.org/10.1179/016164101101198154]. [PMID: 11210435]. PubMed
Wang X., Siren A.L., Liu Y., Yue T.L., Barone F.C., Feuerstein G.Z. Upregulation of intercellular adhesion molecule 1 (ICAM-1) on brain microvascular endothelial cells in rat ischemic cortex. Brain Res. Mol. Brain Res. 1994;26(1-2):61–68. [http:// dx.doi.org/10.1016/0169-328X(94)90074-4]. [PMID: 7854067]. PubMed
Bowes M.P., Zivin J.A., Rothlein R. Monoclonal antibody to the ICAM-1 adhesion site reduces neurological damage in a rabbit cerebral embolism stroke model. Exp. Neurol. 1993;119(2):215–219. [http://dx.doi.org/10.1006/exnr.1993.1023]. [PMID: 8094342]. PubMed
Chopp M., Li Y., Jiang N., Zhang R.L., Prostak J. Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain. J. Cereb. Blood Flow Metab. 1996;16(4):578–584. [http://dx.doi.org/10.1097/00004647-199607000-00007]. [PMID: 8964796]. PubMed
Justicia C., Martín A., Rojas S., Gironella M., Cervera A., Panés J., Chamorro A., Planas A.M. Anti-VCAM-1 antibodies did not protect against ischemic damage either in rats or in mice. J. Cereb. Blood Flow Metab. 2006;26(3):421–432. [http://dx.doi. org/10.1038/sj.jcbfm.9600198]. [PMID: 16079786]. PubMed
Liesz A., Zhou W., Mracskó É., Karcher S., Bauer H., Schwarting S., Sun L., Bruder D., Stegemann S., Cerwenka A., Sommer C., Dalpke A.H., Veltkamp R. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain. 2011;134(Pt 3):704–720. [http://dx.doi.org/ 10.1093/brain/awr008]. [PMID: 21354973]. PubMed
Wu L., Walas S., Leung W., Sykes D.B., Wu J., Lo E.H., Lok J. Neuregulin1-β decreases IL-1β-induced neutrophil adhesion to human brain microvascular endothelial cells. Transl. Stroke Res. 2015;6(2):116–124. [http://dx.doi.org/10.1007/s12975-014-0347-9]. [PMID: 24863743]. PubMed PMC
Fu Y., Liu Q., Anrather J., Shi F-D. Immune interventions in stroke. Nat. Rev. Neurol. 2015;11(9):524–535. [http://dx.doi.org/ 10.1038/nrneurol.2015.144]. [PMID: 26303850]. PubMed PMC
Vidale S., Consoli A., Arnaboldi M., Consoli D. Postischemic Inflammation in Acute Stroke. J. Clin. Neurol. 2017;13(1):1–9. [http://dx.doi.org/10.3988/jcn.2017.13.1.1]. [PMID: 28079313]. PubMed PMC
Liesz A., Kleinschnitz C., Regulatory T., Regulatory T. Cells in Post-stroke Immune Homeostasis. Transl. Stroke Res. 2016;7(4):313–321. [http://dx.doi.org/10.1007/s12975-016-0465-7]. [PMID: 27030356]. PubMed
Jain M.V., Paczulla A.M., Klonisch T., Dimgba F.N., Rao S.B., Roberg K., Schweizer F., Lengerke C., Davoodpour P., Palicharla V.R., Maddika S., Łos M. Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J. Cell. Mol. Med. 2013;17(1):12–29. [http://dx. doi.org/10.1111/jcmm.12001]. [PMID: 23301705]. PubMed PMC
Skulachev V.P. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis. 2006;11(4):473–485. [http://dx.doi.org/10. 1007/s10495-006-5881-9]. [PMID: 16532373]. PubMed
Los M., Mozoluk M., Ferrari D., Stepczynska A., Stroh C., Renz A., Herceg Z., Wang Z-Q., Schulze-Osthoff K. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell. 2002;13(3):978–988. [http://dx.doi.org/10.1091/ mbc.01-05-0272]. [PMID: 11907276]. PubMed PMC
Yang Y., Jiang G., Zhang P., Fan J. Programmed cell death and its role in inflammation. Mil. Med. Res. 2015;2:12. [http://dx. doi.org/10.1186/s40779-015-0039-0]. [PMID: 26045969]. PubMed PMC
Vanden Berghe T., Kaiser W.J., Bertrand M.J., Vandenabeele P. Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol. Cell. Oncol. 2015;2(4):e975093. [http://dx.doi. org/10.4161/23723556.2014.975093]. [PMID: 27308513]. PubMed PMC
