The Role of Inflammatory Response in Stroke Associated Programmed Cell Death

. 2018 ; 16 (9) : 1365-1374.

Jazyk angličtina Země Spojené arabské emiráty Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29473512

Stroke represents devastating pathology which is associated with a high morbidity and mortality. Initial damage caused directly by the onset of stroke, primary injury, may be eclipsed by secondary injury which may have a much more devastating effect on the brain. Primary injury is predominantly associated with necrotic cell death due to fatal insufficiency of oxygen and glucose. Secondary injury may on the contrary, lead apoptotic cell death due to structural damage which is not compatible with cellular functions or which may even represent the danger of malign transformation. The immune system is responsible for surveillance, defense and healing processes and the immune system plays a major role in triggering programmed cell death. Severe pathologies, such as stroke, are often associated with deregulation of the immune system, resulting in aggravation of secondary brain injury. The goal of this article is to overview the current knowledge about the role of immune system in the pathophysiology of stroke with respect to programmed neuronal cell death as well as to discuss current therapeutic strategies targeting inflammation after stroke.

Zobrazit více v PubMed

http://www.who.int/mediacentre/ factsheets/fs310/en/(Accessed Mar 31, 2017)

Mackay J., Mensah G.A. The Atlas of Heart Disease and Stroke. 1st ed. Geneva: World Health Organization; 2004. Global burden of stroke. p. 50.http://www.who.int/cardiovascular_diseases/ resources/atlas/

Hankey G. J. Stroke. Lancet. 2017;389(10069):641–654. [http:// dx.doi.org/10.1016/S0140-6736(16)30962-X]. [PMID: 27637676]. PubMed

Lau W.L., Huisa B.N., Fisher M. The Cerebrovascular-chronic kidney disease connection: perspectives and mechanisms. Transl. Stroke Res. 2017;8(1):67–76. [http://dx.doi.org/10.1007/s12975-016-0499-x]. [PMID: 27628245]. PubMed PMC

Cai W., Liu H., Zhao J., Chen L.Y., Chen J., Lu Z., Hu X. pericytes in brain injury and repair after ischemic stroke. Transl. Stroke Res. 2017;8(2):107–121. [http://dx.doi.org/10.1007/ s12975-016-0504-4]. [PMID: 27837475]. PubMed PMC

Dotson A.L., Chen Y., Zhu W., Libal N., Alkayed N.J., Offner H. Partial MHC constructs treat thromboembolic ischemic stroke characterized by early immune expansion. Transl. Stroke Res. 2016;7(1):70–78. [http://dx.doi.org/10.1007/s12975-015-0436-4]. [PMID: 26627498]. PubMed PMC

Brouns R., De Deyn P.P. The complexity of neurobiological processes in acute ischemic stroke. Clin. Neurol. Neurosurg. 2009;111(6):483–495. [http://dx.doi.org/10.1016/j.clineuro.2009.04.001]. [PMID: 19446389]. PubMed

Ames A. III CNS energy metabolism as related to function. Brain Res. Brain Res. Rev. 2000;34(1-2):42–68. [http://dx.doi.org/10. 1016/S0165-0173(00)00038-2]. [PMID: 11086186]. PubMed

Xi G., Keep R.F., Hoff J.T. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63. [http:// dx.doi.org/10.1016/S1474-4422(05)70283-0]. [PMID: 16361023]. PubMed

Aronowski J., Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke. 2011;42(6):1781–1786. [http://dx.doi.org/10.1161/STROKEAHA.110.596718]. [PMID: 21527759]. PubMed PMC

Ostrowski R.P., Colohan A.R., Zhang J.H. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol. Res. 2006;28(4):399–414. [http://dx.doi.org/10.1179/016164106 X115008]. [PMID: 16759443]. PubMed

Hossmann K.A. Viability thresholds and the penumbra of focal ischemia. Ann. Neurol. 1994;36(4):557–565. [http://dx.doi.org/ 10.1002/ana.410360404]. [PMID: 7944288]. PubMed

Folbergrová J., Memezawa H., Smith M.L., Siesjö B.K. Focal and perifocal changes in tissue energy state during middle cerebral artery occlusion in normo- and hyperglycemic rats. J. Cereb. Blood Flow Metab. 1992;12(1):25–33. [http://dx.doi.org/10.1038/jcbfm. 1992.4]. [PMID: 1727140]. PubMed

Prabhakaran S., Naidech A.M. Ischemic brain injury after intracerebral hemorrhage: a critical review. Stroke. 2012;43(8):2258–2263. [http://dx.doi.org/10.1161/STROKEAHA.112.655910]. [PMID: 22821611]. PubMed

Arsava E.M., Topcuoglu M.A. Letter by Arsava and Topcuoglu regarding article, “Ischemic brain injury following intracerebral hemorrhage--a critical review. Stroke. 2012;43(12):e174–e174. [http://dx.doi.org/10.1161/STROKEAHA.112.672915]. [PMID: 23093612]. PubMed

