ABC Transporters and Their Role in the Neoadjuvant Treatment of Esophageal Cancer

. 2018 Mar 15 ; 19 (3) : . [epub] 20180315

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29543757

The prognosis of esophageal cancer (EC) is poor, despite considerable effort of both experimental scientists and clinicians. The tri-modality treatment consisting of neoadjuvant chemoradiation followed by surgery has remained the gold standard over decades, unfortunately, without significant progress in recent years. Suitable prognostic factors indicating which patients will benefit from this tri-modality treatment are missing. Some patients rapidly progress on the neoadjuvant chemoradiotherapy, which is thus useless and sometimes even harmful. At the same time, other patients achieve complete remission on neoadjuvant chemoradiotherapy and subsequent surgery may increase their risk of morbidity and mortality. The prognosis of patients ranges from excellent to extremely poor. Considering these differences, the role of drug metabolizing enzymes and transporters, among other factors, in the EC response to chemotherapy may be more important compared, for example, with pancreatic cancer where all patients progress on chemotherapy regardless of the treatment or disease stage. This review surveys published literature describing the potential role of ATP-binding cassette transporters, the genetic polymorphisms, epigenetic regulations, and phenotypic changes in the prognosis and therapy of EC. The review provides knowledge base for further research of potential predictive biomarkers that will allow the stratification of patients into defined groups for optimal therapeutic outcome.

Zobrazit více v PubMed

SEER Cancer Stat Facts: Esophageal Cancer. [(accessed on 26 January 2018)]; Available online: https://seer.cancer.gov/statfacts/html/esoph.html.

Castro C., Peleteiro B., Lunet N. Modifiable factors and esophageal cancer: A systematic review of published meta-analyses. J. Gastroenterol. 2018;53:37–51. doi: 10.1007/s00535-017-1375-5. PubMed DOI

Jain S., Dhingra S. Pathology of esophageal cancer and Barrett’s esophagus. Ann. Cardiothorac. Surg. 2017;6:99–109. doi: 10.21037/acs.2017.03.06. PubMed DOI PMC

Minsky B.D., Pajak T.F., Ginsberg R.J., Pisansky T.M., Martenson J., Komaki R., Okawara G., Rosenthal S.A., Kelsen D.P. INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: High-dose versus standard-dose radiation therapy. J. Clin. Oncol. 2002;20:1167–1174. doi: 10.1200/JCO.2002.20.5.1167. PubMed DOI

Cooper J.S., Guo M.D., Herskovic A., Macdonald J.S., Martenson J.A., Jr., Al-Sarraf M., Byhardt R., Russell A.H., Beitler J.J., Spencer S., et al. Chemoradiotherapy of locally advanced esophageal cancer: Long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group. JAMA. 1999;281:1623–1627. doi: 10.1001/jama.281.17.1623. PubMed DOI

Matzenauer M., Vrana D., Vlachova Z., Aujesky R., Vrba R., Neoral C., Melichar B. Stereotactic radiotherapy in the treatment of local recurrences of esophageal cancer. Oncol. Lett. 2017;13:1807–1810. doi: 10.3892/ol.2017.5605. PubMed DOI PMC

Gottesman M.M., Fojo T., Bates S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer. 2002;2:48–58. doi: 10.1038/nrc706. PubMed DOI

Hlavata I., Mohelnikova-Duchonova B., Vaclavikova R., Liska V., Pitule P., Novak P., Bruha J., Vycital O., Holubec L., Treska V., et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis. 2012;27:187–196. doi: 10.1093/mutage/ger075. PubMed DOI

Hlavac V., Brynychova V., Vaclavikova R., Ehrlichova M., Vrana D., Pecha V., Kozevnikovova R., Trnkova M., Gatek J., Kopperova D., et al. The expression profile of ATP-binding cassette transporter genes in breast carcinoma. Pharmacogenomics. 2013;14:515–529. doi: 10.2217/pgs.13.26. PubMed DOI

Mohelnikova-Duchonova B., Brynychova V., Oliverius M., Honsova E., Kala Z., Muckova K., Soucek P. Differences in transcript levels of ABC transporters between pancreatic adenocarcinoma and nonneoplastic tissues. Pancreas. 2013;42:707–716. doi: 10.1097/MPA.0b013e318279b861. PubMed DOI

Elsnerova K., Mohelnikova-Duchonova B., Cerovska E., Ehrlichova M., Gut I., Rob L., Skapa P., Hruda M., Bartakova A., Bouda J., et al. Gene expression of membrane transporters: Importance for prognosis and progression of ovarian carcinoma. Oncol. Rep. 2016;35:2159–2170. doi: 10.3892/or.2016.4599. PubMed DOI

Melichar B. Laboratory medicine and medical oncology: The tale of two Cinderellas. Clin. Chem. Lab. Med. 2013;51:99–112. doi: 10.1515/cclm-2012-0496. PubMed DOI

Saier M.H., Jr., Tran C.V., Barabote R.D. TCDB: The Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res. 2006;34:D181–D186. doi: 10.1093/nar/gkj001. PubMed DOI PMC

Narumiya K., Metzger R., Bollschweiler E., Alakus H., Brabender J., Drebber U., Holscher A.H., Warnecke-Eberz U. Impact of ABCB1 C3435T polymorphism on lymph node regression in multimodality treatment of locally advanced esophageal cancer. Pharmacogenomics. 2011;12:205–214. doi: 10.2217/pgs.10.174. PubMed DOI

SNPedia. [(accessed on 26 January 2018)]; Available online: https://www.snpedia.com/index.php/SNPedia.

Komoto C., Nakamura T., Sakaeda T., Kroetz D.L., Yamada T., Omatsu H., Koyama T., Okamura N., Miki I., Tamura T., et al. MDR1 haplotype frequencies in Japanese and Caucasian, and in Japanese patients with colorectal cancer and esophageal cancer. Drug Metab. Pharmacokinet. 2006;21:126–132. doi: 10.2133/dmpk.21.126. PubMed DOI

Wu X., Gu J., Wu T.T., Swisher S.G., Liao Z., Correa A.M., Liu J., Etzel C.J., Amos C.I., Huang M., et al. Genetic variations in radiation and chemotherapy drug action pathways predict clinical outcomes in esophageal cancer. J. Clin. Oncol. 2006;24:3789–3798. doi: 10.1200/JCO.2005.03.6640. PubMed DOI

Gusella M., Giacopuzzi S., Bertolaso L., Zanoni A., Pezzolo E., Modena Y., Menon D., Paganin P., Weindelmayer J., Crepaldi G., et al. Genetic prediction of long-term survival after neoadjuvant chemoradiation in locally advanced esophageal cancer. Pharmacogenomics J. 2017;17:252–257. doi: 10.1038/tpj.2016.9. PubMed DOI

Okuno T., Tamura T., Yamamori M., Chayahara N., Yamada T., Miki I., Okamura N., Kadowaki Y., Shirasaka D., Aoyama N., et al. Favorable genetic polymorphisms predictive of clinical outcome of chemoradiotherapy for stage II/III esophageal squamous cell carcinoma in Japanese. Am. J. Clin. Oncol. 2007;30:252–257. doi: 10.1097/01.coc.0000256059.88247.25. PubMed DOI

Miura M., Motoyama S., Hinai Y., Niioka T., Endo M., Hayakari M., Ogawa J. Influence of CYP2C19 and ABCB1 polymorphisms on plasma concentrations of lansoprazole enantiomers after enteral administration. Xenobiotica. 2010;40:630–636. doi: 10.3109/00498254.2010.494201. PubMed DOI

Findlay J.M., Middleton M.R., Tomlinson I. A systematic review and meta-analysis of somatic and germline DNA sequence biomarkers of esophageal cancer survival, therapy response and stage. Ann. Oncol. 2015;26:624–644. doi: 10.1093/annonc/mdu449. PubMed DOI PMC

Zou N., Yang L., Chen L., Li T., Jin T., Peng H., Zhang S., Wang D., Li R., Liu C., et al. Heterozygote of TAP1 Codon637 decreases susceptibility to HPV infection but increases susceptibility to esophageal cancer among the Kazakh populations. J. Exp. Clin. Cancer Res. 2015;34:70. doi: 10.1186/s13046-015-0185-y. PubMed DOI PMC

Guo Q., Lu H., Wang J., Chen Z., Wang Y., Ji R., Li Q., Zhao Y., Zhang H., Zhou Y. Association between TAP1 gene polymorphism and esophageal cancer in a Han Gansu population. Int. J. Clin. Exp. Med. 2016;9:12097–12102.

