ABC Transporters and Their Role in the Neoadjuvant Treatment of Esophageal Cancer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29543757
PubMed Central
PMC5877729
DOI
10.3390/ijms19030868
PII: ijms19030868
Knihovny.cz E-zdroje
- Klíčová slova
- ABC transporters, biomarker, cancer, chemotherapy, esophagus, prognosis, radiotherapy,
- MeSH
- ABC transportéry genetika metabolismus MeSH
- epigeneze genetická MeSH
- lidé MeSH
- nádorové biomarkery genetika metabolismus MeSH
- nádory jícnu genetika metabolismus terapie MeSH
- neoadjuvantní terapie metody MeSH
- polymorfismus genetický MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ABC transportéry MeSH
- nádorové biomarkery MeSH
The prognosis of esophageal cancer (EC) is poor, despite considerable effort of both experimental scientists and clinicians. The tri-modality treatment consisting of neoadjuvant chemoradiation followed by surgery has remained the gold standard over decades, unfortunately, without significant progress in recent years. Suitable prognostic factors indicating which patients will benefit from this tri-modality treatment are missing. Some patients rapidly progress on the neoadjuvant chemoradiotherapy, which is thus useless and sometimes even harmful. At the same time, other patients achieve complete remission on neoadjuvant chemoradiotherapy and subsequent surgery may increase their risk of morbidity and mortality. The prognosis of patients ranges from excellent to extremely poor. Considering these differences, the role of drug metabolizing enzymes and transporters, among other factors, in the EC response to chemotherapy may be more important compared, for example, with pancreatic cancer where all patients progress on chemotherapy regardless of the treatment or disease stage. This review surveys published literature describing the potential role of ATP-binding cassette transporters, the genetic polymorphisms, epigenetic regulations, and phenotypic changes in the prognosis and therapy of EC. The review provides knowledge base for further research of potential predictive biomarkers that will allow the stratification of patients into defined groups for optimal therapeutic outcome.
Zobrazit více v PubMed
SEER Cancer Stat Facts: Esophageal Cancer. [(accessed on 26 January 2018)]; Available online: https://seer.cancer.gov/statfacts/html/esoph.html.
Castro C., Peleteiro B., Lunet N. Modifiable factors and esophageal cancer: A systematic review of published meta-analyses. J. Gastroenterol. 2018;53:37–51. doi: 10.1007/s00535-017-1375-5. PubMed DOI
Jain S., Dhingra S. Pathology of esophageal cancer and Barrett’s esophagus. Ann. Cardiothorac. Surg. 2017;6:99–109. doi: 10.21037/acs.2017.03.06. PubMed DOI PMC
Minsky B.D., Pajak T.F., Ginsberg R.J., Pisansky T.M., Martenson J., Komaki R., Okawara G., Rosenthal S.A., Kelsen D.P. INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: High-dose versus standard-dose radiation therapy. J. Clin. Oncol. 2002;20:1167–1174. doi: 10.1200/JCO.2002.20.5.1167. PubMed DOI
Cooper J.S., Guo M.D., Herskovic A., Macdonald J.S., Martenson J.A., Jr., Al-Sarraf M., Byhardt R., Russell A.H., Beitler J.J., Spencer S., et al. Chemoradiotherapy of locally advanced esophageal cancer: Long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group. JAMA. 1999;281:1623–1627. doi: 10.1001/jama.281.17.1623. PubMed DOI
Matzenauer M., Vrana D., Vlachova Z., Aujesky R., Vrba R., Neoral C., Melichar B. Stereotactic radiotherapy in the treatment of local recurrences of esophageal cancer. Oncol. Lett. 2017;13:1807–1810. doi: 10.3892/ol.2017.5605. PubMed DOI PMC
Gottesman M.M., Fojo T., Bates S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer. 2002;2:48–58. doi: 10.1038/nrc706. PubMed DOI
Hlavata I., Mohelnikova-Duchonova B., Vaclavikova R., Liska V., Pitule P., Novak P., Bruha J., Vycital O., Holubec L., Treska V., et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis. 2012;27:187–196. doi: 10.1093/mutage/ger075. PubMed DOI
Hlavac V., Brynychova V., Vaclavikova R., Ehrlichova M., Vrana D., Pecha V., Kozevnikovova R., Trnkova M., Gatek J., Kopperova D., et al. The expression profile of ATP-binding cassette transporter genes in breast carcinoma. Pharmacogenomics. 2013;14:515–529. doi: 10.2217/pgs.13.26. PubMed DOI
Mohelnikova-Duchonova B., Brynychova V., Oliverius M., Honsova E., Kala Z., Muckova K., Soucek P. Differences in transcript levels of ABC transporters between pancreatic adenocarcinoma and nonneoplastic tissues. Pancreas. 2013;42:707–716. doi: 10.1097/MPA.0b013e318279b861. PubMed DOI
Elsnerova K., Mohelnikova-Duchonova B., Cerovska E., Ehrlichova M., Gut I., Rob L., Skapa P., Hruda M., Bartakova A., Bouda J., et al. Gene expression of membrane transporters: Importance for prognosis and progression of ovarian carcinoma. Oncol. Rep. 2016;35:2159–2170. doi: 10.3892/or.2016.4599. PubMed DOI
Melichar B. Laboratory medicine and medical oncology: The tale of two Cinderellas. Clin. Chem. Lab. Med. 2013;51:99–112. doi: 10.1515/cclm-2012-0496. PubMed DOI
Saier M.H., Jr., Tran C.V., Barabote R.D. TCDB: The Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res. 2006;34:D181–D186. doi: 10.1093/nar/gkj001. PubMed DOI PMC
Narumiya K., Metzger R., Bollschweiler E., Alakus H., Brabender J., Drebber U., Holscher A.H., Warnecke-Eberz U. Impact of ABCB1 C3435T polymorphism on lymph node regression in multimodality treatment of locally advanced esophageal cancer. Pharmacogenomics. 2011;12:205–214. doi: 10.2217/pgs.10.174. PubMed DOI
SNPedia. [(accessed on 26 January 2018)]; Available online: https://www.snpedia.com/index.php/SNPedia.