Qureshi A.I., Wilson D.A., Hanley D.F., Traystman R.J. No evidence for an ischemic penumbra in massive experimental intracerebral hemorrhage. Neurology. 1999;52(2):266–272. [http://dx. doi.org/10.1212/WNL.52.2.266]. [PMID: 9932942]. PubMed

Qureshi A.I., Ali Z., Suri M.F.K., Shuaib A., Baker G., Todd K., Guterman L.R., Hopkins L.N. Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: an in vivo microdialysis study. Crit. Care Med. 2003;31(5):1482–1489. [http://dx.doi.org/10.1097/01.CCM.0000063047.63862.99]. [PMID: 12771622]. PubMed

Bederson J.B., Germano I.M., Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke. 1995;26(6):1086–1091. [http://dx.doi.org/10.1161/01.STR.26.6.1086]. [PMID: 7762027]. PubMed

Hazell A.S. Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies. Neurochem. Int. 2007;50(7-8):941–953. [http://dx.doi.org/10.1016/j.neuint.2007.04.026]. [PMID: 17576023]. PubMed

Zhang L., Wu J., Duan X., Tian X., Shen H., Sun Q., Chen G. NADPH oxidase: A potential target for treatment of stroke. Oxid. Med. Cell. Longev. 2016;2016:5026984. [http://dx.doi.org/10. 1155/2016/5026984]. [PMID: 26941888]. PubMed PMC

Abramov A.Y., Scorziello A., Duchen M.R. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J. Neurosci. 2007;27(5):1129–1138. [http://dx.doi.org/10.1523/JNEUROSCI. 4468-06.2007]. [PMID: 17267568]. PubMed PMC

Bedard K., Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 2007;87(1):245–313. [http://dx.doi.org/10.1152/physrev.00044.2005]. [PMID: 17237347]. PubMed

Chen H., Song Y.S., Chan P.H. Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J. Cereb. Blood Flow Metab. 2009;29(7):1262–1272. [http://dx.doi.org/10.1038/jcbfm. 2009.47]. [PMID: 19417757]. PubMed PMC

Cherubini A., Ruggiero C., Polidori M.C., Mecocci P. Potential markers of oxidative stress in stroke. Free Radic. Biol. Med. 2005;39(7):841–852. [http://dx.doi.org/10.1016/j.freeradbiomed.2005. 06.025]. [PMID: 16140205]. PubMed

Wu J., Hua Y., Keep R.F., Nakamura T., Hoff J.T., Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34(12):2964–2969. [http://dx.doi.org/10.1161/ 01.STR.0000103140.52838.45]. [PMID: 14615611]. PubMed

Meguro T., Klett C.P., Chen B., Parent A.D., Zhang J.H. Role of calcium channels in oxyhemoglobin-induced apoptosis in endothelial cells. J. Neurosurg. 2000;93(4):640–646. [http://dx.doi.org/ 10.3171/jns.2000.93.4.0640]. [PMID: 11014543]. PubMed

Park S., Yamaguchi M., Zhou C., Calvert J.W., Tang J., Zhang J.H. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke. 2004;35(10):2412–2417. [http:// dx.doi.org/10.1161/01.STR.0000141162.29864.e9]. [PMID: 15322302]. PubMed

Sugawara T., Ayer R., Jadhav V., Chen W., Tsubokawa T., Zhang J.H. Simvastatin attenuation of cerebral vasospasm after subarachnoid hemorrhage in rats via increased phosphorylation of Akt and endothelial nitric oxide synthase. J. Neurosci. Res. 2008;86(16):3635–3643. [http://dx.doi.org/10.1002/jnr.21807]. [PMID: 18683242]. PubMed PMC

Al-Tamimi Y.Z., Orsi N.M., Quinn A.C., Homer-Vanniasinkam S., Ross S.A. A review of delayed ischemic neurologic deficit following aneurysmal subarachnoid hemorrhage: historical overview, current treatment, and pathophysiology. World Neurosurg. 2010;73(6):654–667. [http://dx.doi.org/10.1016/j.wneu.2010.02.005]. [PMID: 20934153]. PubMed

Fujii M., Yan J., Rolland W.B., Soejima Y., Caner B., Zhang J.H. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl. Stroke Res. 2013;4(4):432–446. [http://dx. doi.org/10.1007/s12975-013-0257-2]. [PMID: 23894255]. PubMed PMC

Caner B., Hou J., Altay O., Fujii M., Zhang J.H. Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J. Neurochem. 2012;123(Suppl. 2):12–21. [http:// dx.doi.org/10.1111/j.1471-4159.2012.07939.x]. [PMID: 23050638]. PubMed

Yan T., Chopp M., Chen J. Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neurosci. Bull. 2015;31(6):717–734. [http://dx.doi. org/10.1007/s12264-015-1567-z]. [PMID: 26625873]. PubMed PMC

Kim J.Y., Kawabori M., Yenari M.A. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets. Curr. Med. Chem. 2014;21(18):2076–2097. [http://dx.doi.org/ 10.2174/0929867321666131228205146]. [PMID: 24372209]. PubMed PMC