Cao B., Tian X., Li Y., Jiang P., Ning T., Xing H., Zhao Y., Zhang C., Shi X., Chen D., et al. LMP7/TAP2 gene polymorphisms and HPV infection in esophageal carcinoma patients from a high incidence area in China. Carcinogenesis. 2005;26:1280–1284. doi: 10.1093/carcin/bgi071. PubMed DOI

Rumiato E., Boldrin E., Malacrida S., Battaglia G., Bocus P., Castoro C., Cagol M., Chiarion-Sileni V., Ruol A., Amadori A., et al. A germline predictive signature of response to platinum chemotherapy in esophageal cancer. Transl. Res. 2016;171:29–37. doi: 10.1016/j.trsl.2015.12.011. PubMed DOI

Sun Y., Shi N., Lu H., Zhang J., Ma Y., Qiao Y., Mao Y., Jia K., Han L., Liu F., et al. ABCC4 copy number variation is associated with susceptibility to esophageal squamous cell carcinoma. Carcinogenesis. 2014;35:1941–1950. doi: 10.1093/carcin/bgu043. PubMed DOI

COSMIC COSMIC, the Catalogue of Somatic Mutations in Cancer. [(accessed on 26 January 2018)]; Available online: http://cancer.sanger.ac.uk/cosmic.

Hong L., Han Y., Zhang H., Li M., Gong T., Sun L., Wu K., Zhao Q., Fan D. The prognostic and chemotherapeutic value of miR-296 in esophageal squamous cell carcinoma. Ann. Surg. 2010;251:1056–1063. doi: 10.1097/SLA.0b013e3181dd4ea9. PubMed DOI

Zhou Y., Hong L. Prediction value of miR-483 and miR-214 in prognosis and multidrug resistance of esophageal squamous cell carcinoma. Genet. Test. Mol. Biomarkers. 2013;17:470–474. doi: 10.1089/gtmb.2012.0518. PubMed DOI PMC

Zhang L.J., Chen K.N., Xu G.W., Xing H.P., Shi X.T. Congenital expression of mdr-1 gene in tissues of carcinoma and its relation with pathomorphology and prognosis. World J. Gastroenterol. 1999;5:53–56. doi: 10.3748/wjg.v5.i1.53. PubMed DOI PMC

Langer R., Specht K., Becker K., Ewald P., Ott K., Lordick F., Siewert J.R., Hofler H. Comparison of pretherapeutic and posttherapeutic expression levels of chemotherapy-associated genes in adenocarcinomas of the esophagus treated by 5-fluorouracil- and cisplatin-based neoadjuvant chemotherapy. Am. J. Clin. Pathol. 2007;128:191–197. doi: 10.1309/1U6X4L9XFJLJV940. PubMed DOI

Langer R., Ott K., Feith M., Lordick F., Specht K., Becker K., Hofler H. High pretherapeutic thymidylate synthetase and MRP-1 protein levels are associated with nonresponse to neoadjuvant chemotherapy in oesophageal adenocarcinoma patients. J. Surg. Oncol. 2010;102:503–508. doi: 10.1002/jso.21641. PubMed DOI

Zhu J., Ling Y., Xu Y., Lu M.Z., Liu Y.P., Zhang C.S. Elevated expression of MDR1 associated with Line-1 hypomethylation in esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2015;8:14392–14400. PubMed PMC

Zhang G., Gao R., Wang J., Fu J., Zhang M., Jin X. Various doses of fractioned irradiation modulates multidrug resistance 1 expression differently through hypoxia-inducible factor 1α in esophageal cancer cells. Dis. Esophagus. 2011;24:481–488. doi: 10.1111/j.1442-2050.2010.01168.x. PubMed DOI

Langer R., Specht K., Becker K., Ewald P., Bekesch M., Sarbia M., Busch R., Feith M., Stein H.J., Siewert J.R., et al. Association of pretherapeutic expression of chemotherapy-related genes with response to neoadjuvant chemotherapy in Barrett carcinoma. Clin. Cancer Res. 2005;11:7462–7469. doi: 10.1158/1078-0432.CCR-05-0042. PubMed DOI

Yamasaki M., Makino T., Masuzawa T., Kurokawa Y., Miyata H., Takiguchi S., Nakajima K., Fujiwara Y., Matsuura N., Mori M., et al. Role of multidrug resistance protein 2 (MRP2) in chemoresistance and clinical outcome in oesophageal squamous cell carcinoma. Br. J. Cancer. 2011;104:707–713. doi: 10.1038/sj.bjc.6606071. PubMed DOI PMC

Tsunoda S., Okumura T., Ito T., Kondo K., Ortiz C., Tanaka E., Watanabe G., Itami A., Sakai Y., Shimada Y. ABCG2 expression is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma. Oncology. 2006;71:251–258. doi: 10.1159/000106787. PubMed DOI

Harpole D.H., Jr., Moore M.B., Herndon J.E., 2nd, Aloia T., D’Amico T.A., Sporn T., Parr A., Linoila I., Allegra C. The prognostic value of molecular marker analysis in patients treated with trimodality therapy for esophageal cancer. Clin. Cancer Res. 2001;7:562–569. PubMed

Liu Q., Hao C., Su P., Shi J. Down-regulation of HLA class I antigen-processing machinery components in esophageal squamous cell carcinomas: Association with disease progression. Scand. J. Gastroenterol. 2009;44:960–969. doi: 10.1080/00365520902998679. PubMed DOI

Shimada Y., Imamura M., Watanabe G., Uchida S., Harada H., Makino T., Kano M. Prognostic factors of oesophageal squamous cell carcinoma from the perspective of molecular biology. Br. J. Cancer. 1999;80:1281–1288. doi: 10.1038/sj.bjc.6990499. PubMed DOI PMC

Chen Y., Zhu S.M., Xu X.L., Zhao A.N., Hu J.L. Expression levels of HER2 and MRP1 are not prognostic factors of long-term survival in 829 patients with esophageal squamous cell carcinoma. Oncol. Lett. 2016;11:745–752. doi: 10.3892/ol.2015.3975. PubMed DOI PMC

Gan S.Y., Zhong X.Y., Xie S.M., Li S.M., Peng H., Luo F. Expression and significance of tumor drug resistance related proteins and beta-catenin in esophageal squamous cell carcinoma. Chin. J. Cancer. 2010;29:300–305. doi: 10.5732/cjc.009.10599. PubMed DOI