Komoto C., Nakamura T., Sakaeda T., Kroetz D.L., Yamada T., Omatsu H., Koyama T., Okamura N., Miki I., Tamura T., et al. MDR1 haplotype frequencies in Japanese and Caucasian, and in Japanese patients with colorectal cancer and esophageal cancer. Drug Metab. Pharmacokinet. 2006;21:126–132. doi: 10.2133/dmpk.21.126. PubMed DOI
Wu X., Gu J., Wu T.T., Swisher S.G., Liao Z., Correa A.M., Liu J., Etzel C.J., Amos C.I., Huang M., et al. Genetic variations in radiation and chemotherapy drug action pathways predict clinical outcomes in esophageal cancer. J. Clin. Oncol. 2006;24:3789–3798. doi: 10.1200/JCO.2005.03.6640. PubMed DOI
Gusella M., Giacopuzzi S., Bertolaso L., Zanoni A., Pezzolo E., Modena Y., Menon D., Paganin P., Weindelmayer J., Crepaldi G., et al. Genetic prediction of long-term survival after neoadjuvant chemoradiation in locally advanced esophageal cancer. Pharmacogenomics J. 2017;17:252–257. doi: 10.1038/tpj.2016.9. PubMed DOI
Okuno T., Tamura T., Yamamori M., Chayahara N., Yamada T., Miki I., Okamura N., Kadowaki Y., Shirasaka D., Aoyama N., et al. Favorable genetic polymorphisms predictive of clinical outcome of chemoradiotherapy for stage II/III esophageal squamous cell carcinoma in Japanese. Am. J. Clin. Oncol. 2007;30:252–257. doi: 10.1097/01.coc.0000256059.88247.25. PubMed DOI
Miura M., Motoyama S., Hinai Y., Niioka T., Endo M., Hayakari M., Ogawa J. Influence of CYP2C19 and ABCB1 polymorphisms on plasma concentrations of lansoprazole enantiomers after enteral administration. Xenobiotica. 2010;40:630–636. doi: 10.3109/00498254.2010.494201. PubMed DOI
Findlay J.M., Middleton M.R., Tomlinson I. A systematic review and meta-analysis of somatic and germline DNA sequence biomarkers of esophageal cancer survival, therapy response and stage. Ann. Oncol. 2015;26:624–644. doi: 10.1093/annonc/mdu449. PubMed DOI PMC
Zou N., Yang L., Chen L., Li T., Jin T., Peng H., Zhang S., Wang D., Li R., Liu C., et al. Heterozygote of TAP1 Codon637 decreases susceptibility to HPV infection but increases susceptibility to esophageal cancer among the Kazakh populations. J. Exp. Clin. Cancer Res. 2015;34:70. doi: 10.1186/s13046-015-0185-y. PubMed DOI PMC
Guo Q., Lu H., Wang J., Chen Z., Wang Y., Ji R., Li Q., Zhao Y., Zhang H., Zhou Y. Association between TAP1 gene polymorphism and esophageal cancer in a Han Gansu population. Int. J. Clin. Exp. Med. 2016;9:12097–12102.
Cao B., Tian X., Li Y., Jiang P., Ning T., Xing H., Zhao Y., Zhang C., Shi X., Chen D., et al. LMP7/TAP2 gene polymorphisms and HPV infection in esophageal carcinoma patients from a high incidence area in China. Carcinogenesis. 2005;26:1280–1284. doi: 10.1093/carcin/bgi071. PubMed DOI
Rumiato E., Boldrin E., Malacrida S., Battaglia G., Bocus P., Castoro C., Cagol M., Chiarion-Sileni V., Ruol A., Amadori A., et al. A germline predictive signature of response to platinum chemotherapy in esophageal cancer. Transl. Res. 2016;171:29–37. doi: 10.1016/j.trsl.2015.12.011. PubMed DOI
Sun Y., Shi N., Lu H., Zhang J., Ma Y., Qiao Y., Mao Y., Jia K., Han L., Liu F., et al. ABCC4 copy number variation is associated with susceptibility to esophageal squamous cell carcinoma. Carcinogenesis. 2014;35:1941–1950. doi: 10.1093/carcin/bgu043. PubMed DOI
COSMIC COSMIC, the Catalogue of Somatic Mutations in Cancer. [(accessed on 26 January 2018)]; Available online: http://cancer.sanger.ac.uk/cosmic.
Hong L., Han Y., Zhang H., Li M., Gong T., Sun L., Wu K., Zhao Q., Fan D. The prognostic and chemotherapeutic value of miR-296 in esophageal squamous cell carcinoma. Ann. Surg. 2010;251:1056–1063. doi: 10.1097/SLA.0b013e3181dd4ea9. PubMed DOI
Zhou Y., Hong L. Prediction value of miR-483 and miR-214 in prognosis and multidrug resistance of esophageal squamous cell carcinoma. Genet. Test. Mol. Biomarkers. 2013;17:470–474. doi: 10.1089/gtmb.2012.0518. PubMed DOI PMC
Zhang L.J., Chen K.N., Xu G.W., Xing H.P., Shi X.T. Congenital expression of mdr-1 gene in tissues of carcinoma and its relation with pathomorphology and prognosis. World J. Gastroenterol. 1999;5:53–56. doi: 10.3748/wjg.v5.i1.53. PubMed DOI PMC
Langer R., Specht K., Becker K., Ewald P., Ott K., Lordick F., Siewert J.R., Hofler H. Comparison of pretherapeutic and posttherapeutic expression levels of chemotherapy-associated genes in adenocarcinomas of the esophagus treated by 5-fluorouracil- and cisplatin-based neoadjuvant chemotherapy. Am. J. Clin. Pathol. 2007;128:191–197. doi: 10.1309/1U6X4L9XFJLJV940. PubMed DOI
Langer R., Ott K., Feith M., Lordick F., Specht K., Becker K., Hofler H. High pretherapeutic thymidylate synthetase and MRP-1 protein levels are associated with nonresponse to neoadjuvant chemotherapy in oesophageal adenocarcinoma patients. J. Surg. Oncol. 2010;102:503–508. doi: 10.1002/jso.21641. PubMed DOI
Zhu J., Ling Y., Xu Y., Lu M.Z., Liu Y.P., Zhang C.S. Elevated expression of MDR1 associated with Line-1 hypomethylation in esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2015;8:14392–14400. PubMed PMC
Zhang G., Gao R., Wang J., Fu J., Zhang M., Jin X. Various doses of fractioned irradiation modulates multidrug resistance 1 expression differently through hypoxia-inducible factor 1α in esophageal cancer cells. Dis. Esophagus. 2011;24:481–488. doi: 10.1111/j.1442-2050.2010.01168.x. PubMed DOI
Langer R., Specht K., Becker K., Ewald P., Bekesch M., Sarbia M., Busch R., Feith M., Stein H.J., Siewert J.R., et al. Association of pretherapeutic expression of chemotherapy-related genes with response to neoadjuvant chemotherapy in Barrett carcinoma. Clin. Cancer Res. 2005;11:7462–7469. doi: 10.1158/1078-0432.CCR-05-0042. PubMed DOI
Yamasaki M., Makino T., Masuzawa T., Kurokawa Y., Miyata H., Takiguchi S., Nakajima K., Fujiwara Y., Matsuura N., Mori M., et al. Role of multidrug resistance protein 2 (MRP2) in chemoresistance and clinical outcome in oesophageal squamous cell carcinoma. Br. J. Cancer. 2011;104:707–713. doi: 10.1038/sj.bjc.6606071. PubMed DOI PMC
Tsunoda S., Okumura T., Ito T., Kondo K., Ortiz C., Tanaka E., Watanabe G., Itami A., Sakai Y., Shimada Y. ABCG2 expression is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma. Oncology. 2006;71:251–258. doi: 10.1159/000106787. PubMed DOI
Harpole D.H., Jr., Moore M.B., Herndon J.E., 2nd, Aloia T., D’Amico T.A., Sporn T., Parr A., Linoila I., Allegra C. The prognostic value of molecular marker analysis in patients treated with trimodality therapy for esophageal cancer. Clin. Cancer Res. 2001;7:562–569. PubMed