Páramo B., Montiel T., Hernández-Espinosa D.R., Rivera-Martínez M., Morán J., Massieu L. Calpain activation induced by glucose deprivation is mediated by oxidative stress and contributes to neuronal damage. Int. J. Biochem. Cell Biol. 2013;45(11):2596–2604. [http://dx.doi.org/10.1016/j.biocel.2013.08.013]. [PMID: 23994487]. PubMed
Bianchi L., Gerstbrein B., Frøkjaer-Jensen C., Royal D.C., Mukherjee G., Royal M.A., Xue J., Schafer W.R., Driscoll M. The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat. Neurosci. 2004;7(12):1337–1344. [http://dx.doi.org/10.1038/nn1347]. [PMID: 15543143]. PubMed
Meyer D.A., Torres-Altoro M.I., Tan Z., Tozzi A., Di Filippo M., DiNapoli V., Plattner F., Kansy J.W., Benkovic S.A., Huber J.D., Miller D.B., Greengard P., Calabresi P., Rosen C.L., Bibb J.A. Ischemic stroke injury is mediated by aberrant Cdk5. J. Neurosci. 2014;34(24):8259–8267. [http://dx.doi.org/10.1523/JNEUROSCI. 4368-13.2014]. [PMID: 24920629]. PubMed PMC
Sahara S., Yamashima T. Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Biochem. Biophys. Res. Commun. 2010;393(4):806–811. [http://dx.doi.org/10.1016/j.bbrc. 2010.02.087]. [PMID: 20171158]. PubMed
Hwang B.Y., Appelboom G., Ayer A., Kellner C.P., Kotchetkov I.S., Gigante P.R., Haque R., Kellner M., Connolly E.S. Advances in neuroprotective strategies: potential therapies for intracerebral hemorrhage. Cerebrovasc. Dis. 2011;31(3):211–222. [http://dx.doi.org/10.1159/000321870]. [PMID: 21178344]. PubMed PMC
Hasegawa Y., Suzuki H., Sozen T., Altay O., Zhang J.H. Apoptotic mechanisms for neuronal cells in early brain injury after subarachnoid hemorrhage. Acta Neurochir. Suppl. (Wien) 2011;110(Pt 1):43–48. [PMID: 21116913]. PubMed
Bratton S.B., Walker G., Srinivasula S.M., Sun X-M., Butterworth M., Alnemri E.S., Cohen G.M. Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J. 2001;20(5):998–1009. [http:// dx.doi.org/10.1093/emboj/20.5.998]. [PMID: 11230124]. PubMed PMC
French L.E., Tschopp J. Protein-based therapeutic approaches targeting death receptors. Cell Death Differ. 2003;10(1):117–123. [http://dx.doi.org/10.1038/sj.cdd.4401185]. [PMID: 12655300]. PubMed
Creagh E.M. Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol. 2014;35(12):631–640. [http://dx.doi.org/10.1016/j.it.2014.10.004]. [PMID: 25457353]. PubMed
Broughton B.R.S., Reutens D.C., Sobey C.G. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(5):e331–e339. [http:// dx.doi.org/10.1161/STROKEAHA.108.531632]. [PMID: 19182083]. PubMed
Lu Y-Y., Li Z-Z., Jiang D-S., Wang L., Zhang Y., Chen K., Zhang X-F., Liu Y., Fan G-C., Chen Y., Yang Q., Zhou Y., Zhang X-D., Liu D-P., Li H. TRAF1 is a critical regulator of cerebral ischaemia-reperfusion injury and neuronal death. Nat. Commun. 2013;4:2852. [http://dx.doi.org/10.1038/ncomms3852]. [PMID: 24284943]. PubMed PMC
Holler N., Zaru R., Micheau O., Thome M., Attinger A., Valitutti S., Bodmer J.L., Schneider P., Seed B., Tschopp J. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 2000;1(6):489–495. [http://dx.doi.org/10.1038/82732]. [PMID: 11101870]. PubMed
Wu X-N., Yang Z-H., Wang X-K., Zhang Y., Wan H., Song Y., Chen X., Shao J., Han J. Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis. Cell Death Differ. 2014;21(11):1709–1720. [http://dx.doi.org/10.1038/ cdd.2014.77]. [PMID: 24902902]. PubMed PMC
Wang Y.-Z., Wang J.-J., Huang Y., Liu F., Zeng W.-Z., Li Y., Xiong Z.-G., Zhu M.X., Xu T.-L.