Wang Q., Tang X.N., Yenari M.A. The inflammatory response in stroke. J. Neuroimmunol. 2007;184(1-2):53–68. [http://dx.doi.org/ 10.1016/j.jneuroim.2006.11.014]. [PMID: 17188755]. PubMed PMC

Wang J., Doré S. Inflammation after intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 2007;27(5):894–908. [http://dx.doi. org/10.1038/sj.jcbfm.9600403]. [PMID: 17033693]. PubMed

Lucke-Wold B.P., Logsdon A.F., Manoranjan B., Turner R.C., McConnell E., Vates G.E., Huber J.D., Rosen C.L., Simard J.M. aneurysmal subarachnoid hemorrhage and neuroinflammation: A comprehensive review. Int. J. Mol. Sci. 2016;17(4):497. [http:// dx.doi.org/10.3390/ijms17040497]. [PMID: 27049383]. PubMed PMC

Chen S., Yang Q., Chen G., Zhang J.H. An update on inflammation in the acute phase of intracerebral hemorrhage. Transl. Stroke Res. 2015;6(1):4–8. [http://dx.doi.org/10.1007/s12975-014-0384-4]. [PMID: 25533878]. PubMed

Kreutzberg G.W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19(8):312–318. [http://dx.doi.org/ 10.1016/0166-2236(96)10049-7]. [PMID: 8843599]. PubMed

Denes A., Vidyasagar R., Feng J., Narvainen J., McColl B.W., Kauppinen R.A., Allan S.M. Proliferating resident microglia after focal cerebral ischaemia in mice. J. Cereb. Blood Flow Metab. 2007;27(12):1941–1953. [http://dx.doi.org/10.1038/sj.jcbfm.9600495]. [PMID: 17440490]. PubMed

Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog. Neurobiol. 2010;92(4):463–477. [http://dx.doi.org/10.1016/j.pneurobio.2010.08.001]. [PMID: 20713126]. PubMed PMC

Murakami K., Koide M., Dumont T.M., Russell S.R., Tranmer B.I., Wellman G.C. Subarachnoid hemorrhage induces gliosis and increased expression of the pro-inflammatory cytokine high mobility group box 1 protein. Transl. Stroke Res. 2011;2(1):72–79. [http://dx.doi.org/10.1007/s12975-010-0052-2]. [PMID: 21479116]. PubMed PMC

Atangana E., Schneider U.C., Blecharz K., Magrini S., Wagner J., Nieminen-Kelhä M., Kremenetskaia I., Heppner F.L., Engelhardt B., Vajkoczy P. Intravascular inflammation triggers intracerebral activated microglia and contributes to secondary brain injury after experimental subarachnoid hemorrhage (eSAH). Transl. Stroke Res. 2017;8(2):144–156. [http://dx.doi.org/10.1007/s12975-016-0485-3]. [PMID: 27477569]. PubMed

Schilling M., Strecker J-K., Schäbitz W-R., Ringelstein E.B., Kiefer R. Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience. 2009;161(3):806–812. [http://dx.doi.org/10. 1016/j.neuroscience.2009.04.025]. [PMID: 19374937]. PubMed

Wood P.L. Microglia as a unique cellular target in the treatment of stroke: potential neurotoxic mediators produced by activated microglia. Neurol. Res. 1995;17(4):242–248. [http://dx.doi.org/10. 1080/01616412.1995.11740321]. [PMID: 7477737]. PubMed

Stoll G. Inflammatory cytokines in the nervous system: multifunctional mediators in autoimmunity and cerebral ischemia. Rev. Neurol. 2002;158(10 Pt 1):887–891. [PMID: 12407295]. PubMed

Kim J.S. Cytokines and adhesion molecules in stroke and related diseases. J. Neurol. Sci. 1996;137(2):69–78. [http://dx.doi.org/10. 1016/0022-510X(95)00338-3]. [PMID: 8782158]. PubMed

Huang J., Choudhri T.F., Winfree C.J., McTaggart R.A., Kiss S., Mocco J., Kim L.J., Protopsaltis T.S., Zhang Y., Pinsky D.J., Connolly E.S. Jr Postischemic cerebrovascular E-selectin expression mediates tissue injury in murine stroke. Stroke. 2000;31(12):3047–3053. [http://dx.doi.org/10.1161/01.STR.31.12.3047]. [PMID: 11108771]. PubMed

Goussev A.V., Zhang Z., Anderson D.C., Chopp M. P-selectin antibody reduces hemorrhage and infarct volume resulting from MCA occlusion in the rat. J. Neurol. Sci. 1998;161(1):16–22. [http:// dx.doi.org/10.1016/S0022-510X(98)00262-7]. [PMID: 9879676]. PubMed

Yenari M.A., Sun G.H., Kunis D.M., Onley D., Vexler V. L-selectin inhibition does not reduce injury in a rabbit model of transient focal cerebral ischemia. Neurol. Res. 2001;23(1):72–78. [http:// dx.doi.org/10.1179/016164101101198154]. [PMID: 11210435]. PubMed