Liu Q., Hao C., Su P., Shi J. Down-regulation of HLA class I antigen-processing machinery components in esophageal squamous cell carcinomas: Association with disease progression. Scand. J. Gastroenterol. 2009;44:960–969. doi: 10.1080/00365520902998679. PubMed DOI
Shimada Y., Imamura M., Watanabe G., Uchida S., Harada H., Makino T., Kano M. Prognostic factors of oesophageal squamous cell carcinoma from the perspective of molecular biology. Br. J. Cancer. 1999;80:1281–1288. doi: 10.1038/sj.bjc.6990499. PubMed DOI PMC
Chen Y., Zhu S.M., Xu X.L., Zhao A.N., Hu J.L. Expression levels of HER2 and MRP1 are not prognostic factors of long-term survival in 829 patients with esophageal squamous cell carcinoma. Oncol. Lett. 2016;11:745–752. doi: 10.3892/ol.2015.3975. PubMed DOI PMC
Gan S.Y., Zhong X.Y., Xie S.M., Li S.M., Peng H., Luo F. Expression and significance of tumor drug resistance related proteins and beta-catenin in esophageal squamous cell carcinoma. Chin. J. Cancer. 2010;29:300–305. doi: 10.5732/cjc.009.10599. PubMed DOI
Cheng Y., Xu J., Guo J., Jin Y., Wang X., Zhang Q., Liu L. Circulating autoantibody to ABCC3 may be a potential biomarker for esophageal squamous cell carcinoma. Clin. Transl. Oncol. 2013;15:398–402. doi: 10.1007/s12094-012-0941-9. PubMed DOI
Huang B., Gong X., Zhou H., Xiong F., Wang S. Depleting ABCE1 expression induces apoptosis and inhibits the ability of proliferation and migration of human esophageal carcinoma cells. Int. J. Clin. Exp. Pathol. 2014;7:584–592. PubMed PMC
Hang D., Dong H.C., Ning T., Dong B., Hou D.L., Xu W.G. Prognostic value of the stem cell markers CD133 and ABCG2 expression in esophageal squamous cell carcinoma. Dis. Esophagus. 2012;25:638–644. doi: 10.1111/j.1442-2050.2011.01298.x. PubMed DOI
Simon R.M., Paik S., Hayes D.F. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J. Natl. Cancer Inst. 2009;101:1446–1452. doi: 10.1093/jnci/djp335. PubMed DOI PMC
Lin E.W., Karakasheva T.A., Hicks P.D., Bass A.J., Rustgi A.K. The tumor microenvironment in esophageal cancer. Oncogene. 2016;35:5337–5349. doi: 10.1038/onc.2016.34. PubMed DOI PMC
Yang L., Ji Y., Chen L., Li M., Wu F., Hu J., Jiang J., Cui X., Chen Y., Pang L., et al. Genetic variability in LMP2 and LMP7 is associated with the risk of esophageal squamous cell carcinoma in the Kazakh population but is not associated with HPV infection. PLoS ONE. 2017;12:e0186319. doi: 10.1371/journal.pone.0186319. PubMed DOI PMC
Petrick J.L., Wyss A.B., Butler A.M., Cummings C., Sun X., Poole C., Smith J.S., Olshan A.F. Prevalence of human papillomavirus among oesophageal squamous cell carcinoma cases: Systematic review and meta-analysis. Br. J. Cancer. 2014;110:2369–2377. doi: 10.1038/bjc.2014.96. PubMed DOI PMC
Gharahkhani P., Fitzgerald R.C., Vaughan T.L., Palles C., Gockel I., Tomlinson I., Buas M.F., May A., Gerges C., Anders M., et al. Genome-wide association studies in oesophageal adenocarcinoma and Barrett’s oesophagus: A large-scale meta-analysis. Lancet Oncol. 2016;17:1363–1373. doi: 10.1016/S1470-2045(16)30240-6. PubMed DOI PMC
Pasello G., Agata S., Bonaldi L., Corradin A., Montagna M., Zamarchi R., Parenti A., Cagol M., Zaninotto G., Ruol A., et al. DNA copy number alterations correlate with survival of esophageal adenocarcinoma patients. Mod. Pathol. 2009;22:58–65. doi: 10.1038/modpathol.2008.150. PubMed DOI
Obara K., Ghazizadeh M., Shimizu H., Arai R., Tenjin T., Suzuki S., Moriyama Y., Kawanami O. Comparative genomic hybridization study of genetic changes associated with vindesine resistance in esophageal carcinoma. Int. J. Oncol. 2002;20:255–260. doi: 10.3892/ijo.20.2.255. PubMed DOI
Saito T., Hikita M., Kohno K., Tanimura H., Miyahara M., Kobayashi M. Enhanced expression of the multidrug resistance gene in vindesine-resistant human esophageal cancer cells. Oncology. 1994;51:440–445. doi: 10.1159/000227380. PubMed DOI
Albrecht B., Hausmann M., Zitzelsberger H., Stein H., Siewert J.R., Hopt U., Langer R., Hofler H., Werner M., Walch A. Array-based comparative genomic hybridization for the detection of DNA sequence copy number changes in Barrett’s adenocarcinoma. J. Pathol. 2004;203:780–788. doi: 10.1002/path.1576. PubMed DOI
Van Dekken H., Vissers K., Tilanus H.W., Kuo W.L., Tanke H.J., Rosenberg C., Ijszenga M., Szuhai K. Genomic array and expression analysis of frequent high-level amplifications in adenocarcinomas of the gastro-esophageal junction. Cancer Genet. Cytogenet. 2006;166:157–162. doi: 10.1016/j.cancergencyto.2005.11.002. PubMed DOI
Chen J., Guo L., Peiffer D.A., Zhou L., Chan O.T., Bibikova M., Wickham-Garcia E., Lu S.H., Zhan Q., Wang-Rodriguez J., et al. Genomic profiling of 766 cancer-related genes in archived esophageal normal and carcinoma tissues. Int. J. Cancer. 2008;122:2249–2254. doi: 10.1002/ijc.23397. PubMed DOI
Garcia E., Hayden A., Birts C., Britton E., Cowie A., Pickard K., Mellone M., Choh C., Derouet M., Duriez P., et al. Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1. Sci. Rep. 2016;6:32417. doi: 10.1038/srep32417. PubMed DOI PMC
Li J.S., Ying J.M., Wang X.W., Wang Z.H., Tao Q., Li L.L. Promoter methylation of tumor suppressor genes in esophageal squamous cell carcinoma. Chin. J. Cancer. 2013;32:3–11. doi: 10.5732/cjc.011.10381. PubMed DOI PMC
Kaz A.M., Grady W.M. Epigenetic biomarkers in esophageal cancer. Cancer Lett. 2014;342:193–199. doi: 10.1016/j.canlet.2012.02.036. PubMed DOI PMC
Ahrens T.D., Werner M., Lassmann S. Epigenetics in esophageal cancers. Cell Tissue Res. 2014;356:643–655. doi: 10.1007/s00441-014-1876-y. PubMed DOI
Zhou C., Li J., Li Q. CDKN2A methylation in esophageal cancer: A meta-analysis. Oncotarget. 2017;8:50071–50083. doi: 10.18632/oncotarget.18412. PubMed DOI PMC
Guo M., Ren J., Brock M.V., Herman J.G., Carraway H.E. Promoter methylation of HIN-1 in the progression to esophageal squamous cancer. Epigenetics. 2008;3:336–341. doi: 10.4161/epi.3.6.7158. PubMed DOI
Lima S.C., Hernandez-Vargas H., Simao T., Durand G., Kruel C.D., Le Calvez-Kelm F., Ribeiro Pinto L.F., Herceg Z. Identification of a DNA methylome signature of esophageal squamous cell carcinoma and potential epigenetic biomarkers. Epigenetics. 2011;6:1217–1227. doi: 10.4161/epi.6.10.17199. PubMed DOI
Hibi K., Taguchi M., Nakayama H., Takase T., Kasai Y., Ito K., Akiyama S., Nakao A. Molecular detection of p16 promoter methylation in the serum of patients with esophageal squamous cell carcinoma. Clin. Cancer Res. 2001;7:3135–3138. PubMed