Dondelinger Y., Declercq W., Montessuit S., Roelandt R., Goncalves A., Bruggeman I., Hulpiau P., Weber K., Sehon C.A., Marquis R.W., Bertin J., Gough P.J., Savvides S., Martinou J-C., Bertrand M.J.M., Vandenabeele P. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Reports. 2014;7(4):971–981. [http://dx.doi.org/ 10.1016/j.celrep.2014.04.026]. [PMID: 24813885]. PubMed
Cook W.D., Moujalled D.M., Ralph T.J., Lock P., Young S.N., Murphy J.M., Vaux D.L. RIPK1- and RIPK3-induced cell death mode is determined by target availability. Cell Death Differ. 2014;21(10):1600–1612. [http://dx.doi.org/10.1038/cdd.2014.70]. [PMID: 24902899]. PubMed PMC
Hitomi J., Christofferson D.E., Ng A., Yao J., Degterev A., Xavier R.J., Yuan J. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell. 2008;135(7):1311–1323. [http://dx.doi.org/10.1016/j.cell.2008. 10.044]. [PMID: 19109899]. PubMed PMC
Fann D.Y-W., Lee S-Y., Manzanero S., Chunduri P., Sobey C.G., Arumugam T.V. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res. Rev. 2013;12(4):941–966. [http://dx. doi.org/10.1016/j.arr.2013.09.004]. [PMID: 24103368]. PubMed
Singhal G., Jaehne E.J., Corrigan F., Toben C., Baune B.T. Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front. Neurosci. 2014;8:315. [http://dx. doi.org/10.3389/fnins.2014.00315]. [PMID: 25339862]. PubMed PMC
Nakatogawa H., Suzuki K., Kamada Y., Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 2009;10(7):458–467. [http://dx.doi.org/10. 1038/nrm2708]. [PMID: 19491929]. PubMed
Koike M., Shibata M., Tadakoshi M., Gotoh K., Komatsu M., Waguri S., Kawahara N., Kuida K., Nagata S., Kominami E., Tanaka K., Uchiyama Y. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am. J. Pathol. 2008;172(2):454–469. [http://dx.doi.org/10.2353/ ajpath.2008.070876]. [PMID: 18187572]. PubMed PMC
Zhang X., Yan H., Yuan Y., Gao J., Shen Z., Cheng Y., Shen Y., Wang R-R., Wang X., Hu W-W., Wang G., Chen Z. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy. 2013;9(9):1321–1333. [http://dx.doi.org/10.4161/auto.25132]. [PMID: 23800795]. PubMed
Kang C., Avery L. To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy. 2008;4(1):82–84. [http://dx.doi.org/10.4161/ auto.5154]. [PMID: 17952023]. PubMed PMC
Ariosa A.R., Klionsky D.J. Autophagy core machinery: overcoming spatial barriers in neurons. J. Mol. Med. (Berl.) 2016;94(11):1217–1227. [http://dx.doi.org/10.1007/s00109-016-1461-9]. [PMID: 27544281]. PubMed PMC
Li W.W., Li J., Bao J.K. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 2012;69(7):1125–1136. [http://dx.doi. org/10.1007/s00018-011-0865-5]. [PMID: 22080117]. PubMed PMC
Tasset I., Cuervo A.M. Role of chaperone-mediated autophagy in metabolism. FEBS J. 2016;283(13):2403–2413. [http://dx.doi.org/ 10.1111/febs.13677]. [PMID: 26854402]. PubMed PMC
Rubinsztein D.C., Bento C.F., Deretic V. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J. Exp. Med. 2015;212(7):979–990. [http://dx.doi.org/10.1084/jem.20150956]. [PMID: 26101267]. PubMed PMC
Singh R., Cuervo A.M. Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell Biol. 2012;2012:282041. [http://dx. doi.org/10.1155/2012/282041]. [PMID: 22536247]. PubMed PMC