Wang X., Siren A.L., Liu Y., Yue T.L., Barone F.C., Feuerstein G.Z. Upregulation of intercellular adhesion molecule 1 (ICAM-1) on brain microvascular endothelial cells in rat ischemic cortex. Brain Res. Mol. Brain Res. 1994;26(1-2):61–68. [http:// dx.doi.org/10.1016/0169-328X(94)90074-4]. [PMID: 7854067]. PubMed

Bowes M.P., Zivin J.A., Rothlein R. Monoclonal antibody to the ICAM-1 adhesion site reduces neurological damage in a rabbit cerebral embolism stroke model. Exp. Neurol. 1993;119(2):215–219. [http://dx.doi.org/10.1006/exnr.1993.1023]. [PMID: 8094342]. PubMed

Chopp M., Li Y., Jiang N., Zhang R.L., Prostak J. Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain. J. Cereb. Blood Flow Metab. 1996;16(4):578–584. [http://dx.doi.org/10.1097/00004647-199607000-00007]. [PMID: 8964796]. PubMed

Justicia C., Martín A., Rojas S., Gironella M., Cervera A., Panés J., Chamorro A., Planas A.M. Anti-VCAM-1 antibodies did not protect against ischemic damage either in rats or in mice. J. Cereb. Blood Flow Metab. 2006;26(3):421–432. [http://dx.doi. org/10.1038/sj.jcbfm.9600198]. [PMID: 16079786]. PubMed

Liesz A., Zhou W., Mracskó É., Karcher S., Bauer H., Schwarting S., Sun L., Bruder D., Stegemann S., Cerwenka A., Sommer C., Dalpke A.H., Veltkamp R. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain. 2011;134(Pt 3):704–720. [http://dx.doi.org/ 10.1093/brain/awr008]. [PMID: 21354973]. PubMed

Wu L., Walas S., Leung W., Sykes D.B., Wu J., Lo E.H., Lok J. Neuregulin1-β decreases IL-1β-induced neutrophil adhesion to human brain microvascular endothelial cells. Transl. Stroke Res. 2015;6(2):116–124. [http://dx.doi.org/10.1007/s12975-014-0347-9]. [PMID: 24863743]. PubMed PMC

Fu Y., Liu Q., Anrather J., Shi F-D. Immune interventions in stroke. Nat. Rev. Neurol. 2015;11(9):524–535. [http://dx.doi.org/ 10.1038/nrneurol.2015.144]. [PMID: 26303850]. PubMed PMC

Vidale S., Consoli A., Arnaboldi M., Consoli D. Postischemic Inflammation in Acute Stroke. J. Clin. Neurol. 2017;13(1):1–9. [http://dx.doi.org/10.3988/jcn.2017.13.1.1]. [PMID: 28079313]. PubMed PMC

Liesz A., Kleinschnitz C., Regulatory T., Regulatory T. Cells in Post-stroke Immune Homeostasis. Transl. Stroke Res. 2016;7(4):313–321. [http://dx.doi.org/10.1007/s12975-016-0465-7]. [PMID: 27030356]. PubMed

Jain M.V., Paczulla A.M., Klonisch T., Dimgba F.N., Rao S.B., Roberg K., Schweizer F., Lengerke C., Davoodpour P., Palicharla V.R., Maddika S., Łos M. Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J. Cell. Mol. Med. 2013;17(1):12–29. [http://dx. doi.org/10.1111/jcmm.12001]. [PMID: 23301705]. PubMed PMC

Skulachev V.P. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis. 2006;11(4):473–485. [http://dx.doi.org/10. 1007/s10495-006-5881-9]. [PMID: 16532373]. PubMed

Los M., Mozoluk M., Ferrari D., Stepczynska A., Stroh C., Renz A., Herceg Z., Wang Z-Q., Schulze-Osthoff K. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell. 2002;13(3):978–988. [http://dx.doi.org/10.1091/ mbc.01-05-0272]. [PMID: 11907276]. PubMed PMC

Yang Y., Jiang G., Zhang P., Fan J. Programmed cell death and its role in inflammation. Mil. Med. Res. 2015;2:12. [http://dx. doi.org/10.1186/s40779-015-0039-0]. [PMID: 26045969]. PubMed PMC

Vanden Berghe T., Kaiser W.J., Bertrand M.J., Vandenabeele P. Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol. Cell. Oncol. 2015;2(4):e975093. [http://dx.doi. org/10.4161/23723556.2014.975093]. [PMID: 27308513]. PubMed PMC

Páramo B., Montiel T., Hernández-Espinosa D.R., Rivera-Martínez M., Morán J., Massieu L. Calpain activation induced by glucose deprivation is mediated by oxidative stress and contributes to neuronal damage. Int. J. Biochem. Cell Biol. 2013;45(11):2596–2604. [http://dx.doi.org/10.1016/j.biocel.2013.08.013]. [PMID: 23994487]. PubMed