Li B., Wang B., Niu L.J., Jiang L., Qiu C.C. Hypermethylation of multiple tumor-related genes associated with DNMT3b up-regulation served as a biomarker for early diagnosis of esophageal squamous cell carcinoma. Epigenetics. 2011;6:307–316. doi: 10.4161/epi.6.3.14182. PubMed DOI PMC
Toh Y., Egashira A., Yamamoto M. Epigenetic alterations and their clinical implications in esophageal squamous cell carcinoma. Gen. Thorac. Cardiovasc. Surg. 2013;61:262–269. doi: 10.1007/s11748-013-0235-3. PubMed DOI
Zare M., Jazii F.R., Alivand M.R., Nasseri N.K., Malekzadeh R., Yazdanbod M. Qualitative analysis of Adenomatous Polyposis Coli promoter: Hypermethylation, engagement and effects on survival of patients with esophageal cancer in a high risk region of the world, a potential molecular marker. BMC Cancer. 2009;9:24. doi: 10.1186/1471-2407-9-24. PubMed DOI PMC
Ling Z.Q., Li P., Ge M.H., Zhao X., Hu F.J., Fang X.H., Dong Z.M., Mao W.M. Hypermethylation-modulated down-regulation of CDH1 expression contributes to the progression of esophageal cancer. Int. J. Mol. Med. 2011;27:625–635. doi: 10.3892/ijmm.2011.640. PubMed DOI
Lee E.J., Lee B.B., Han J., Cho E.Y., Shim Y.M., Park J., Kim D.H. CpG island hypermethylation of E-cadherin (CDH1) and integrin alpha4 is associated with recurrence of early stage esophageal squamous cell carcinoma. Int. J. Cancer. 2008;123:2073–2079. doi: 10.1002/ijc.23598. PubMed DOI
Cui L., Xu L.Y., Shen Z.Y., Tao Q., Gao S.Y., Lv Z., Du Z.P., Fang W.K., Li E.M. NGALR is overexpressed and regulated by hypomethylation in esophageal squamous cell carcinoma. Clin. Cancer Res. 2008;14:7674–7681. doi: 10.1158/1078-0432.CCR-08-0420. PubMed DOI
Wang B., Yin B.L., He B., Chen C., Zhao M., Zhang W., Xia Z.K., Pan Y., Tang J., Zhou X., et al. Overexpression of DNA damage-induced 45 alpha gene contributes to esophageal squamous cell cancer by promoter hypomethylation. J. Exp. Clin. Cancer Res. 2012;31:11. doi: 10.1186/1756-9966-31-11. PubMed DOI PMC
Iwagami S., Baba Y., Watanabe M., Shigaki H., Miyake K., Ishimoto T., Iwatsuki M., Sakamaki K., Ohashi Y., Baba H. LINE-1 hypomethylation is associated with a poor prognosis among patients with curatively resected esophageal squamous cell carcinoma. Ann. Surg. 2013;257:449–455. doi: 10.1097/SLA.0b013e31826d8602. PubMed DOI
Baba Y., Watanabe M., Murata A., Shigaki H., Miyake K., Ishimoto T., Iwatsuki M., Iwagami S., Yoshida N., Oki E., et al. LINE-1 hypomethylation, DNA copy number alterations, and CDK6 amplification in esophageal squamous cell carcinoma. Clin. Cancer Res. 2014;20:1114–1124. doi: 10.1158/1078-0432.CCR-13-1645. PubMed DOI
Kawano H., Saeki H., Kitao H., Tsuda Y., Otsu H., Ando K., Ito S., Egashira A., Oki E., Morita M., et al. Chromosomal instability associated with global DNA hypomethylation is associated with the initiation and progression of esophageal squamous cell carcinoma. Ann. Surg. Oncol. 2014;21(Suppl. S4):S696–S702. doi: 10.1245/s10434-014-3818-z. PubMed DOI
Kelly T.K., Miranda T.B., Liang G., Berman B.P., Lin J.C., Tanay A., Jones P.A. H2A.Z maintenance during mitosis reveals nucleosome shifting on mitotically silenced genes. Mol. Cell. 2010;39:901–911. doi: 10.1016/j.molcel.2010.08.026. PubMed DOI PMC
Fu L.N., Tan J., Chen Y.X., Fang J.Y. Genetic variants in the histone methylation and acetylation pathway and their risks in eight types of cancer. J. Dig. Dis. 2018 doi: 10.1111/1751-2980.12574. PubMed DOI
Herceg Z., Ushijima T. Introduction: Epigenetics and cancer. Adv. Genet. 2010;70:1–23. PubMed
Dawson M.A., Kouzarides T. Cancer epigenetics: From mechanism to therapy. Cell. 2012;150:12–27. doi: 10.1016/j.cell.2012.06.013. PubMed DOI
Vaissiere T., Sawan C., Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat. Res. 2008;659:40–48. doi: 10.1016/j.mrrev.2008.02.004. PubMed DOI
Toh Y., Yamamoto M., Endo K., Ikeda Y., Baba H., Kohnoe S., Yonemasu H., Hachitanda Y., Okamura T., Sugimachi K. Histone H4 acetylation and histone deacetylase 1 expression in esophageal squamous cell carcinoma. Oncol. Rep. 2003;10:333–338. doi: 10.3892/or.10.2.333. PubMed DOI
Toh Y., Ohga T., Endo K., Adachi E., Kusumoto H., Haraguchi M., Okamura T., Nicolson G.L. Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. Int. J. Cancer. 2004;110:362–367. doi: 10.1002/ijc.20154. PubMed DOI
Tzao C., Tung H.J., Jin J.S., Sun G.H., Hsu H.S., Chen B.H., Yu C.P., Lee S.C. Prognostic significance of global histone modifications in resected squamous cell carcinoma of the esophagus. Mod. Pathol. 2009;22:252–260. doi: 10.1038/modpathol.2008.172. PubMed DOI
I H., Ko E., Kim Y., Cho E.Y., Han J., Park J., Kim K., Kim D.H., Shim Y.M. Association of global levels of histone modifications with recurrence-free survival in stage IIB and III esophageal squamous cell carcinomas. Cancer Epidemiol. Biomarkers Prev. 2010;19:566–573. doi: 10.1158/1055-9965.EPI-09-0980. PubMed DOI
Guo Y., Chen Z., Zhang L., Zhou F., Shi S., Feng X., Li B., Meng X., Ma X., Luo M., et al. Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res. 2008;68:26–33. doi: 10.1158/0008-5472.CAN-06-4418. PubMed DOI
Yang H., Gu J., Wang K.K., Zhang W., Xing J., Chen Z., Ajani J.A., Wu X. MicroRNA expression signatures in Barrett’s esophagus and esophageal adenocarcinoma. Clin. Cancer Res. 2009;15:5744–5752. doi: 10.1158/1078-0432.CCR-09-0385. PubMed DOI PMC
Liu S.G., Qin X.G., Zhao B.S., Qi B., Yao W.J., Wang T.Y., Li H.C., Wu X.N. Differential expression of miRNAs in esophageal cancer tissue. Oncol. Lett. 2013;5:1639–1642. doi: 10.3892/ol.2013.1251. PubMed DOI PMC
Sakai N.S., Samia-Aly E., Barbera M., Fitzgerald R.C. A review of the current understanding and clinical utility of miRNAs in esophageal cancer. Semin. Cancer Biol. 2013;23:512–521. doi: 10.1016/j.semcancer.2013.08.005. PubMed DOI
Huang J., Zhang S.Y., Gao Y.M., Liu Y.F., Liu Y.B., Zhao Z.G., Yang K. MicroRNAs as oncogenes or tumour suppressors in oesophageal cancer: Potential biomarkers and therapeutic targets. Cell Prolif. 2014;47:277–286. doi: 10.1111/cpr.12109. PubMed DOI PMC
Bobryshev Y.V., Orekhov A.N., Chistiakov D.A. MicroRNAs in Esophageal Adenocarcinoma: Functional Significance and Potential for the Development of New Molecular Disease Markers. Curr. Pharm. Des. 2015;21:3402–3416. doi: 10.2174/1381612821666150311124418. PubMed DOI