May A.I., Devenish R.J., Prescott M. The many faces of mitochondrial autophagy: making sense of contrasting observations in recent research. Int. J. Cell Biol. 2012;2012:431684. [http://dx. doi.org/10.1155/2012/431684]. [PMID: 22550491]. PubMed PMC
Cebollero E., Reggiori F., Kraft C. Reticulophagy and ribophagy: regulated degradation of protein production factories. Int. J. Cell Biol. 2012;2012:182834. [http://dx.doi.org/10.1155/2012/182834]. [PMID: 22481944]. PubMed PMC
Alers S., Löffler A.S., Wesselborg S., Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 2012;32(1):2–11. [http://dx.doi. org/10.1128/MCB.06159-11]. [PMID: 22025673]. PubMed PMC
Behrouz R. Re-exploring tumor necrosis factor alpha as a target for therapy in iIntracerebral hemorrhage. Transl. Stroke Res. 2016;7(2):93–96. [http://dx.doi.org/10.1007/s12975-016-0446-x]. [PMID: 26762364]. PubMed
Yang L., Froio R.M., Sciuto T.E., Dvorak A.M., Alon R., Luscinskas F.W. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood. 2005;106(2):584–592. [http://dx.doi.org/10.1182/ blood-2004-12-4942]. [PMID: 15811956]. PubMed PMC
Zhang R.L., Chopp M., Li Y., Zaloga C., Jiang N., Jones M.L., Miyasaka M., Ward P.A. Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Neurology. 1994;44(9):1747–1751. [http://dx.doi. org/10.1212/WNL.44.9.1747]. [PMID: 7936308]. PubMed
Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology. 2001;57(8):1428–1434. [http://dx.doi.org/10.1212/WNL.57.8.1428]. [PMID: 11673584]. PubMed
Furuya K., Takeda H., Azhar S., McCarron R.M., Chen Y., Ruetzler C.A., Wolcott K.M., DeGraba T.J., Rothlein R., Hugli T.E., del Zoppo G.J., Hallenbeck J.M. Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: a bedside-to-bench study. Stroke. 2001;32(11):2665–2674. [http://dx.doi.org/10.1161/hs3211.098535]. [PMID: 11692032]. PubMed
Mulcahy N.J., Ross J., Rothwell N.J., Loddick S.A. Delayed administration of interleukin-1 receptor antagonist protects against transient cerebral ischaemia in the rat. Br. J. Pharmacol. 2003;140(3):471–476. [http://dx.doi.org/10.1038/sj.bjp.0705462]. [PMID: 12970087]. PubMed PMC
Emsley H.C.A., Smith C.J., Georgiou R.F., Vail A., Hopkins S.J., Rothwell N.J., Tyrrell P.J. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J. Neurol. Neurosurg. Psychiatry. 2005;76(10):1366–1372. [http://dx.doi.org/ 10.1136/jnnp.2004.054882]. [PMID: 16170078]. PubMed PMC
Lee J.H., Kam E.H., Kim J.M., Kim S.Y., Kim E.J., Cheon S.Y., Koo B-N. Intranasal administration of interleukin-1 Receptor antagonist in a transient focal cerebral ischemia rat model. Biomol. Ther. (Seoul) 2017;25(2):149–157. [http://dx.doi.org/10.4062/biomolther. 2016.050]. [PMID: 27530114]. PubMed PMC
Miyaoka T. Clinical potential of minocycline for schizophrenia. CNS Neurol. Disord. Drug Targets. 2008;7(4):376–381. [http://dx. doi.org/10.2174/187152708786441858]. [PMID: 18991666]. PubMed
Sadowski T., Steinmeyer J. Minocycline inhibits the production of inducible nitric oxide synthase in articular chondrocytes. J. Rheumatol. 2001;28(2):336–340. [PMID: 11246672]. PubMed
Giuliani F., Hader W., Yong V.W. Minocycline attenuates T cell and microglia activity to impair cytokine production in T cell-microglia interaction. J. Leukoc. Biol. 2005;78(1):135–143. [http://dx.doi.org/10.1189/jlb.0804477]. [PMID: 15817702]. PubMed