Cheng Y., Xu J., Guo J., Jin Y., Wang X., Zhang Q., Liu L. Circulating autoantibody to ABCC3 may be a potential biomarker for esophageal squamous cell carcinoma. Clin. Transl. Oncol. 2013;15:398–402. doi: 10.1007/s12094-012-0941-9. PubMed DOI

Huang B., Gong X., Zhou H., Xiong F., Wang S. Depleting ABCE1 expression induces apoptosis and inhibits the ability of proliferation and migration of human esophageal carcinoma cells. Int. J. Clin. Exp. Pathol. 2014;7:584–592. PubMed PMC

Hang D., Dong H.C., Ning T., Dong B., Hou D.L., Xu W.G. Prognostic value of the stem cell markers CD133 and ABCG2 expression in esophageal squamous cell carcinoma. Dis. Esophagus. 2012;25:638–644. doi: 10.1111/j.1442-2050.2011.01298.x. PubMed DOI

Simon R.M., Paik S., Hayes D.F. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J. Natl. Cancer Inst. 2009;101:1446–1452. doi: 10.1093/jnci/djp335. PubMed DOI PMC

Lin E.W., Karakasheva T.A., Hicks P.D., Bass A.J., Rustgi A.K. The tumor microenvironment in esophageal cancer. Oncogene. 2016;35:5337–5349. doi: 10.1038/onc.2016.34. PubMed DOI PMC

Yang L., Ji Y., Chen L., Li M., Wu F., Hu J., Jiang J., Cui X., Chen Y., Pang L., et al. Genetic variability in LMP2 and LMP7 is associated with the risk of esophageal squamous cell carcinoma in the Kazakh population but is not associated with HPV infection. PLoS ONE. 2017;12:e0186319. doi: 10.1371/journal.pone.0186319. PubMed DOI PMC

Petrick J.L., Wyss A.B., Butler A.M., Cummings C., Sun X., Poole C., Smith J.S., Olshan A.F. Prevalence of human papillomavirus among oesophageal squamous cell carcinoma cases: Systematic review and meta-analysis. Br. J. Cancer. 2014;110:2369–2377. doi: 10.1038/bjc.2014.96. PubMed DOI PMC

Gharahkhani P., Fitzgerald R.C., Vaughan T.L., Palles C., Gockel I., Tomlinson I., Buas M.F., May A., Gerges C., Anders M., et al. Genome-wide association studies in oesophageal adenocarcinoma and Barrett’s oesophagus: A large-scale meta-analysis. Lancet Oncol. 2016;17:1363–1373. doi: 10.1016/S1470-2045(16)30240-6. PubMed DOI PMC

Pasello G., Agata S., Bonaldi L., Corradin A., Montagna M., Zamarchi R., Parenti A., Cagol M., Zaninotto G., Ruol A., et al. DNA copy number alterations correlate with survival of esophageal adenocarcinoma patients. Mod. Pathol. 2009;22:58–65. doi: 10.1038/modpathol.2008.150. PubMed DOI

Obara K., Ghazizadeh M., Shimizu H., Arai R., Tenjin T., Suzuki S., Moriyama Y., Kawanami O. Comparative genomic hybridization study of genetic changes associated with vindesine resistance in esophageal carcinoma. Int. J. Oncol. 2002;20:255–260. doi: 10.3892/ijo.20.2.255. PubMed DOI

Saito T., Hikita M., Kohno K., Tanimura H., Miyahara M., Kobayashi M. Enhanced expression of the multidrug resistance gene in vindesine-resistant human esophageal cancer cells. Oncology. 1994;51:440–445. doi: 10.1159/000227380. PubMed DOI

Albrecht B., Hausmann M., Zitzelsberger H., Stein H., Siewert J.R., Hopt U., Langer R., Hofler H., Werner M., Walch A. Array-based comparative genomic hybridization for the detection of DNA sequence copy number changes in Barrett’s adenocarcinoma. J. Pathol. 2004;203:780–788. doi: 10.1002/path.1576. PubMed DOI

Van Dekken H., Vissers K., Tilanus H.W., Kuo W.L., Tanke H.J., Rosenberg C., Ijszenga M., Szuhai K. Genomic array and expression analysis of frequent high-level amplifications in adenocarcinomas of the gastro-esophageal junction. Cancer Genet. Cytogenet. 2006;166:157–162. doi: 10.1016/j.cancergencyto.2005.11.002. PubMed DOI

Chen J., Guo L., Peiffer D.A., Zhou L., Chan O.T., Bibikova M., Wickham-Garcia E., Lu S.H., Zhan Q., Wang-Rodriguez J., et al. Genomic profiling of 766 cancer-related genes in archived esophageal normal and carcinoma tissues. Int. J. Cancer. 2008;122:2249–2254. doi: 10.1002/ijc.23397. PubMed DOI

Garcia E., Hayden A., Birts C., Britton E., Cowie A., Pickard K., Mellone M., Choh C., Derouet M., Duriez P., et al. Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1. Sci. Rep. 2016;6:32417. doi: 10.1038/srep32417. PubMed DOI PMC

Li J.S., Ying J.M., Wang X.W., Wang Z.H., Tao Q., Li L.L. Promoter methylation of tumor suppressor genes in esophageal squamous cell carcinoma. Chin. J. Cancer. 2013;32:3–11. doi: 10.5732/cjc.011.10381. PubMed DOI PMC

Kaz A.M., Grady W.M. Epigenetic biomarkers in esophageal cancer. Cancer Lett. 2014;342:193–199. doi: 10.1016/j.canlet.2012.02.036. PubMed DOI PMC

Ahrens T.D., Werner M., Lassmann S. Epigenetics in esophageal cancers. Cell Tissue Res. 2014;356:643–655. doi: 10.1007/s00441-014-1876-y. PubMed DOI

Zhou C., Li J., Li Q. CDKN2A methylation in esophageal cancer: A meta-analysis. Oncotarget. 2017;8:50071–50083. doi: 10.18632/oncotarget.18412. PubMed DOI PMC

Guo M., Ren J., Brock M.V., Herman J.G., Carraway H.E. Promoter methylation of HIN-1 in the progression to esophageal squamous cancer. Epigenetics. 2008;3:336–341. doi: 10.4161/epi.3.6.7158. PubMed DOI

Lima S.C., Hernandez-Vargas H., Simao T., Durand G., Kruel C.D., Le Calvez-Kelm F., Ribeiro Pinto L.F., Herceg Z. Identification of a DNA methylome signature of esophageal squamous cell carcinoma and potential epigenetic biomarkers. Epigenetics. 2011;6:1217–1227. doi: 10.4161/epi.6.10.17199. PubMed DOI

Hibi K., Taguchi M., Nakayama H., Takase T., Kasai Y., Ito K., Akiyama S., Nakao A. Molecular detection of p16 promoter methylation in the serum of patients with esophageal squamous cell carcinoma. Clin. Cancer Res. 2001;7:3135–3138. PubMed

Li B., Wang B., Niu L.J., Jiang L., Qiu C.C. Hypermethylation of multiple tumor-related genes associated with DNMT3b up-regulation served as a biomarker for early diagnosis of esophageal squamous cell carcinoma. Epigenetics. 2011;6:307–316. doi: 10.4161/epi.6.3.14182. PubMed DOI PMC

Toh Y., Egashira A., Yamamoto M. Epigenetic alterations and their clinical implications in esophageal squamous cell carcinoma. Gen. Thorac. Cardiovasc. Surg. 2013;61:262–269. doi: 10.1007/s11748-013-0235-3. PubMed DOI