Bianchi L., Gerstbrein B., Frøkjaer-Jensen C., Royal D.C., Mukherjee G., Royal M.A., Xue J., Schafer W.R., Driscoll M. The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat. Neurosci. 2004;7(12):1337–1344. [http://dx.doi.org/10.1038/nn1347]. [PMID: 15543143]. PubMed

Meyer D.A., Torres-Altoro M.I., Tan Z., Tozzi A., Di Filippo M., DiNapoli V., Plattner F., Kansy J.W., Benkovic S.A., Huber J.D., Miller D.B., Greengard P., Calabresi P., Rosen C.L., Bibb J.A. Ischemic stroke injury is mediated by aberrant Cdk5. J. Neurosci. 2014;34(24):8259–8267. [http://dx.doi.org/10.1523/JNEUROSCI. 4368-13.2014]. [PMID: 24920629]. PubMed PMC

Sahara S., Yamashima T. Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Biochem. Biophys. Res. Commun. 2010;393(4):806–811. [http://dx.doi.org/10.1016/j.bbrc. 2010.02.087]. [PMID: 20171158]. PubMed

Hwang B.Y., Appelboom G., Ayer A., Kellner C.P., Kotchetkov I.S., Gigante P.R., Haque R., Kellner M., Connolly E.S. Advances in neuroprotective strategies: potential therapies for intracerebral hemorrhage. Cerebrovasc. Dis. 2011;31(3):211–222. [http://dx.doi.org/10.1159/000321870]. [PMID: 21178344]. PubMed PMC

Hasegawa Y., Suzuki H., Sozen T., Altay O., Zhang J.H. Apoptotic mechanisms for neuronal cells in early brain injury after subarachnoid hemorrhage. Acta Neurochir. Suppl. (Wien) 2011;110(Pt 1):43–48. [PMID: 21116913]. PubMed

Bratton S.B., Walker G., Srinivasula S.M., Sun X-M., Butterworth M., Alnemri E.S., Cohen G.M. Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J. 2001;20(5):998–1009. [http:// dx.doi.org/10.1093/emboj/20.5.998]. [PMID: 11230124]. PubMed PMC

French L.E., Tschopp J. Protein-based therapeutic approaches targeting death receptors. Cell Death Differ. 2003;10(1):117–123. [http://dx.doi.org/10.1038/sj.cdd.4401185]. [PMID: 12655300]. PubMed

Creagh E.M. Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol. 2014;35(12):631–640. [http://dx.doi.org/10.1016/j.it.2014.10.004]. [PMID: 25457353]. PubMed

Broughton B.R.S., Reutens D.C., Sobey C.G. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(5):e331–e339. [http:// dx.doi.org/10.1161/STROKEAHA.108.531632]. [PMID: 19182083]. PubMed

Lu Y-Y., Li Z-Z., Jiang D-S., Wang L., Zhang Y., Chen K., Zhang X-F., Liu Y., Fan G-C., Chen Y., Yang Q., Zhou Y., Zhang X-D., Liu D-P., Li H. TRAF1 is a critical regulator of cerebral ischaemia-reperfusion injury and neuronal death. Nat. Commun. 2013;4:2852. [http://dx.doi.org/10.1038/ncomms3852]. [PMID: 24284943]. PubMed PMC

Holler N., Zaru R., Micheau O., Thome M., Attinger A., Valitutti S., Bodmer J.L., Schneider P., Seed B., Tschopp J. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 2000;1(6):489–495. [http://dx.doi.org/10.1038/82732]. [PMID: 11101870]. PubMed

Wu X-N., Yang Z-H., Wang X-K., Zhang Y., Wan H., Song Y., Chen X., Shao J., Han J. Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis. Cell Death Differ. 2014;21(11):1709–1720. [http://dx.doi.org/10.1038/ cdd.2014.77]. [PMID: 24902902]. PubMed PMC

Wang Y.-Z., Wang J.-J., Huang Y., Liu F., Zeng W.-Z., Li Y., Xiong Z.-G., Zhu M.X., Xu T.-L.

Dondelinger Y., Declercq W., Montessuit S., Roelandt R., Goncalves A., Bruggeman I., Hulpiau P., Weber K., Sehon C.A., Marquis R.W., Bertin J., Gough P.J., Savvides S., Martinou J-C., Bertrand M.J.M., Vandenabeele P. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Reports. 2014;7(4):971–981. [http://dx.doi.org/ 10.1016/j.celrep.2014.04.026]. [PMID: 24813885]. PubMed

Cook W.D., Moujalled D.M., Ralph T.J., Lock P., Young S.N., Murphy J.M., Vaux D.L. RIPK1- and RIPK3-induced cell death mode is determined by target availability. Cell Death Differ. 2014;21(10):1600–1612. [http://dx.doi.org/10.1038/cdd.2014.70]. [PMID: 24902899]. PubMed PMC

Hitomi J., Christofferson D.E., Ng A., Yao J., Degterev A., Xavier R.J., Yuan J. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell. 2008;135(7):1311–1323. [http://dx.doi.org/10.1016/j.cell.2008. 10.044]. [PMID: 19109899]. PubMed PMC