Lu Y., Xiao G., Luo W. Minocycline suppresses NLRP3 Inflammasome activation in experimental ischemic stroke. Neuroimmunomodulation. 2016;23(4):230–238. [http://dx.doi.org/ 10.1159/000452172]. [PMID: 27846628]. PubMed
Wu Z., Zou X., Zhu W., Mao Y., Chen L., Zhao F. Minocycline is effective in intracerebral hemorrhage by inhibition of apoptosis and autophagy. J. Neurol. Sci. 2016;371:88–95. [http:// dx.doi.org/10.1016/j.jns.2016.10.025]. [PMID: 27871457]. PubMed
Sherchan P., Lekic T., Suzuki H., Hasegawa Y., Rolland W., Duris K., Zhan Y., Tang J., Zhang J.H. Minocycline improves functional outcomes, memory deficits, and histopathology after endovascular perforation-induced subarachnoid hemorrhage in rats. J. Neurotrauma. 2011;28(12):2503–2512. [http://dx.doi.org/10.1089/ neu.2011.1864]. [PMID: 22013966]. PubMed PMC
Lampl Y., Boaz M., Gilad R., Lorberboym M., Dabby R., Rapoport A., Anca-Hershkowitz M., Sadeh M. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology. 2007;69(14):1404–1410. [http://dx.doi.org/10.1212/01. wnl.0000277487.04281.db]. [PMID: 17909152]. PubMed
https://clinicaltrials.gov/ct2/show/NCT00930020
U.S National Library of Medicine https:// clinicaltrials.gov/ct2/show/NCT01805895 PubMed
Schwab S.R., Pereira J.P., Matloubian M., Xu Y., Huang Y., Cyster J.G. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science. 2005;309(5741):1735–1739. [http://dx.doi.org/10.1126/science.1113640]. [PMID: 16151014]. PubMed
Wei Y., Yemisci M., Kim H-H., Yung L.M., Shin H.K., Hwang S-K., Guo S., Qin T., Alsharif N., Brinkmann V., Liao J.K., Lo E.H., Waeber C. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann. Neurol. 2011;69(1):119–129. [http://dx.doi.org/10.1002/ana.22186]. [PMID: 21280082]. PubMed PMC
Ntranos A., Hall O., Robinson D.P., Grishkan I.V., Schott J.T., Tosi D.M., Klein S.L., Calabresi P.A., Gocke A.R. FTY720 impairs CD8 T-cell function independently of the sphingosine-1-phosphate pathway. J. Neuroimmunol. 2014;270(1-2):13–21. [http:// dx.doi.org/10.1016/j.jneuroim.2014.03.007]. [PMID: 24680062]. PubMed
Rolland W.B., Lekic T., Krafft P.R., Hasegawa Y., Altay O., Hartman R., Ostrowski R., Manaenko A., Tang J., Zhang J.H. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp. Neurol. 2013;241:45–55. [http://dx.doi.org/10.1016/j.expneurol.2012.12.009]. [PMID: 23261767]. PubMed PMC
Rolland W.B., II, Manaenko A., Lekic T., Hasegawa Y., Ostrowski R., Tang J., Zhang J.H. FTY720 is neuroprotective and improves functional outcomes after intracerebral hemorrhage in mice. Acta Neurochir. Suppl. (Wien) 2011;111:213–217. [http://dx. doi.org/10.1007/978-3-7091-0693-8_36]. [PMID: 21725758]. PubMed PMC
Fu Y., Zhang N., Ren L., Yan Y., Sun N., Li Y-J., Han W., Xue R., Liu Q., Hao J., Yu C., Shi F-D. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc. Natl. Acad. Sci. USA. 2014;111(51):18315–18320. [http://dx.doi.org/10.1073/ pnas.1416166111]. [PMID: 25489101]. PubMed PMC
Zhu Z., Fu Y., Tian D., Sun N., Han W., Chang G., Dong Y., Xu X., Liu Q., Huang D., Shi F-D. Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: A Pilot Trial. Circulation. 2015;132(12):1104–1112. [http://dx.doi. org/10.1161/CIRCULATIONAHA.115.016371]. [PMID: 26202811]. PubMed PMC