Zare M., Jazii F.R., Alivand M.R., Nasseri N.K., Malekzadeh R., Yazdanbod M. Qualitative analysis of Adenomatous Polyposis Coli promoter: Hypermethylation, engagement and effects on survival of patients with esophageal cancer in a high risk region of the world, a potential molecular marker. BMC Cancer. 2009;9:24. doi: 10.1186/1471-2407-9-24. PubMed DOI PMC

Ling Z.Q., Li P., Ge M.H., Zhao X., Hu F.J., Fang X.H., Dong Z.M., Mao W.M. Hypermethylation-modulated down-regulation of CDH1 expression contributes to the progression of esophageal cancer. Int. J. Mol. Med. 2011;27:625–635. doi: 10.3892/ijmm.2011.640. PubMed DOI

Lee E.J., Lee B.B., Han J., Cho E.Y., Shim Y.M., Park J., Kim D.H. CpG island hypermethylation of E-cadherin (CDH1) and integrin alpha4 is associated with recurrence of early stage esophageal squamous cell carcinoma. Int. J. Cancer. 2008;123:2073–2079. doi: 10.1002/ijc.23598. PubMed DOI

Cui L., Xu L.Y., Shen Z.Y., Tao Q., Gao S.Y., Lv Z., Du Z.P., Fang W.K., Li E.M. NGALR is overexpressed and regulated by hypomethylation in esophageal squamous cell carcinoma. Clin. Cancer Res. 2008;14:7674–7681. doi: 10.1158/1078-0432.CCR-08-0420. PubMed DOI

Wang B., Yin B.L., He B., Chen C., Zhao M., Zhang W., Xia Z.K., Pan Y., Tang J., Zhou X., et al. Overexpression of DNA damage-induced 45 alpha gene contributes to esophageal squamous cell cancer by promoter hypomethylation. J. Exp. Clin. Cancer Res. 2012;31:11. doi: 10.1186/1756-9966-31-11. PubMed DOI PMC

Iwagami S., Baba Y., Watanabe M., Shigaki H., Miyake K., Ishimoto T., Iwatsuki M., Sakamaki K., Ohashi Y., Baba H. LINE-1 hypomethylation is associated with a poor prognosis among patients with curatively resected esophageal squamous cell carcinoma. Ann. Surg. 2013;257:449–455. doi: 10.1097/SLA.0b013e31826d8602. PubMed DOI

Baba Y., Watanabe M., Murata A., Shigaki H., Miyake K., Ishimoto T., Iwatsuki M., Iwagami S., Yoshida N., Oki E., et al. LINE-1 hypomethylation, DNA copy number alterations, and CDK6 amplification in esophageal squamous cell carcinoma. Clin. Cancer Res. 2014;20:1114–1124. doi: 10.1158/1078-0432.CCR-13-1645. PubMed DOI

Kawano H., Saeki H., Kitao H., Tsuda Y., Otsu H., Ando K., Ito S., Egashira A., Oki E., Morita M., et al. Chromosomal instability associated with global DNA hypomethylation is associated with the initiation and progression of esophageal squamous cell carcinoma. Ann. Surg. Oncol. 2014;21(Suppl. S4):S696–S702. doi: 10.1245/s10434-014-3818-z. PubMed DOI

Kelly T.K., Miranda T.B., Liang G., Berman B.P., Lin J.C., Tanay A., Jones P.A. H2A.Z maintenance during mitosis reveals nucleosome shifting on mitotically silenced genes. Mol. Cell. 2010;39:901–911. doi: 10.1016/j.molcel.2010.08.026. PubMed DOI PMC

Fu L.N., Tan J., Chen Y.X., Fang J.Y. Genetic variants in the histone methylation and acetylation pathway and their risks in eight types of cancer. J. Dig. Dis. 2018 doi: 10.1111/1751-2980.12574. PubMed DOI

Herceg Z., Ushijima T. Introduction: Epigenetics and cancer. Adv. Genet. 2010;70:1–23. PubMed

Dawson M.A., Kouzarides T. Cancer epigenetics: From mechanism to therapy. Cell. 2012;150:12–27. doi: 10.1016/j.cell.2012.06.013. PubMed DOI

Vaissiere T., Sawan C., Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat. Res. 2008;659:40–48. doi: 10.1016/j.mrrev.2008.02.004. PubMed DOI

Toh Y., Yamamoto M., Endo K., Ikeda Y., Baba H., Kohnoe S., Yonemasu H., Hachitanda Y., Okamura T., Sugimachi K. Histone H4 acetylation and histone deacetylase 1 expression in esophageal squamous cell carcinoma. Oncol. Rep. 2003;10:333–338. doi: 10.3892/or.10.2.333. PubMed DOI

Toh Y., Ohga T., Endo K., Adachi E., Kusumoto H., Haraguchi M., Okamura T., Nicolson G.L. Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. Int. J. Cancer. 2004;110:362–367. doi: 10.1002/ijc.20154. PubMed DOI

Tzao C., Tung H.J., Jin J.S., Sun G.H., Hsu H.S., Chen B.H., Yu C.P., Lee S.C. Prognostic significance of global histone modifications in resected squamous cell carcinoma of the esophagus. Mod. Pathol. 2009;22:252–260. doi: 10.1038/modpathol.2008.172. PubMed DOI

I H., Ko E., Kim Y., Cho E.Y., Han J., Park J., Kim K., Kim D.H., Shim Y.M. Association of global levels of histone modifications with recurrence-free survival in stage IIB and III esophageal squamous cell carcinomas. Cancer Epidemiol. Biomarkers Prev. 2010;19:566–573. doi: 10.1158/1055-9965.EPI-09-0980. PubMed DOI

Guo Y., Chen Z., Zhang L., Zhou F., Shi S., Feng X., Li B., Meng X., Ma X., Luo M., et al. Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res. 2008;68:26–33. doi: 10.1158/0008-5472.CAN-06-4418. PubMed DOI

Yang H., Gu J., Wang K.K., Zhang W., Xing J., Chen Z., Ajani J.A., Wu X. MicroRNA expression signatures in Barrett’s esophagus and esophageal adenocarcinoma. Clin. Cancer Res. 2009;15:5744–5752. doi: 10.1158/1078-0432.CCR-09-0385. PubMed DOI PMC

Liu S.G., Qin X.G., Zhao B.S., Qi B., Yao W.J., Wang T.Y., Li H.C., Wu X.N. Differential expression of miRNAs in esophageal cancer tissue. Oncol. Lett. 2013;5:1639–1642. doi: 10.3892/ol.2013.1251. PubMed DOI PMC

Sakai N.S., Samia-Aly E., Barbera M., Fitzgerald R.C. A review of the current understanding and clinical utility of miRNAs in esophageal cancer. Semin. Cancer Biol. 2013;23:512–521. doi: 10.1016/j.semcancer.2013.08.005. PubMed DOI

Huang J., Zhang S.Y., Gao Y.M., Liu Y.F., Liu Y.B., Zhao Z.G., Yang K. MicroRNAs as oncogenes or tumour suppressors in oesophageal cancer: Potential biomarkers and therapeutic targets. Cell Prolif. 2014;47:277–286. doi: 10.1111/cpr.12109. PubMed DOI PMC