Fann D.Y-W., Lee S-Y., Manzanero S., Chunduri P., Sobey C.G., Arumugam T.V. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res. Rev. 2013;12(4):941–966. [http://dx. doi.org/10.1016/j.arr.2013.09.004]. [PMID: 24103368]. PubMed

Singhal G., Jaehne E.J., Corrigan F., Toben C., Baune B.T. Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front. Neurosci. 2014;8:315. [http://dx. doi.org/10.3389/fnins.2014.00315]. [PMID: 25339862]. PubMed PMC

Nakatogawa H., Suzuki K., Kamada Y., Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 2009;10(7):458–467. [http://dx.doi.org/10. 1038/nrm2708]. [PMID: 19491929]. PubMed

Koike M., Shibata M., Tadakoshi M., Gotoh K., Komatsu M., Waguri S., Kawahara N., Kuida K., Nagata S., Kominami E., Tanaka K., Uchiyama Y. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am. J. Pathol. 2008;172(2):454–469. [http://dx.doi.org/10.2353/ ajpath.2008.070876]. [PMID: 18187572]. PubMed PMC

Zhang X., Yan H., Yuan Y., Gao J., Shen Z., Cheng Y., Shen Y., Wang R-R., Wang X., Hu W-W., Wang G., Chen Z. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy. 2013;9(9):1321–1333. [http://dx.doi.org/10.4161/auto.25132]. [PMID: 23800795]. PubMed

Kang C., Avery L. To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy. 2008;4(1):82–84. [http://dx.doi.org/10.4161/ auto.5154]. [PMID: 17952023]. PubMed PMC

Ariosa A.R., Klionsky D.J. Autophagy core machinery: overcoming spatial barriers in neurons. J. Mol. Med. (Berl.) 2016;94(11):1217–1227. [http://dx.doi.org/10.1007/s00109-016-1461-9]. [PMID: 27544281]. PubMed PMC

Li W.W., Li J., Bao J.K. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 2012;69(7):1125–1136. [http://dx.doi. org/10.1007/s00018-011-0865-5]. [PMID: 22080117]. PubMed PMC

Tasset I., Cuervo A.M. Role of chaperone-mediated autophagy in metabolism. FEBS J. 2016;283(13):2403–2413. [http://dx.doi.org/ 10.1111/febs.13677]. [PMID: 26854402]. PubMed PMC

Rubinsztein D.C., Bento C.F., Deretic V. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J. Exp. Med. 2015;212(7):979–990. [http://dx.doi.org/10.1084/jem.20150956]. [PMID: 26101267]. PubMed PMC

Singh R., Cuervo A.M. Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell Biol. 2012;2012:282041. [http://dx. doi.org/10.1155/2012/282041]. [PMID: 22536247]. PubMed PMC

May A.I., Devenish R.J., Prescott M. The many faces of mitochondrial autophagy: making sense of contrasting observations in recent research. Int. J. Cell Biol. 2012;2012:431684. [http://dx. doi.org/10.1155/2012/431684]. [PMID: 22550491]. PubMed PMC

Cebollero E., Reggiori F., Kraft C. Reticulophagy and ribophagy: regulated degradation of protein production factories. Int. J. Cell Biol. 2012;2012:182834. [http://dx.doi.org/10.1155/2012/182834]. [PMID: 22481944]. PubMed PMC

Alers S., Löffler A.S., Wesselborg S., Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 2012;32(1):2–11. [http://dx.doi. org/10.1128/MCB.06159-11]. [PMID: 22025673]. PubMed PMC

Behrouz R. Re-exploring tumor necrosis factor alpha as a target for therapy in iIntracerebral hemorrhage. Transl. Stroke Res. 2016;7(2):93–96. [http://dx.doi.org/10.1007/s12975-016-0446-x]. [PMID: 26762364]. PubMed

Yang L., Froio R.M., Sciuto T.E., Dvorak A.M., Alon R., Luscinskas F.W. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood. 2005;106(2):584–592. [http://dx.doi.org/10.1182/ blood-2004-12-4942]. [PMID: 15811956]. PubMed PMC

Zhang R.L., Chopp M., Li Y., Zaloga C., Jiang N., Jones M.L., Miyasaka M., Ward P.A. Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Neurology. 1994;44(9):1747–1751. [http://dx.doi. org/10.1212/WNL.44.9.1747]. [PMID: 7936308]. PubMed

Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology. 2001;57(8):1428–1434. [http://dx.doi.org/10.1212/WNL.57.8.1428]. [PMID: 11673584]. PubMed

Furuya K., Takeda H., Azhar S., McCarron R.M., Chen Y., Ruetzler C.A., Wolcott K.M., DeGraba T.J., Rothlein R., Hugli T.E., del Zoppo G.J., Hallenbeck J.M. Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: a bedside-to-bench study. Stroke. 2001;32(11):2665–2674. [http://dx.doi.org/10.1161/hs3211.098535]. [PMID: 11692032]. PubMed