Hemmatzadeh M., Mohammadi H., Karimi M., Musavishenas M.H., Baradaran B. Differential role of microRNAs in the pathogenesis and treatment of Esophageal cancer. Biomed. Pharmacother. 2016;82:509–519. doi: 10.1016/j.biopha.2016.05.009. PubMed DOI
Vrana D., Matzenauer M., Aujesky R., Vrba R., Neoral C., Melichar B., Souček P. Potential predictive role of microRNAs in the neoadjuvant treatment of esophageal cancer. Anticancer Res. 2017;37:403–412. doi: 10.21873/anticanres.11332. PubMed DOI
Imanaka Y., Tsuchiya S., Sato F., Shimada Y., Shimizu K., Tsujimoto G. MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J. Hum. Genet. 2011;56:270–276. doi: 10.1038/jhg.2011.1. PubMed DOI
Hummel R., Watson D.I., Smith C., Kist J., Michael M.Z., Haier J., Hussey D.J. miR-148a improves response to chemotherapy in sensitive and resistant oesophageal adenocarcinoma and squamous cell carcinoma cells. J. Gastrointest. Surg. 2011;15:429–438. doi: 10.1007/s11605-011-1418-9. PubMed DOI
Hummel R., Sie C., Watson D.I., Wang T., Ansar A., Michael M.Z., Van der Hoek M., Haier J., Hussey D.J. MicroRNA signatures in chemotherapy resistant esophageal cancer cell lines. World J. Gastroenterol. 2014;20:14904–14912. doi: 10.3748/wjg.v20.i40.14904. PubMed DOI PMC
Hamano R., Miyata H., Yamasaki M., Kurokawa Y., Hara J., Moon J.H., Nakajima K., Takiguchi S., Fujiwara Y., Mori M., et al. Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway. Clin. Cancer Res. 2011;17:3029–3038. doi: 10.1158/1078-0432.CCR-10-2532. PubMed DOI
Sugimura K., Miyata H., Tanaka K., Hamano R., Takahashi T., Kurokawa Y., Yamasaki M., Nakajima K., Takiguchi S., Mori M., et al. Let-7 expression is a significant determinant of response to chemotherapy through the regulation of IL-6/STAT3 pathway in esophageal squamous cell carcinoma. Clin. Cancer Res. 2012;18:5144–5153. doi: 10.1158/1078-0432.CCR-12-0701. PubMed DOI
Wang Y., Zhao Y., Herbst A., Kalinski T., Qin J., Wang X., Jiang Z., Benedix F., Franke S., Wartman T., et al. miR-221 Mediates Chemoresistance of Esophageal Adenocarcinoma by Direct Targeting of DKK2 Expression. Ann. Surg. 2016;264:804–814. doi: 10.1097/SLA.0000000000001928. PubMed DOI
Zhang H., Li M., Han Y., Hong L., Gong T., Sun L., Zheng X. Down-regulation of miR-27a might reverse multidrug resistance of esophageal squamous cell carcinoma. Dig. Dis. Sci. 2010;55:2545–2551. doi: 10.1007/s10620-009-1051-6. PubMed DOI
Phatak P., Byrnes K.A., Mansour D., Liu L., Cao S., Li R., Rao J.N., Turner D.J., Wang J.Y., Donahue J.M. Overexpression of miR-214-3p in esophageal squamous cancer cells enhances sensitivity to cisplatin by targeting survivin directly and indirectly through CUG-BP1. Oncogene. 2016;35:2087–2097. doi: 10.1038/onc.2015.271. PubMed DOI PMC
Wu K., Yang Y., Zhao J., Zhao S. BAG3-mediated miRNA let-7g and let-7i inhibit proliferation and enhance apoptosis of human esophageal carcinoma cells by targeting the drug transporter ABCC10. Cancer Lett. 2016;371:125–133. doi: 10.1016/j.canlet.2015.11.031. PubMed DOI
Odenthal M., Bollschweiler E., Grimminger P.P., Schroder W., Brabender J., Drebber U., Holscher A.H., Metzger R., Vallbohmer D. MicroRNA profiling in locally advanced esophageal cancer indicates a high potential of miR-192 in prediction of multimodality therapy response. Int. J. Cancer. 2013;133:2454–2463. doi: 10.1002/ijc.28253. PubMed DOI
Jin Y.Y., Chen Q.J., Xu K., Ren H.T., Bao X., Ma Y.N., Wei Y., Ma H.B. Involvement of microRNA-141-3p in 5-fluorouracil and oxaliplatin chemo-resistance in esophageal cancer cells via regulation of PTEN. Mol. Cell. Biochem. 2016;422:161–170. doi: 10.1007/s11010-016-2816-9. PubMed DOI
Schwarzenbach H., Nishida N., Calin G.A., Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol. 2014;11:145–156. doi: 10.1038/nrclinonc.2014.5. PubMed DOI
Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosova-Agadjanyan E.L., Peterson A., Noteboom J., O’Briant K.C., Allen A., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA. 2008;105:10513–10518. doi: 10.1073/pnas.0804549105. PubMed DOI PMC
Zhang C., Wang C., Chen X., Yang C., Li K., Wang J., Dai J., Hu Z., Zhou X., Chen L., et al. Expression profile of microRNAs in serum: A fingerprint for esophageal squamous cell carcinoma. Clin. Chem. 2010;56:1871–1879. doi: 10.1373/clinchem.2010.147553. PubMed DOI
Komatsu S., Ichikawa D., Hirajima S., Kawaguchi T., Miyamae M., Okajima W., Ohashi T., Arita T., Konishi H., Shiozaki A., et al. Plasma microRNA profiles: Identification of miR-25 as a novel diagnostic and monitoring biomarker in oesophageal squamous cell carcinoma. Br. J. Cancer. 2014;111:1614–1624. doi: 10.1038/bjc.2014.451. PubMed DOI PMC
Kurashige J., Kamohara H., Watanabe M., Tanaka Y., Kinoshita K., Saito S., Hiyoshi Y., Iwatsuki M., Baba Y., Baba H. Serum microRNA-21 is a novel biomarker in patients with esophageal squamous cell carcinoma. J. Surg. Oncol. 2012;106:188–192. doi: 10.1002/jso.23064. PubMed DOI
Hirajima S., Komatsu S., Ichikawa D., Takeshita H., Konishi H., Shiozaki A., Morimura R., Tsujiura M., Nagata H., Kawaguchi T., et al. Clinical impact of circulating miR-18a in plasma of patients with oesophageal squamous cell carcinoma. Br. J. Cancer. 2013;108:1822–1829. doi: 10.1038/bjc.2013.148. PubMed DOI PMC
Sharma P., Saraya A., Gupta P., Sharma R. Decreased levels of circulating and tissue miR-107 in human esophageal cancer. Biomarkers. 2013;18:322–330. doi: 10.3109/1354750X.2013.781677. PubMed DOI
Liu R., Liao J., Yang M., Shi Y., Peng Y., Wang Y., Pan E., Guo W., Pu Y., Yin L. Circulating miR-155 expression in plasma: A potential biomarker for early diagnosis of esophageal cancer in humans. J. Toxicol. Environ. Health A. 2012;75:1154–1162. doi: 10.1080/15287394.2012.699856. PubMed DOI
Takeshita N., Hoshino I., Mori M., Akutsu Y., Hanari N., Yoneyama Y., Ikeda N., Isozaki Y., Maruyama T., Akanuma N., et al. Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br. J. Cancer. 2013;108:644–652. doi: 10.1038/bjc.2013.8. PubMed DOI PMC
Tanaka K., Miyata H., Yamasaki M., Sugimura K., Takahashi T., Kurokawa Y., Nakajima K., Takiguchi S., Mori M., Doki Y. Circulating miR-200c levels significantly predict response to chemotherapy and prognosis of patients undergoing neoadjuvant chemotherapy for esophageal cancer. Ann. Surg. Oncol. 2013;20(Suppl. S3):S607–S615. doi: 10.1245/s10434-013-3093-4. PubMed DOI
miRTarBase miRTarBase: The Experimentally Validated microRNA-Target Interactions Database. [(accessed on 26 January 2018)]; Available online: http://mirtarbase.mbc.nctu.edu.tw/php/index.php.