Bobryshev Y.V., Orekhov A.N., Chistiakov D.A. MicroRNAs in Esophageal Adenocarcinoma: Functional Significance and Potential for the Development of New Molecular Disease Markers. Curr. Pharm. Des. 2015;21:3402–3416. doi: 10.2174/1381612821666150311124418. PubMed DOI

Hemmatzadeh M., Mohammadi H., Karimi M., Musavishenas M.H., Baradaran B. Differential role of microRNAs in the pathogenesis and treatment of Esophageal cancer. Biomed. Pharmacother. 2016;82:509–519. doi: 10.1016/j.biopha.2016.05.009. PubMed DOI

Vrana D., Matzenauer M., Aujesky R., Vrba R., Neoral C., Melichar B., Souček P. Potential predictive role of microRNAs in the neoadjuvant treatment of esophageal cancer. Anticancer Res. 2017;37:403–412. doi: 10.21873/anticanres.11332. PubMed DOI

Imanaka Y., Tsuchiya S., Sato F., Shimada Y., Shimizu K., Tsujimoto G. MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J. Hum. Genet. 2011;56:270–276. doi: 10.1038/jhg.2011.1. PubMed DOI

Hummel R., Watson D.I., Smith C., Kist J., Michael M.Z., Haier J., Hussey D.J. miR-148a improves response to chemotherapy in sensitive and resistant oesophageal adenocarcinoma and squamous cell carcinoma cells. J. Gastrointest. Surg. 2011;15:429–438. doi: 10.1007/s11605-011-1418-9. PubMed DOI

Hummel R., Sie C., Watson D.I., Wang T., Ansar A., Michael M.Z., Van der Hoek M., Haier J., Hussey D.J. MicroRNA signatures in chemotherapy resistant esophageal cancer cell lines. World J. Gastroenterol. 2014;20:14904–14912. doi: 10.3748/wjg.v20.i40.14904. PubMed DOI PMC

Hamano R., Miyata H., Yamasaki M., Kurokawa Y., Hara J., Moon J.H., Nakajima K., Takiguchi S., Fujiwara Y., Mori M., et al. Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway. Clin. Cancer Res. 2011;17:3029–3038. doi: 10.1158/1078-0432.CCR-10-2532. PubMed DOI

Sugimura K., Miyata H., Tanaka K., Hamano R., Takahashi T., Kurokawa Y., Yamasaki M., Nakajima K., Takiguchi S., Mori M., et al. Let-7 expression is a significant determinant of response to chemotherapy through the regulation of IL-6/STAT3 pathway in esophageal squamous cell carcinoma. Clin. Cancer Res. 2012;18:5144–5153. doi: 10.1158/1078-0432.CCR-12-0701. PubMed DOI

Wang Y., Zhao Y., Herbst A., Kalinski T., Qin J., Wang X., Jiang Z., Benedix F., Franke S., Wartman T., et al. miR-221 Mediates Chemoresistance of Esophageal Adenocarcinoma by Direct Targeting of DKK2 Expression. Ann. Surg. 2016;264:804–814. doi: 10.1097/SLA.0000000000001928. PubMed DOI

Zhang H., Li M., Han Y., Hong L., Gong T., Sun L., Zheng X. Down-regulation of miR-27a might reverse multidrug resistance of esophageal squamous cell carcinoma. Dig. Dis. Sci. 2010;55:2545–2551. doi: 10.1007/s10620-009-1051-6. PubMed DOI

Phatak P., Byrnes K.A., Mansour D., Liu L., Cao S., Li R., Rao J.N., Turner D.J., Wang J.Y., Donahue J.M. Overexpression of miR-214-3p in esophageal squamous cancer cells enhances sensitivity to cisplatin by targeting survivin directly and indirectly through CUG-BP1. Oncogene. 2016;35:2087–2097. doi: 10.1038/onc.2015.271. PubMed DOI PMC

Wu K., Yang Y., Zhao J., Zhao S. BAG3-mediated miRNA let-7g and let-7i inhibit proliferation and enhance apoptosis of human esophageal carcinoma cells by targeting the drug transporter ABCC10. Cancer Lett. 2016;371:125–133. doi: 10.1016/j.canlet.2015.11.031. PubMed DOI

Odenthal M., Bollschweiler E., Grimminger P.P., Schroder W., Brabender J., Drebber U., Holscher A.H., Metzger R., Vallbohmer D. MicroRNA profiling in locally advanced esophageal cancer indicates a high potential of miR-192 in prediction of multimodality therapy response. Int. J. Cancer. 2013;133:2454–2463. doi: 10.1002/ijc.28253. PubMed DOI

Jin Y.Y., Chen Q.J., Xu K., Ren H.T., Bao X., Ma Y.N., Wei Y., Ma H.B. Involvement of microRNA-141-3p in 5-fluorouracil and oxaliplatin chemo-resistance in esophageal cancer cells via regulation of PTEN. Mol. Cell. Biochem. 2016;422:161–170. doi: 10.1007/s11010-016-2816-9. PubMed DOI

Schwarzenbach H., Nishida N., Calin G.A., Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol. 2014;11:145–156. doi: 10.1038/nrclinonc.2014.5. PubMed DOI

Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosova-Agadjanyan E.L., Peterson A., Noteboom J., O’Briant K.C., Allen A., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA. 2008;105:10513–10518. doi: 10.1073/pnas.0804549105. PubMed DOI PMC

Zhang C., Wang C., Chen X., Yang C., Li K., Wang J., Dai J., Hu Z., Zhou X., Chen L., et al. Expression profile of microRNAs in serum: A fingerprint for esophageal squamous cell carcinoma. Clin. Chem. 2010;56:1871–1879. doi: 10.1373/clinchem.2010.147553. PubMed DOI

Komatsu S., Ichikawa D., Hirajima S., Kawaguchi T., Miyamae M., Okajima W., Ohashi T., Arita T., Konishi H., Shiozaki A., et al. Plasma microRNA profiles: Identification of miR-25 as a novel diagnostic and monitoring biomarker in oesophageal squamous cell carcinoma. Br. J. Cancer. 2014;111:1614–1624. doi: 10.1038/bjc.2014.451. PubMed DOI PMC

Kurashige J., Kamohara H., Watanabe M., Tanaka Y., Kinoshita K., Saito S., Hiyoshi Y., Iwatsuki M., Baba Y., Baba H. Serum microRNA-21 is a novel biomarker in patients with esophageal squamous cell carcinoma. J. Surg. Oncol. 2012;106:188–192. doi: 10.1002/jso.23064. PubMed DOI

Hirajima S., Komatsu S., Ichikawa D., Takeshita H., Konishi H., Shiozaki A., Morimura R., Tsujiura M., Nagata H., Kawaguchi T., et al. Clinical impact of circulating miR-18a in plasma of patients with oesophageal squamous cell carcinoma. Br. J. Cancer. 2013;108:1822–1829. doi: 10.1038/bjc.2013.148. PubMed DOI PMC

Sharma P., Saraya A., Gupta P., Sharma R. Decreased levels of circulating and tissue miR-107 in human esophageal cancer. Biomarkers. 2013;18:322–330. doi: 10.3109/1354750X.2013.781677. PubMed DOI

Liu R., Liao J., Yang M., Shi Y., Peng Y., Wang Y., Pan E., Guo W., Pu Y., Yin L. Circulating miR-155 expression in plasma: A potential biomarker for early diagnosis of esophageal cancer in humans. J. Toxicol. Environ. Health A. 2012;75:1154–1162. doi: 10.1080/15287394.2012.699856. PubMed DOI

Takeshita N., Hoshino I., Mori M., Akutsu Y., Hanari N., Yoneyama Y., Ikeda N., Isozaki Y., Maruyama T., Akanuma N., et al. Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br. J. Cancer. 2013;108:644–652. doi: 10.1038/bjc.2013.8. PubMed DOI PMC

Tanaka K., Miyata H., Yamasaki M., Sugimura K., Takahashi T., Kurokawa Y., Nakajima K., Takiguchi S., Mori M., Doki Y. Circulating miR-200c levels significantly predict response to chemotherapy and prognosis of patients undergoing neoadjuvant chemotherapy for esophageal cancer. Ann. Surg. Oncol. 2013;20(Suppl. S3):S607–S615. doi: 10.1245/s10434-013-3093-4. PubMed DOI

miRTarBase miRTarBase: The Experimentally Validated microRNA-Target Interactions Database. [(accessed on 26 January 2018)]; Available online: http://mirtarbase.mbc.nctu.edu.tw/php/index.php.