Mulcahy N.J., Ross J., Rothwell N.J., Loddick S.A. Delayed administration of interleukin-1 receptor antagonist protects against transient cerebral ischaemia in the rat. Br. J. Pharmacol. 2003;140(3):471–476. [http://dx.doi.org/10.1038/sj.bjp.0705462]. [PMID: 12970087]. PubMed PMC

Emsley H.C.A., Smith C.J., Georgiou R.F., Vail A., Hopkins S.J., Rothwell N.J., Tyrrell P.J. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J. Neurol. Neurosurg. Psychiatry. 2005;76(10):1366–1372. [http://dx.doi.org/ 10.1136/jnnp.2004.054882]. [PMID: 16170078]. PubMed PMC

Lee J.H., Kam E.H., Kim J.M., Kim S.Y., Kim E.J., Cheon S.Y., Koo B-N. Intranasal administration of interleukin-1 Receptor antagonist in a transient focal cerebral ischemia rat model. Biomol. Ther. (Seoul) 2017;25(2):149–157. [http://dx.doi.org/10.4062/biomolther. 2016.050]. [PMID: 27530114]. PubMed PMC

Miyaoka T. Clinical potential of minocycline for schizophrenia. CNS Neurol. Disord. Drug Targets. 2008;7(4):376–381. [http://dx. doi.org/10.2174/187152708786441858]. [PMID: 18991666]. PubMed

Sadowski T., Steinmeyer J. Minocycline inhibits the production of inducible nitric oxide synthase in articular chondrocytes. J. Rheumatol. 2001;28(2):336–340. [PMID: 11246672]. PubMed

Giuliani F., Hader W., Yong V.W. Minocycline attenuates T cell and microglia activity to impair cytokine production in T cell-microglia interaction. J. Leukoc. Biol. 2005;78(1):135–143. [http://dx.doi.org/10.1189/jlb.0804477]. [PMID: 15817702]. PubMed

Lu Y., Xiao G., Luo W. Minocycline suppresses NLRP3 Inflammasome activation in experimental ischemic stroke. Neuroimmunomodulation. 2016;23(4):230–238. [http://dx.doi.org/ 10.1159/000452172]. [PMID: 27846628]. PubMed

Wu Z., Zou X., Zhu W., Mao Y., Chen L., Zhao F. Minocycline is effective in intracerebral hemorrhage by inhibition of apoptosis and autophagy. J. Neurol. Sci. 2016;371:88–95. [http:// dx.doi.org/10.1016/j.jns.2016.10.025]. [PMID: 27871457]. PubMed

Sherchan P., Lekic T., Suzuki H., Hasegawa Y., Rolland W., Duris K., Zhan Y., Tang J., Zhang J.H. Minocycline improves functional outcomes, memory deficits, and histopathology after endovascular perforation-induced subarachnoid hemorrhage in rats. J. Neurotrauma. 2011;28(12):2503–2512. [http://dx.doi.org/10.1089/ neu.2011.1864]. [PMID: 22013966]. PubMed PMC

Lampl Y., Boaz M., Gilad R., Lorberboym M., Dabby R., Rapoport A., Anca-Hershkowitz M., Sadeh M. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology. 2007;69(14):1404–1410. [http://dx.doi.org/10.1212/01. wnl.0000277487.04281.db]. [PMID: 17909152]. PubMed

https://clinicaltrials.gov/ct2/show/NCT00930020

U.S National Library of Medicine https:// clinicaltrials.gov/ct2/show/NCT01805895 PubMed

Schwab S.R., Pereira J.P., Matloubian M., Xu Y., Huang Y., Cyster J.G. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science. 2005;309(5741):1735–1739. [http://dx.doi.org/10.1126/science.1113640]. [PMID: 16151014]. PubMed

Wei Y., Yemisci M., Kim H-H., Yung L.M., Shin H.K., Hwang S-K., Guo S., Qin T., Alsharif N., Brinkmann V., Liao J.K., Lo E.H., Waeber C. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann. Neurol. 2011;69(1):119–129. [http://dx.doi.org/10.1002/ana.22186]. [PMID: 21280082]. PubMed PMC

Ntranos A., Hall O., Robinson D.P., Grishkan I.V., Schott J.T., Tosi D.M., Klein S.L., Calabresi P.A., Gocke A.R. FTY720 impairs CD8 T-cell function independently of the sphingosine-1-phosphate pathway. J. Neuroimmunol. 2014;270(1-2):13–21. [http:// dx.doi.org/10.1016/j.jneuroim.2014.03.007]. [PMID: 24680062]. PubMed

Rolland W.B., Lekic T., Krafft P.R., Hasegawa Y., Altay O., Hartman R., Ostrowski R., Manaenko A., Tang J., Zhang J.H. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp. Neurol. 2013;241:45–55. [http://dx.doi.org/10.1016/j.expneurol.2012.12.009]. [PMID: 23261767]. PubMed PMC