Haenisch S., Werk A.N., Cascorbi I. MicroRNAs and their relevance to ABC transporters. Br. J. Clin. Pharmacol. 2014;77:587–596. doi: 10.1111/bcp.12251. PubMed DOI PMC
Caliskan M., Guler H., Bozok Cetintas V. Current updates on microRNAs as regulators of chemoresistance. Biomed. Pharmacother. 2017;95:1000–1012. doi: 10.1016/j.biopha.2017.08.084. PubMed DOI
Shang Y., Zhang Z., Liu Z., Feng B., Ren G., Li K., Zhou L., Sun Y., Li M., Zhou J., et al. miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene. 2014;33:3267–3276. doi: 10.1038/onc.2013.297. PubMed DOI
Wu Q., Yang Z., Xia L., Nie Y., Wu K., Shi Y., Fan D. Methylation of miR-129-5p CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters. Oncotarget. 2014;5:11552–11563. doi: 10.18632/oncotarget.2594. PubMed DOI PMC
Tian S., Zhang M., Chen X., Liu Y., Lou G. MicroRNA-595 sensitizes ovarian cancer cells to cisplatin by targeting ABCB1. Oncotarget. 2016;7:87091–87099. doi: 10.18632/oncotarget.13526. PubMed DOI PMC
Ikemura K., Yamamoto M., Miyazaki S., Mizutani H., Iwamoto T., Okuda M. MicroRNA-145 post-transcriptionally regulates the expression and function of P-glycoprotein in intestinal epithelial cells. Mol. Pharmacol. 2013;83:399–405. doi: 10.1124/mol.112.081844. PubMed DOI
Huang T.C., Renuse S., Pinto S., Kumar P., Yang Y., Chaerkady R., Godsey B., Mendell J.T., Halushka M.K., Civin C.I., et al. Identification of miR-145 targets through an integrated omics analysis. Mol. Biosyst. 2015;11:197–207. doi: 10.1039/C4MB00585F. PubMed DOI PMC
Zhao L., Ren Y., Tang H., Wang W., He Q., Sun J., Zhou X., Wang A. Deregulation of the miR-222-ABCG2 regulatory module in tongue squamous cell carcinoma contributes to chemoresistance and enhanced migratory/invasive potential. Oncotarget. 2015;6:44538–44550. doi: 10.18632/oncotarget.6253. PubMed DOI PMC
Pogribny I.P., Filkowski J.N., Tryndyak V.P., Golubov A., Shpyleva S.I., Kovalchuk O. Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int. J. Cancer. 2010;127:1785–1794. doi: 10.1002/ijc.25191. PubMed DOI
Moscow J.A., Fairchild C.R., Madden M.J., Ransom D.T., Wieand H.S., O’Brien E.E., Poplack D.G., Cossman J., Myers C.E., Cowan K.H. Expression of anionic glutathione-S-transferase and P-glycoprotein genes in human tissues and tumors. Cancer Res. 1989;49:1422–1428. PubMed
Nakashima A., Okabayashi T., Nakatani S., Kataoka M., Johira H., Takeda A., Orita K. [Analysis of MDR1 (multidrug resistance) gene expression by RT-PCR] Gan Kagaku Ryoho. 1993;20:831–833. PubMed
Nooter K., Westerman A.M., Flens M.J., Zaman G.J., Scheper R.J., van Wingerden K.E., Burger H., Oostrum R., Boersma T., Sonneveld P., et al. Expression of the multidrug resistance-associated protein (MRP) gene in human cancers. Clin. Cancer Res. 1995;1:1301–1310. PubMed
Di Nicolantonio F., Mercer S.J., Knight L.A., Gabriel F.G., Whitehouse P.A., Sharma S., Fernando A., Glaysher S., Di Palma S., Johnson P., et al. Cancer cell adaptation to chemotherapy. BMC Cancer. 2005;5:78. doi: 10.1186/1471-2407-5-78. PubMed DOI PMC
Nooter K., Kok T., Bosman F.T., van Wingerden K.E., Stoter G. Expression of the multidrug resistance protein (MRP) in squamous cell carcinoma of the oesophagus and response to pre-operative chemotherapy. Eur. J. Cancer. 1998;34:81–86. doi: 10.1016/S0959-8049(97)00356-0. PubMed DOI
Milano F., Guarriera M., Rygiel A.M., Krishnadath K.K. Trastuzumab mediated T-cell response against HER-2/neu overexpressing esophageal adenocarcinoma depends on intact antigen processing machinery. PLoS ONE. 2010;5:e12424. doi: 10.1371/journal.pone.0012424. PubMed DOI PMC
Leichman L., Lawrence D., Leichman C.G., Nava H., Nava E., Proulx G., Clark K., Khushalani N.I., Berdzik J., Greco W., et al. Expression of genes related to activity of oxaliplatin and 5-fluorouracil in endoscopic biopsies of primary esophageal cancer in patients receiving oxaliplatin, 5-flourouracil and radiation: Characterization and exploratory analysis with survival. J. Chemother. 2006;18:514–524. doi: 10.1179/joc.2006.18.5.514. PubMed DOI
Dvorak K., Watts G.S., Ramsey L., Holubec H., Payne C.M., Bernstein C., Jenkins G.J., Sampliner R.E., Prasad A., Garewal H.S., et al. Expression of bile acid transporting proteins in Barrett’s esophagus and esophageal adenocarcinoma. Am. J. Gastroenterol. 2009;104:302–309. doi: 10.1038/ajg.2008.85. PubMed DOI PMC
Xu C.Q., Zhu S.T., Wang M., Guo S.L., Sun X.J., Cheng R., Xing J., Wang W.H., Shao L.L., Zhang S.T. Pathway analysis of differentially expressed genes in human esophageal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2015;19:1652–1661. PubMed
Xu D.D., Zhou P.J., Wang Y., Zhang L., Fu W.Y., Ruan B.B., Xu H.P., Hu C.Z., Tian L., Qin J.H., et al. Reciprocal activation between STAT3 and miR-181b regulates the proliferation of esophageal cancer stem-like cells via the CYLD pathway. Mol. Cancer. 2016;15:40. doi: 10.1186/s12943-016-0521-7. PubMed DOI PMC
Kim R., Hirabayashi N., Nishiyama M., Jinushi K., Toge T., Okada K. Factors contributing to adriamycin sensitivity in human xenograft tumors: The relationship between expression of the MDR1, GST-pi and topoisomerase II genes and tumor sensitivity to adriamycin. Anticancer Res. 1992;12:241–245. PubMed
Hu X., Akutsu Y., Suganami A., Qin W., Hanari N., Murakam K., Kano M., Usui A., Suito H., Takahashi M. Low-dose hyperthermia enhances the antitumor effects of chemotherapy in squamous cell carcinoma. Dis. Esophagus. 2017;30:1–7. doi: 10.1093/dote/dow026. PubMed DOI