Haenisch S., Werk A.N., Cascorbi I. MicroRNAs and their relevance to ABC transporters. Br. J. Clin. Pharmacol. 2014;77:587–596. doi: 10.1111/bcp.12251. PubMed DOI PMC

Caliskan M., Guler H., Bozok Cetintas V. Current updates on microRNAs as regulators of chemoresistance. Biomed. Pharmacother. 2017;95:1000–1012. doi: 10.1016/j.biopha.2017.08.084. PubMed DOI

Shang Y., Zhang Z., Liu Z., Feng B., Ren G., Li K., Zhou L., Sun Y., Li M., Zhou J., et al. miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene. 2014;33:3267–3276. doi: 10.1038/onc.2013.297. PubMed DOI

Wu Q., Yang Z., Xia L., Nie Y., Wu K., Shi Y., Fan D. Methylation of miR-129-5p CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters. Oncotarget. 2014;5:11552–11563. doi: 10.18632/oncotarget.2594. PubMed DOI PMC

Tian S., Zhang M., Chen X., Liu Y., Lou G. MicroRNA-595 sensitizes ovarian cancer cells to cisplatin by targeting ABCB1. Oncotarget. 2016;7:87091–87099. doi: 10.18632/oncotarget.13526. PubMed DOI PMC

Ikemura K., Yamamoto M., Miyazaki S., Mizutani H., Iwamoto T., Okuda M. MicroRNA-145 post-transcriptionally regulates the expression and function of P-glycoprotein in intestinal epithelial cells. Mol. Pharmacol. 2013;83:399–405. doi: 10.1124/mol.112.081844. PubMed DOI

Huang T.C., Renuse S., Pinto S., Kumar P., Yang Y., Chaerkady R., Godsey B., Mendell J.T., Halushka M.K., Civin C.I., et al. Identification of miR-145 targets through an integrated omics analysis. Mol. Biosyst. 2015;11:197–207. doi: 10.1039/C4MB00585F. PubMed DOI PMC

Zhao L., Ren Y., Tang H., Wang W., He Q., Sun J., Zhou X., Wang A. Deregulation of the miR-222-ABCG2 regulatory module in tongue squamous cell carcinoma contributes to chemoresistance and enhanced migratory/invasive potential. Oncotarget. 2015;6:44538–44550. doi: 10.18632/oncotarget.6253. PubMed DOI PMC

Pogribny I.P., Filkowski J.N., Tryndyak V.P., Golubov A., Shpyleva S.I., Kovalchuk O. Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int. J. Cancer. 2010;127:1785–1794. doi: 10.1002/ijc.25191. PubMed DOI

Moscow J.A., Fairchild C.R., Madden M.J., Ransom D.T., Wieand H.S., O’Brien E.E., Poplack D.G., Cossman J., Myers C.E., Cowan K.H. Expression of anionic glutathione-S-transferase and P-glycoprotein genes in human tissues and tumors. Cancer Res. 1989;49:1422–1428. PubMed

Nakashima A., Okabayashi T., Nakatani S., Kataoka M., Johira H., Takeda A., Orita K. [Analysis of MDR1 (multidrug resistance) gene expression by RT-PCR] Gan Kagaku Ryoho. 1993;20:831–833. PubMed

Nooter K., Westerman A.M., Flens M.J., Zaman G.J., Scheper R.J., van Wingerden K.E., Burger H., Oostrum R., Boersma T., Sonneveld P., et al. Expression of the multidrug resistance-associated protein (MRP) gene in human cancers. Clin. Cancer Res. 1995;1:1301–1310. PubMed

Di Nicolantonio F., Mercer S.J., Knight L.A., Gabriel F.G., Whitehouse P.A., Sharma S., Fernando A., Glaysher S., Di Palma S., Johnson P., et al. Cancer cell adaptation to chemotherapy. BMC Cancer. 2005;5:78. doi: 10.1186/1471-2407-5-78. PubMed DOI PMC

Nooter K., Kok T., Bosman F.T., van Wingerden K.E., Stoter G. Expression of the multidrug resistance protein (MRP) in squamous cell carcinoma of the oesophagus and response to pre-operative chemotherapy. Eur. J. Cancer. 1998;34:81–86. doi: 10.1016/S0959-8049(97)00356-0. PubMed DOI

Milano F., Guarriera M., Rygiel A.M., Krishnadath K.K. Trastuzumab mediated T-cell response against HER-2/neu overexpressing esophageal adenocarcinoma depends on intact antigen processing machinery. PLoS ONE. 2010;5:e12424. doi: 10.1371/journal.pone.0012424. PubMed DOI PMC

Leichman L., Lawrence D., Leichman C.G., Nava H., Nava E., Proulx G., Clark K., Khushalani N.I., Berdzik J., Greco W., et al. Expression of genes related to activity of oxaliplatin and 5-fluorouracil in endoscopic biopsies of primary esophageal cancer in patients receiving oxaliplatin, 5-flourouracil and radiation: Characterization and exploratory analysis with survival. J. Chemother. 2006;18:514–524. doi: 10.1179/joc.2006.18.5.514. PubMed DOI

Dvorak K., Watts G.S., Ramsey L., Holubec H., Payne C.M., Bernstein C., Jenkins G.J., Sampliner R.E., Prasad A., Garewal H.S., et al. Expression of bile acid transporting proteins in Barrett’s esophagus and esophageal adenocarcinoma. Am. J. Gastroenterol. 2009;104:302–309. doi: 10.1038/ajg.2008.85. PubMed DOI PMC

Xu C.Q., Zhu S.T., Wang M., Guo S.L., Sun X.J., Cheng R., Xing J., Wang W.H., Shao L.L., Zhang S.T. Pathway analysis of differentially expressed genes in human esophageal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2015;19:1652–1661. PubMed

Xu D.D., Zhou P.J., Wang Y., Zhang L., Fu W.Y., Ruan B.B., Xu H.P., Hu C.Z., Tian L., Qin J.H., et al. Reciprocal activation between STAT3 and miR-181b regulates the proliferation of esophageal cancer stem-like cells via the CYLD pathway. Mol. Cancer. 2016;15:40. doi: 10.1186/s12943-016-0521-7. PubMed DOI PMC

Kim R., Hirabayashi N., Nishiyama M., Jinushi K., Toge T., Okada K. Factors contributing to adriamycin sensitivity in human xenograft tumors: The relationship between expression of the MDR1, GST-pi and topoisomerase II genes and tumor sensitivity to adriamycin. Anticancer Res. 1992;12:241–245. PubMed