Rolland W.B., II, Manaenko A., Lekic T., Hasegawa Y., Ostrowski R., Tang J., Zhang J.H. FTY720 is neuroprotective and improves functional outcomes after intracerebral hemorrhage in mice. Acta Neurochir. Suppl. (Wien) 2011;111:213–217. [http://dx. doi.org/10.1007/978-3-7091-0693-8_36]. [PMID: 21725758]. PubMed PMC

Fu Y., Zhang N., Ren L., Yan Y., Sun N., Li Y-J., Han W., Xue R., Liu Q., Hao J., Yu C., Shi F-D. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc. Natl. Acad. Sci. USA. 2014;111(51):18315–18320. [http://dx.doi.org/10.1073/ pnas.1416166111]. [PMID: 25489101]. PubMed PMC

Zhu Z., Fu Y., Tian D., Sun N., Han W., Chang G., Dong Y., Xu X., Liu Q., Huang D., Shi F-D. Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: A Pilot Trial. Circulation. 2015;132(12):1104–1112. [http://dx.doi. org/10.1161/CIRCULATIONAHA.115.016371]. [PMID: 26202811]. PubMed PMC

Fu Y., Hao J., Zhang N., Ren L., Sun N., Li Y-J., Yan Y., Huang D., Yu C., Shi F-D. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 2014;71(9):1092–1101. [http://dx.doi.org/10.1001/ jamaneurol.2014.1065]. [PMID: 25003359]. PubMed

Li Y., Qi Y., Huang T.H.W., Yamahara J., Roufogalis B.D. Pomegranate flower: a unique traditional antidiabetic medicine with dual PPAR-alpha/-gamma activator properties. Diabetes Obes. Metab. 2008;10(1):10–17. [PMID: 18095947]. PubMed

Hamblin M., Chang L., Fan Y., Zhang J., Chen Y.E. PPARs and the cardiovascular system. Antioxid. Redox Signal. 2009;11(6):1415–1452. [http://dx.doi.org/10.1089/ars.2008.2280]. [PMID: 19061437]. PubMed PMC

Luo Y., Yin W., Signore A.P., Zhang F., Hong Z., Wang S., Graham S.H., Chen J. Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J. Neurochem. 2006;97(2):435–448. [http://dx.doi.org/10.1111/j.1471-4159.2006.03758.x]. [PMID: 16539667]. PubMed

Zhao X., Sun G., Zhang J., Strong R., Song W., Gonzales N., Grotta J.C., Aronowski J. Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann. Neurol. 2007;61(4):352–362. [http://dx.doi.org/10.1002/ana.21097]. [PMID: 17457822]. PubMed

U.S National Library of Medicine https://clinicaltrials.gov/ct2/show/study/NCT00827892 PubMed

Chu K., Jeong S-W., Jung K-H., Han S-Y., Lee S-T., Kim M., Roh J-K. Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death. J. Cereb. Blood Flow Metab. 2004;24(8):926–933. [http://dx.doi.org/10.1097/01.WCB.0000130866.25040.7D]. [PMID: 15362723]. PubMed

Lee S-H., Park H-K., Ryu W-S., Lee J-S., Bae H-J., Han M-K., Lee Y-S., Kwon H-M., Kim C.K., Park E-S., Chung J-W., Jung K-H., Roh J-K. Effects of celecoxib on hematoma and edema volumes in primary intracerebral hemorrhage: a multicenter randomized controlled trial. Eur. J. Neurol. 2013;20(8):1161–1169. [http://dx.doi.org/10.1111/ene.12140]. [PMID: 23551657]. PubMed

Liao J.K. Beyond lipid lowering: the role of statins in vascular protection. Int. J. Cardiol. 2002;86(1):5–18. [http://dx.doi.org/ 10.1016/S0167-5273(02)00195-X]. [PMID: 12243846]. PubMed

Lynch J.R., Wang H., McGirt M.J., Floyd J., Friedman A.H., Coon A.L., Blessing R., Alexander M.J., Graffagnino C., Warner D.S., Laskowitz D.T. Simvastatin reduces vasospasm after aneurysmal subarachnoid hemorrhage: results of a pilot randomized clinical trial. Stroke. 2005;36(9):2024–2026. [http://dx.doi.org/10. 1161/01.STR.0000177879.11607.10]. [PMID: 16051891]. PubMed

U.S National Library of Medicine https://clinicaltrials.gov/ ct2/show/NCT00731627 PubMed

U.S National Library of Medicine https://clinicaltrials.gov/ct2/show/NCT01865630 PubMed

Wang J., Ye Q., Xu J., Benedek G., Zhang H., Yang Y., Liu H., Meza-Romero R., Vandenbark A.A., Offner H., Gao Y. DRα1-MOG-35-55 reduces permanent ischemic brain injury. Transl. Stroke Res. 2016;7(6):458–477. [PMID: 27988839]. PubMed PMC

Imam Y.Z., D’Souza A., Malik R.A., Shuaib A. Secondary Stroke Prevention: Improving diagnosis and management with newer technologies. Transl. Stroke Res. 2016;7(6):458–477. [http://dx.doi.org/10.1007/s12975-016-0494-2]. [PMID: 27586681]. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...