Saito T., Hikita M., Kohno K., Sato S., Takano H., Kobayashi M. Different sensitivities of human esophageal cancer cells to multiple anti-cancer agents and related mechanisms. Cancer. 1992;70:2402–2409. doi: 10.1002/1097-0142(19921115)70:10<2402::AID-CNCR2820701005>3.0.CO;2-2. PubMed DOI
Oosthuizen M.M., Nel M.J., Greyling D. Heat shock treated oesophageal cancer cells become thermosensitized against anticancer drugs. Anticancer Res. 2000;20:2697–2703. PubMed
Murase M., Kodera Y., Kondo K., Sekiguchi H., Fujiwara M., Kasai Y., Akiyama S., Ito K., Takagi H. Expression of MRP and mdr1 in human gastrointestinal cancer cell lines: A correlation with resistance against doxorubicin. J. Surg. Oncol. 1996;61:223–229. doi: 10.1002/(SICI)1096-9098(199603)61:3<223::AID-JSO12>3.0.CO;2-8. PubMed DOI
Wen J., Zheng B., Hu Y., Zhang X., Yang H., Luo K.J., Zhang X., Li Y.F., Fu J.H. Establishment and biological analysis of the EC109/CDDP multidrug-resistant esophageal squamous cell carcinoma cell line. Oncol. Rep. 2009;22:65–71. PubMed
Wang T.H., Wan J.Y., Gong X., Li H.Z., Cheng Y. Tetrandrine enhances cytotoxicity of cisplatin in human drug-resistant esophageal squamous carcinoma cells by inhibition of multidrug resistance-associated protein 1. Oncol. Rep. 2012;28:1681–1686. doi: 10.3892/or.2012.1999. PubMed DOI
Ogawa R., Ishiguro H., Kuwabara Y., Kimura M., Mitsui A., Mori Y., Mori R., Tomoda K., Katada T., Harada K., et al. Identification of candidate genes involved in the radiosensitivity of esophageal cancer cells by microarray analysis. Dis. Esophagus. 2008;21:288–297. doi: 10.1111/j.1442-2050.2007.00759.x. PubMed DOI
Tanaka N., Kimura H., Faried A., Sakai M., Sano A., Inose T., Sohda M., Okada K., Nakajima M., Miyazaki T., et al. Quantitative analysis of cisplatin sensitivity of human esophageal squamous cancer cell lines using in-air micro-PIXE. Cancer Sci. 2010;101:1487–1492. doi: 10.1111/j.1349-7006.2010.01542.x. PubMed DOI PMC
Li X.R., Yang L.Z., Huo X.Q., Wang Y., Yang Q.H., Zhang Q.Q. Effects of silencing the ATP-binding cassette protein E1 gene by electroporation on the proliferation and migration of EC109 human esophageal cancer cells. Mol. Med. Rep. 2015;12:837–842. doi: 10.3892/mmr.2015.3512. PubMed DOI PMC
Minegaki T., Takara K., Hamaguchi R., Tsujimoto M., Nishiguchi K. Factors affecting the sensitivity of human-derived esophageal carcinoma cell lines to 5-fluorouracil and cisplatin. Oncol. Lett. 2013;5:427–434. doi: 10.3892/ol.2012.1014. PubMed DOI PMC
Dvorak P., Pesta M., Soucek P. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer. Tumour Biol. 2017;39:1010428317699800. doi: 10.1177/1010428317699800. PubMed DOI
Robey-Cafferty S.S., Rutledge M.L., Bruner J.M. Expression of a multidrug resistance gene in esophageal adenocarcinoma. Correlation with response to chemotherapy and comparison with gastric adenocarcinoma. Am. J. Clin. Pathol. 1990;93:1–7. doi: 10.1093/ajcp/93.1.1. PubMed DOI
Sur M., Taylor L., Cooper K., Sur R.K. Lack of correlation of P-glycoprotein expression with response to MIC chemotherapy in oesophageal cancer. J. Clin. Pathol. 1997;50:534. doi: 10.1136/jcp.50.6.534. PubMed DOI PMC
Darnton S.J., Jenner K., Steyn R.S., Ferry D.R., Matthews H.R. Lack of correlation of P-glycoprotein expression with response to MIC chemotherapy in oesophageal cancer. J. Clin. Pathol. 1995;48:1064–1066. doi: 10.1136/jcp.48.11.1064. PubMed DOI PMC
Wang R., Sumarpo A., Saiki Y., Chen N., Sunamura M., Horii A. ABCB1 Is Upregulated in Acquisition of Taxane Resistance: Lessons from Esophageal Squamous Cell Carcinoma Cell Lines. Tohoku J. Exp. Med. 2016;240:295–301. doi: 10.1620/tjem.240.295. PubMed DOI
Wang Y., Chen Q., Jin S., Deng W., Li S., Tong Q., Chen Y. Up-regulation of P-glycoprotein is involved in the increased paclitaxel resistance in human esophageal cancer radioresistant cells. Scand. J. Gastroenterol. 2012;47:802–808. doi: 10.3109/00365521.2012.683042. PubMed DOI
Takebayashi Y., Akiyama S., Natsugoe S., Hokita S., Niwa K., Kitazono M., Sumizawa T., Tani A., Furukawa T., Aikou T. The expression of multidrug resistance protein in human gastrointestinal tract carcinomas. Cancer. 1998;82:661–666. doi: 10.1002/(SICI)1097-0142(19980215)82:4<661::AID-CNCR7>3.0.CO;2-O. PubMed DOI
Zhang S., Cao W., Yue M., Zheng N., Hu T., Yang S., Dong Z., Lu S., Mo S. Caveolin-1 affects tumor drug resistance in esophageal squamous cell carcinoma by regulating expressions of P-gp and MRP1. Tumour Biol. 2016;37:9189–9196. doi: 10.1007/s13277-015-4778-z. PubMed DOI
Bharthuar A., Saif Ur Rehman S., Black J.D., Levea C., Malhotra U., Mashtare T.L., Iyer R. Breast cancer resistance protein (BCRP) and excision repair cross complement-1 (ERCC1) expression in esophageal cancers and response to cisplatin and irinotecan based chemotherapy. J. Gastrointest. Oncol. 2014;5:253–258. PubMed PMC
Huang L., Lu Q., Han Y., Li Z., Zhang Z., Li X. ABCG2/V-ATPase was associated with the drug resistance and tumor metastasis of esophageal squamous cancer cells. Diagn. Pathol. 2012;7:180. doi: 10.1186/1746-1596-7-180. PubMed DOI PMC
Zhang M., Mathur A., Zhang Y., Xi S., Atay S., Hong J.A., Datrice N., Upham T., Kemp C.D., Ripley R.T., et al. Mithramycin represses basal and cigarette smoke-induced expression of ABCG2 and inhibits stem cell signaling in lung and esophageal cancer cells. Cancer Res. 2012;72:4178–4192. doi: 10.1158/0008-5472.CAN-11-3983. PubMed DOI PMC
To K.K., Yu L., Liu S., Fu J., Cho C.H. Constitutive AhR activation leads to concomitant ABCG2-mediated multidrug resistance in cisplatin-resistant esophageal carcinoma cells. Mol. Carcinog. 2012;51:449–464. doi: 10.1002/mc.20810. PubMed DOI