Hu X., Akutsu Y., Suganami A., Qin W., Hanari N., Murakam K., Kano M., Usui A., Suito H., Takahashi M. Low-dose hyperthermia enhances the antitumor effects of chemotherapy in squamous cell carcinoma. Dis. Esophagus. 2017;30:1–7. doi: 10.1093/dote/dow026. PubMed DOI

Saito T., Hikita M., Kohno K., Sato S., Takano H., Kobayashi M. Different sensitivities of human esophageal cancer cells to multiple anti-cancer agents and related mechanisms. Cancer. 1992;70:2402–2409. doi: 10.1002/1097-0142(19921115)70:10<2402::AID-CNCR2820701005>3.0.CO;2-2. PubMed DOI

Oosthuizen M.M., Nel M.J., Greyling D. Heat shock treated oesophageal cancer cells become thermosensitized against anticancer drugs. Anticancer Res. 2000;20:2697–2703. PubMed

Murase M., Kodera Y., Kondo K., Sekiguchi H., Fujiwara M., Kasai Y., Akiyama S., Ito K., Takagi H. Expression of MRP and mdr1 in human gastrointestinal cancer cell lines: A correlation with resistance against doxorubicin. J. Surg. Oncol. 1996;61:223–229. doi: 10.1002/(SICI)1096-9098(199603)61:3<223::AID-JSO12>3.0.CO;2-8. PubMed DOI

Wen J., Zheng B., Hu Y., Zhang X., Yang H., Luo K.J., Zhang X., Li Y.F., Fu J.H. Establishment and biological analysis of the EC109/CDDP multidrug-resistant esophageal squamous cell carcinoma cell line. Oncol. Rep. 2009;22:65–71. PubMed

Wang T.H., Wan J.Y., Gong X., Li H.Z., Cheng Y. Tetrandrine enhances cytotoxicity of cisplatin in human drug-resistant esophageal squamous carcinoma cells by inhibition of multidrug resistance-associated protein 1. Oncol. Rep. 2012;28:1681–1686. doi: 10.3892/or.2012.1999. PubMed DOI

Ogawa R., Ishiguro H., Kuwabara Y., Kimura M., Mitsui A., Mori Y., Mori R., Tomoda K., Katada T., Harada K., et al. Identification of candidate genes involved in the radiosensitivity of esophageal cancer cells by microarray analysis. Dis. Esophagus. 2008;21:288–297. doi: 10.1111/j.1442-2050.2007.00759.x. PubMed DOI

Tanaka N., Kimura H., Faried A., Sakai M., Sano A., Inose T., Sohda M., Okada K., Nakajima M., Miyazaki T., et al. Quantitative analysis of cisplatin sensitivity of human esophageal squamous cancer cell lines using in-air micro-PIXE. Cancer Sci. 2010;101:1487–1492. doi: 10.1111/j.1349-7006.2010.01542.x. PubMed DOI PMC

Li X.R., Yang L.Z., Huo X.Q., Wang Y., Yang Q.H., Zhang Q.Q. Effects of silencing the ATP-binding cassette protein E1 gene by electroporation on the proliferation and migration of EC109 human esophageal cancer cells. Mol. Med. Rep. 2015;12:837–842. doi: 10.3892/mmr.2015.3512. PubMed DOI PMC

Minegaki T., Takara K., Hamaguchi R., Tsujimoto M., Nishiguchi K. Factors affecting the sensitivity of human-derived esophageal carcinoma cell lines to 5-fluorouracil and cisplatin. Oncol. Lett. 2013;5:427–434. doi: 10.3892/ol.2012.1014. PubMed DOI PMC

Dvorak P., Pesta M., Soucek P. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer. Tumour Biol. 2017;39:1010428317699800. doi: 10.1177/1010428317699800. PubMed DOI

Robey-Cafferty S.S., Rutledge M.L., Bruner J.M. Expression of a multidrug resistance gene in esophageal adenocarcinoma. Correlation with response to chemotherapy and comparison with gastric adenocarcinoma. Am. J. Clin. Pathol. 1990;93:1–7. doi: 10.1093/ajcp/93.1.1. PubMed DOI

Sur M., Taylor L., Cooper K., Sur R.K. Lack of correlation of P-glycoprotein expression with response to MIC chemotherapy in oesophageal cancer. J. Clin. Pathol. 1997;50:534. doi: 10.1136/jcp.50.6.534. PubMed DOI PMC

Darnton S.J., Jenner K., Steyn R.S., Ferry D.R., Matthews H.R. Lack of correlation of P-glycoprotein expression with response to MIC chemotherapy in oesophageal cancer. J. Clin. Pathol. 1995;48:1064–1066. doi: 10.1136/jcp.48.11.1064. PubMed DOI PMC

Wang R., Sumarpo A., Saiki Y., Chen N., Sunamura M., Horii A. ABCB1 Is Upregulated in Acquisition of Taxane Resistance: Lessons from Esophageal Squamous Cell Carcinoma Cell Lines. Tohoku J. Exp. Med. 2016;240:295–301. doi: 10.1620/tjem.240.295. PubMed DOI

Wang Y., Chen Q., Jin S., Deng W., Li S., Tong Q., Chen Y. Up-regulation of P-glycoprotein is involved in the increased paclitaxel resistance in human esophageal cancer radioresistant cells. Scand. J. Gastroenterol. 2012;47:802–808. doi: 10.3109/00365521.2012.683042. PubMed DOI

Takebayashi Y., Akiyama S., Natsugoe S., Hokita S., Niwa K., Kitazono M., Sumizawa T., Tani A., Furukawa T., Aikou T. The expression of multidrug resistance protein in human gastrointestinal tract carcinomas. Cancer. 1998;82:661–666. doi: 10.1002/(SICI)1097-0142(19980215)82:4<661::AID-CNCR7>3.0.CO;2-O. PubMed DOI

Zhang S., Cao W., Yue M., Zheng N., Hu T., Yang S., Dong Z., Lu S., Mo S. Caveolin-1 affects tumor drug resistance in esophageal squamous cell carcinoma by regulating expressions of P-gp and MRP1. Tumour Biol. 2016;37:9189–9196. doi: 10.1007/s13277-015-4778-z. PubMed DOI

Bharthuar A., Saif Ur Rehman S., Black J.D., Levea C., Malhotra U., Mashtare T.L., Iyer R. Breast cancer resistance protein (BCRP) and excision repair cross complement-1 (ERCC1) expression in esophageal cancers and response to cisplatin and irinotecan based chemotherapy. J. Gastrointest. Oncol. 2014;5:253–258. PubMed PMC

Huang L., Lu Q., Han Y., Li Z., Zhang Z., Li X. ABCG2/V-ATPase was associated with the drug resistance and tumor metastasis of esophageal squamous cancer cells. Diagn. Pathol. 2012;7:180. doi: 10.1186/1746-1596-7-180. PubMed DOI PMC

Zhang M., Mathur A., Zhang Y., Xi S., Atay S., Hong J.A., Datrice N., Upham T., Kemp C.D., Ripley R.T., et al. Mithramycin represses basal and cigarette smoke-induced expression of ABCG2 and inhibits stem cell signaling in lung and esophageal cancer cells. Cancer Res. 2012;72:4178–4192. doi: 10.1158/0008-5472.CAN-11-3983. PubMed DOI PMC

To K.K., Yu L., Liu S., Fu J., Cho C.H. Constitutive AhR activation leads to concomitant ABCG2-mediated multidrug resistance in cisplatin-resistant esophageal carcinoma cells. Mol. Carcinog. 2012;51:449–464. doi: 10.1002/mc.20810. PubMed DOI