Fu Y., Hao J., Zhang N., Ren L., Sun N., Li Y-J., Yan Y., Huang D., Yu C., Shi F-D. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 2014;71(9):1092–1101. [http://dx.doi.org/10.1001/ jamaneurol.2014.1065]. [PMID: 25003359]. PubMed
Li Y., Qi Y., Huang T.H.W., Yamahara J., Roufogalis B.D. Pomegranate flower: a unique traditional antidiabetic medicine with dual PPAR-alpha/-gamma activator properties. Diabetes Obes. Metab. 2008;10(1):10–17. [PMID: 18095947]. PubMed
Hamblin M., Chang L., Fan Y., Zhang J., Chen Y.E. PPARs and the cardiovascular system. Antioxid. Redox Signal. 2009;11(6):1415–1452. [http://dx.doi.org/10.1089/ars.2008.2280]. [PMID: 19061437]. PubMed PMC
Luo Y., Yin W., Signore A.P., Zhang F., Hong Z., Wang S., Graham S.H., Chen J. Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J. Neurochem. 2006;97(2):435–448. [http://dx.doi.org/10.1111/j.1471-4159.2006.03758.x]. [PMID: 16539667]. PubMed
Zhao X., Sun G., Zhang J., Strong R., Song W., Gonzales N., Grotta J.C., Aronowski J. Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann. Neurol. 2007;61(4):352–362. [http://dx.doi.org/10.1002/ana.21097]. [PMID: 17457822]. PubMed
U.S National Library of Medicine https://clinicaltrials.gov/ct2/show/study/NCT00827892 PubMed
Chu K., Jeong S-W., Jung K-H., Han S-Y., Lee S-T., Kim M., Roh J-K. Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death. J. Cereb. Blood Flow Metab. 2004;24(8):926–933. [http://dx.doi.org/10.1097/01.WCB.0000130866.25040.7D]. [PMID: 15362723]. PubMed
Lee S-H., Park H-K., Ryu W-S., Lee J-S., Bae H-J., Han M-K., Lee Y-S., Kwon H-M., Kim C.K., Park E-S., Chung J-W., Jung K-H., Roh J-K. Effects of celecoxib on hematoma and edema volumes in primary intracerebral hemorrhage: a multicenter randomized controlled trial. Eur. J. Neurol. 2013;20(8):1161–1169. [http://dx.doi.org/10.1111/ene.12140]. [PMID: 23551657]. PubMed
Liao J.K. Beyond lipid lowering: the role of statins in vascular protection. Int. J. Cardiol. 2002;86(1):5–18. [http://dx.doi.org/ 10.1016/S0167-5273(02)00195-X]. [PMID: 12243846]. PubMed
Lynch J.R., Wang H., McGirt M.J., Floyd J., Friedman A.H., Coon A.L., Blessing R., Alexander M.J., Graffagnino C., Warner D.S., Laskowitz D.T. Simvastatin reduces vasospasm after aneurysmal subarachnoid hemorrhage: results of a pilot randomized clinical trial. Stroke. 2005;36(9):2024–2026. [http://dx.doi.org/10. 1161/01.STR.0000177879.11607.10]. [PMID: 16051891]. PubMed
U.S National Library of Medicine https://clinicaltrials.gov/ ct2/show/NCT00731627 PubMed
U.S National Library of Medicine https://clinicaltrials.gov/ct2/show/NCT01865630 PubMed
Wang J., Ye Q., Xu J., Benedek G., Zhang H., Yang Y., Liu H., Meza-Romero R., Vandenbark A.A., Offner H., Gao Y. DRα1-MOG-35-55 reduces permanent ischemic brain injury. Transl. Stroke Res. 2016;7(6):458–477. [PMID: 27988839]. PubMed PMC
Imam Y.Z., D’Souza A., Malik R.A., Shuaib A. Secondary Stroke Prevention: Improving diagnosis and management with newer technologies. Transl. Stroke Res. 2016;7(6):458–477. [http://dx.doi.org/10.1007/s12975-016-0494-2]. [PMID: 27586681]. PubMed