Liu L., Zuo L.F., Guo J.W. ABCG2 gene amplification and expression in esophageal cancer cells with acquired adriamycin resistance. Mol. Med. Rep. 2014;9:1299–1304. doi: 10.3892/mmr.2014.1949. PubMed DOI
Liu L., Ju Y., Wang J., Zhou R. Epigallocatechin-3-gallate promotes apoptosis and reversal of multidrug resistance in esophageal cancer cells. Pathol. Res. Pract. 2017;213:1242–1250. doi: 10.1016/j.prp.2017.09.006. PubMed DOI
Pisarev A.V., Skabkin M.A., Pisareva V.P., Skabkina O.V., Rakotondrafara A.M., Hentze M.W., Hellen C.U., Pestova T.V. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell. 2010;37:196–210. doi: 10.1016/j.molcel.2009.12.034. PubMed DOI PMC
Xu J., Hu Z. Y-box-binding protein 1 promotes tumor progression and inhibits cisplatin chemosensitivity in esophageal squamous cell carcinoma. Biomed. Pharmacother. 2016;79:17–22. doi: 10.1016/j.biopha.2016.01.037. PubMed DOI
Shen Y., Wang Q., Tian Y. Reversal effect of ouabain on multidrug resistance in esophageal carcinoma EC109/CDDP cells by inhibiting the translocation of Wnt/beta-catenin into the nucleus. Tumour Biol. 2016;37:15937–15947. doi: 10.1007/s13277-016-5437-8. PubMed DOI
Liu X., Yan Y., Ma W., Wu S. Knockdown of frizzled-7 inhibits cell growth and metastasis and promotes chemosensitivity of esophageal squamous cell carcinoma cells by inhibiting Wnt signaling. Biochem. Biophys. Res. Commun. 2017;490:1112–1118. doi: 10.1016/j.bbrc.2017.06.185. PubMed DOI
Sims-Mourtada J., Izzo J.G., Ajani J., Chao K.S. Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene. 2007;26:5674–5679. doi: 10.1038/sj.onc.1210356. PubMed DOI
Takakura Y., Hinoi T., Oue N., Sasada T., Kawaguchi Y., Okajima M., Akyol A., Fearon E.R., Yasui W., Ohdan H. CDX2 regulates multidrug resistance 1 gene expression in malignant intestinal epithelium. Cancer Res. 2010;70:6767–6778. doi: 10.1158/0008-5472.CAN-09-4701. PubMed DOI PMC
Yang L., Zhang X., Zhang M., Zhang J., Sheng Y., Sun X., Chen Q., Wang L.X. Increased Nanog expression promotes tumor development and Cisplatin resistance in human esophageal cancer cells. Cell. Physiol. Biochem. 2012;30:943–952. doi: 10.1159/000341471. PubMed DOI
Deng L., Xiang X., Yang F., Xiao D., Liu K., Chen Z., Zhang R., Feng G. Functional evidence that the self-renewal gene NANOG regulates esophageal squamous cancer development. Biochem. Biophys. Res. Commun. 2017;490:161–168. doi: 10.1016/j.bbrc.2017.06.016. PubMed DOI
Huang D., Gao Q., Guo L., Zhang C., Jiang W., Li H., Wang J., Han X., Shi Y., Lu S.H. Isolation and identification of cancer stem-like cells in esophageal carcinoma cell lines. Stem Cells Dev. 2009;18:465–473. doi: 10.1089/scd.2008.0033. PubMed DOI
Jimenez P., Chueca E., Arruebo M., Strunk M., Solanas E., Serrano T., Garcia-Gonzalez M.A., Lanas A. CD24 Expression Is Increased in 5-Fluorouracil-Treated Esophageal Adenocarcinoma Cells. Front. Pharmacol. 2017;8:321. doi: 10.3389/fphar.2017.00321. PubMed DOI PMC
Zhao Y., Bao Q., Schwarz B., Zhao L., Mysliwietz J., Ellwart J., Renner A., Hirner H., Niess H., Camaj P., et al. Stem cell-like side populations in esophageal cancer: A source of chemotherapy resistance and metastases. Stem Cells Dev. 2014;23:180–192. doi: 10.1089/scd.2013.0103. PubMed DOI
Cerovska E., Elsnerova K., Vaclavikova R., Soucek P. The role of membrane transporters in ovarian cancer chemoresistance and prognosis. Expert Opin. Drug Metab. Toxicol. 2017;13:741–753. doi: 10.1080/17425255.2017.1332179. PubMed DOI
Xiong T., Xu G., Huang X.L., Lu K.Q., Xie W.Q., Yin K., Tu J. ATP-binding cassette transporter A1: A promising therapy target for prostate cancer. Mol. Clin. Oncol. 2018;8:9–14. doi: 10.3892/mco.2017.1506. PubMed DOI PMC
Tian C., Huang D., Yu Y., Zhang J., Fang Q., Xie C. ABCG1 as a potential oncogene in lung cancer. Exp. Ther. Med. 2017;13:3189–3194. doi: 10.3892/etm.2017.4393. PubMed DOI PMC
Hlavac V., Soucek P. Role of family D ATP-binding cassette transporters (ABCD) in cancer. Biochem. Soc. Trans. 2015;43:937–942. doi: 10.1042/BST20150114. PubMed DOI
Vogelstein B., Papadopoulos N., Velculescu V.E., Zhou S., Diaz L.A., Jr., Kinzler K.W. Cancer genome landscapes. Science. 2013;339:1546–1558. doi: 10.1126/science.1235122. PubMed DOI PMC
Dai X., Xiang L., Li T., Bai Z. Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes. J. Cancer. 2016;7:1281–1294. doi: 10.7150/jca.13141. PubMed DOI PMC
Wang F., Chen Y., Huang L., Liu T., Huang Y., Zhao J., Wang X., Yang K., Ma S., Huang L., et al. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells. Oncotarget. 2015;6:40850–40865. doi: 10.18632/oncotarget.5813. PubMed DOI PMC
Chen Z., Chen Y., Xu M., Chen L., Zhang X., To K.K., Zhao H., Wang F., Xia Z., Chen X., et al. Osimertinib (AZD9291) Enhanced the Efficacy of Chemotherapeutic Agents in ABCB1- and ABCG2-Overexpressing Cells In Vitro, In Vivo, and Ex Vivo. Mol. Cancer Ther. 2016;15:1845–1858. doi: 10.1158/1535-7163.MCT-15-0939. PubMed DOI
Wu T., Chen Z., To K.K.W., Fang X., Wang F., Cheng B., Fu L. Effect of abemaciclib (LY2835219) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Biochem. Pharmacol. 2017;124:29–42. doi: 10.1016/j.bcp.2016.10.015. PubMed DOI
Suntharalingam M., Winter K., Ilson D., Dicker A.P., Kachnic L., Konski A., Chakravarthy A.B., Anker C.J., Thakrar H., Horiba N., et al. Effect of the Addition of Cetuximab to Paclitaxel, Cisplatin, and Radiation Therapy for Patients with Esophageal Cancer: The NRG Oncology RTOG 0436 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2017;3:1520–1528. doi: 10.1001/jamaoncol.2017.1598. PubMed DOI PMC
From Tumor Immunology to Immunotherapy in Gastric and Esophageal Cancer