Liu L., Zuo L.F., Guo J.W. ABCG2 gene amplification and expression in esophageal cancer cells with acquired adriamycin resistance. Mol. Med. Rep. 2014;9:1299–1304. doi: 10.3892/mmr.2014.1949. PubMed DOI

Liu L., Ju Y., Wang J., Zhou R. Epigallocatechin-3-gallate promotes apoptosis and reversal of multidrug resistance in esophageal cancer cells. Pathol. Res. Pract. 2017;213:1242–1250. doi: 10.1016/j.prp.2017.09.006. PubMed DOI

Pisarev A.V., Skabkin M.A., Pisareva V.P., Skabkina O.V., Rakotondrafara A.M., Hentze M.W., Hellen C.U., Pestova T.V. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell. 2010;37:196–210. doi: 10.1016/j.molcel.2009.12.034. PubMed DOI PMC

Xu J., Hu Z. Y-box-binding protein 1 promotes tumor progression and inhibits cisplatin chemosensitivity in esophageal squamous cell carcinoma. Biomed. Pharmacother. 2016;79:17–22. doi: 10.1016/j.biopha.2016.01.037. PubMed DOI

Shen Y., Wang Q., Tian Y. Reversal effect of ouabain on multidrug resistance in esophageal carcinoma EC109/CDDP cells by inhibiting the translocation of Wnt/beta-catenin into the nucleus. Tumour Biol. 2016;37:15937–15947. doi: 10.1007/s13277-016-5437-8. PubMed DOI

Liu X., Yan Y., Ma W., Wu S. Knockdown of frizzled-7 inhibits cell growth and metastasis and promotes chemosensitivity of esophageal squamous cell carcinoma cells by inhibiting Wnt signaling. Biochem. Biophys. Res. Commun. 2017;490:1112–1118. doi: 10.1016/j.bbrc.2017.06.185. PubMed DOI

Sims-Mourtada J., Izzo J.G., Ajani J., Chao K.S. Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene. 2007;26:5674–5679. doi: 10.1038/sj.onc.1210356. PubMed DOI

Takakura Y., Hinoi T., Oue N., Sasada T., Kawaguchi Y., Okajima M., Akyol A., Fearon E.R., Yasui W., Ohdan H. CDX2 regulates multidrug resistance 1 gene expression in malignant intestinal epithelium. Cancer Res. 2010;70:6767–6778. doi: 10.1158/0008-5472.CAN-09-4701. PubMed DOI PMC

Yang L., Zhang X., Zhang M., Zhang J., Sheng Y., Sun X., Chen Q., Wang L.X. Increased Nanog expression promotes tumor development and Cisplatin resistance in human esophageal cancer cells. Cell. Physiol. Biochem. 2012;30:943–952. doi: 10.1159/000341471. PubMed DOI

Deng L., Xiang X., Yang F., Xiao D., Liu K., Chen Z., Zhang R., Feng G. Functional evidence that the self-renewal gene NANOG regulates esophageal squamous cancer development. Biochem. Biophys. Res. Commun. 2017;490:161–168. doi: 10.1016/j.bbrc.2017.06.016. PubMed DOI

Huang D., Gao Q., Guo L., Zhang C., Jiang W., Li H., Wang J., Han X., Shi Y., Lu S.H. Isolation and identification of cancer stem-like cells in esophageal carcinoma cell lines. Stem Cells Dev. 2009;18:465–473. doi: 10.1089/scd.2008.0033. PubMed DOI

Jimenez P., Chueca E., Arruebo M., Strunk M., Solanas E., Serrano T., Garcia-Gonzalez M.A., Lanas A. CD24 Expression Is Increased in 5-Fluorouracil-Treated Esophageal Adenocarcinoma Cells. Front. Pharmacol. 2017;8:321. doi: 10.3389/fphar.2017.00321. PubMed DOI PMC

Zhao Y., Bao Q., Schwarz B., Zhao L., Mysliwietz J., Ellwart J., Renner A., Hirner H., Niess H., Camaj P., et al. Stem cell-like side populations in esophageal cancer: A source of chemotherapy resistance and metastases. Stem Cells Dev. 2014;23:180–192. doi: 10.1089/scd.2013.0103. PubMed DOI

Cerovska E., Elsnerova K., Vaclavikova R., Soucek P. The role of membrane transporters in ovarian cancer chemoresistance and prognosis. Expert Opin. Drug Metab. Toxicol. 2017;13:741–753. doi: 10.1080/17425255.2017.1332179. PubMed DOI

Xiong T., Xu G., Huang X.L., Lu K.Q., Xie W.Q., Yin K., Tu J. ATP-binding cassette transporter A1: A promising therapy target for prostate cancer. Mol. Clin. Oncol. 2018;8:9–14. doi: 10.3892/mco.2017.1506. PubMed DOI PMC

Tian C., Huang D., Yu Y., Zhang J., Fang Q., Xie C. ABCG1 as a potential oncogene in lung cancer. Exp. Ther. Med. 2017;13:3189–3194. doi: 10.3892/etm.2017.4393. PubMed DOI PMC

Hlavac V., Soucek P. Role of family D ATP-binding cassette transporters (ABCD) in cancer. Biochem. Soc. Trans. 2015;43:937–942. doi: 10.1042/BST20150114. PubMed DOI

Vogelstein B., Papadopoulos N., Velculescu V.E., Zhou S., Diaz L.A., Jr., Kinzler K.W. Cancer genome landscapes. Science. 2013;339:1546–1558. doi: 10.1126/science.1235122. PubMed DOI PMC

Dai X., Xiang L., Li T., Bai Z. Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes. J. Cancer. 2016;7:1281–1294. doi: 10.7150/jca.13141. PubMed DOI PMC

Wang F., Chen Y., Huang L., Liu T., Huang Y., Zhao J., Wang X., Yang K., Ma S., Huang L., et al. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells. Oncotarget. 2015;6:40850–40865. doi: 10.18632/oncotarget.5813. PubMed DOI PMC

Chen Z., Chen Y., Xu M., Chen L., Zhang X., To K.K., Zhao H., Wang F., Xia Z., Chen X., et al. Osimertinib (AZD9291) Enhanced the Efficacy of Chemotherapeutic Agents in ABCB1- and ABCG2-Overexpressing Cells In Vitro, In Vivo, and Ex Vivo. Mol. Cancer Ther. 2016;15:1845–1858. doi: 10.1158/1535-7163.MCT-15-0939. PubMed DOI

Wu T., Chen Z., To K.K.W., Fang X., Wang F., Cheng B., Fu L. Effect of abemaciclib (LY2835219) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Biochem. Pharmacol. 2017;124:29–42. doi: 10.1016/j.bcp.2016.10.015. PubMed DOI

Suntharalingam M., Winter K., Ilson D., Dicker A.P., Kachnic L., Konski A., Chakravarthy A.B., Anker C.J., Thakrar H., Horiba N., et al. Effect of the Addition of Cetuximab to Paclitaxel, Cisplatin, and Radiation Therapy for Patients with Esophageal Cancer: The NRG Oncology RTOG 0436 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2017;3:1520–1528. doi: 10.1001/jamaoncol.2017.1598. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

From Tumor Immunology to Immunotherapy in Gastric and Esophageal Cancer

. 2018 Dec 20 ; 20 (1) : . [epub] 20181220

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...