Phasor analysis of NADH FLIM identifies pharmacological disruptions to mitochondrial metabolic processes in the rodent cerebral cortex
Language English Country United States Media electronic-ecollection
Document type Comparative Study, Evaluation Study, Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 NS057476
NINDS NIH HHS - United States
R01 EB000790
NIBIB NIH HHS - United States
R01 NS057198
NINDS NIH HHS - United States
R01 NS091230
NINDS NIH HHS - United States
R00 AG042026
NIA NIH HHS - United States
R01 EB021018
NIBIB NIH HHS - United States
P01 NS055104
NINDS NIH HHS - United States
R01 MH111359
NIMH NIH HHS - United States
PubMed
29561904
PubMed Central
PMC5862490
DOI
10.1371/journal.pone.0194578
PII: PONE-D-17-34542
Knihovny.cz E-resources
- MeSH
- Bicuculline analogs & derivatives pharmacology MeSH
- Biomarkers metabolism MeSH
- Models, Biological MeSH
- Rodentia physiology MeSH
- Intravital Microscopy methods MeSH
- Humans MeSH
- Microscopy, Fluorescence, Multiphoton methods MeSH
- Mitochondria drug effects metabolism MeSH
- Disease Models, Animal MeSH
- Cerebral Cortex drug effects metabolism MeSH
- NAD metabolism MeSH
- Nonlinear Dynamics MeSH
- Rats, Sprague-Dawley MeSH
- Seizures chemically induced diagnostic imaging metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Comparative Study MeSH
- Names of Substances
- bicuculline methiodide MeSH Browser
- Bicuculline MeSH
- Biomarkers MeSH
- NAD MeSH
Investigating cerebral metabolism in vivo at a microscopic level is essential for understanding brain function and its pathological alterations. The intricate signaling and metabolic dynamics between neurons, glia, and microvasculature requires much more detailed understanding to better comprehend the mechanisms governing brain function and its disease-related changes. We recently demonstrated that pharmacologically-induced alterations to different steps of cerebral metabolism can be distinguished utilizing 2-photon fluorescence lifetime imaging of endogenous reduced nicotinamide adenine dinucleotide (NADH) fluorescence in vivo. Here, we evaluate the ability of the phasor analysis method to identify these pharmacological metabolic alterations and compare the method's performance with more conventional nonlinear curve-fitting analysis. Visualization of phasor data, both at the fundamental laser repetition frequency and its second harmonic, enables resolution of pharmacologically-induced alterations to mitochondrial metabolic processes from baseline cerebral metabolism. Compared to our previous classification models based on nonlinear curve-fitting, phasor-based models required fewer parameters and yielded comparable or improved classification accuracy. Fluorescence lifetime imaging of NADH and phasor analysis shows utility for detecting metabolic alterations and will lead to a deeper understanding of cerebral energetics and its pathological changes.
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Department of Neurosciences and Radiology UC San Diego La Jolla CA United States of America
See more in PubMed
Atwell D, Laughlin SB. An Energy Budget for Signaling in the Grey Matter of the Brain. J Cereb Blood Flow Metab. 2001;21: 1133–1145. doi: 10.1097/00004647-200110000-00001 PubMed DOI
Kann O, Kovács R. Mitochondria and neuronal activity. Am J Physiol—Cell Physiol. 2007;292: C641–C657. doi: 10.1152/ajpcell.00222.2006 PubMed DOI
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nat Lond. 2006;443: 787–795. PubMed
Heikal AA. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark Med. 2010;4: 241–263. doi: 10.2217/bmm.10.1 PubMed DOI PMC
Xie H, Guan J, Borrelli LA, Xu J, Serrano-Pozo A, Bacskai BJ. Mitochondrial Alterations near Amyloid Plaques in an Alzheimer’s Disease Mouse Model. J Neurosci. 2013;33: 17042–17051. doi: 10.1523/JNEUROSCI.1836-13.2013 PubMed DOI PMC
Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004;25: 365–451. doi: 10.1016/j.mam.2004.03.001 PubMed DOI
Takeda Y, Zhao L, Jacewicz M, Pulsinelli WA, Nowak TS. Metabolic and perfusion responses to recurrent peri-infarct depolarization during focal ischemia in the Spontaneously Hypertensive Rat: dominant contribution of sporadic CBF decrements to infarct expansion. J Cereb Blood Flow Metab. 2011;31: 1863–1873. doi: 10.1038/jcbfm.2011.62 PubMed DOI PMC
Svoboda K, Yasuda R. Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience. Neuron. 2006;50: 823–839. doi: 10.1016/j.neuron.2006.05.019 PubMed DOI
Kerr JND, Denk W. Imaging in vivo: watching the brain in action. Nat Rev Neurosci. 2008;9: 195–205. doi: 10.1038/nrn2338 PubMed DOI
Shih AY, Driscoll JD, Drew PJ, Nishimura N, Schaffer CB, Kleinfeld D. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab. 2012;32: 1277–1309. doi: 10.1038/jcbfm.2011.196 PubMed DOI PMC
Huang S, Heikal AA, Webb WW. Two-Photon Fluorescence Spectroscopy and Micoscopy of NAD(P)H and Flavoprotein. Biophys J. 2002;82: 2811–2825. doi: 10.1016/S0006-3495(02)75621-X PubMed DOI PMC
Kasischke KA, Lambert EM, Panepento B, Sun A, Gelbard HA, Burgess RW, et al. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. J Cereb Blood Flow Metab. 2011;31: 68–81. doi: 10.1038/jcbfm.2010.158 PubMed DOI PMC
Chance B, Cohen P, Jobsis F, Schoener B. Intracellular Oxidation-Reduction States in Vivo. Science. 1962;137: 499–508. PubMed
Becker W. Advanced time-correlated single photon counting techniques Berlin, Heidelberg, New York: Springer; 2005.
Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML. Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A. 1992;89: 1271–1275. PubMed PMC
Vishwasrao HD, Heikal AA, Kasischke KA, Webb WW. Conformational Dependence of Intracellular NADH on Metabolic State Revealed by Associated Fluorescence Anisotropy. J Biol Chem. 2005;280: 25119–25126. doi: 10.1074/jbc.M502475200 PubMed DOI
Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ, Szabadkai G, et al. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun. 2014;5: 3936 doi: 10.1038/ncomms4936 PubMed DOI PMC
Yaseen MA, Sakadžić S, Wu W, Becker W, Kasischke KA, Boas DA. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH. Biomed Opt Express. 2013;4: 307–321. doi: 10.1364/BOE.4.000307 PubMed DOI PMC
Yaseen MA, Sutin J, Wu W, Fu B, Uhlirova H, Devor A, et al. Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo. Biomed Opt Express. 2017;8: 2368 doi: 10.1364/BOE.8.002368 PubMed DOI PMC
Ma HT, Wu CH, Wu JY. Initiation of spontaneous epileptiform events in the rat neocortex in vivo. J Neurophysiol. 2004;91: 934–945. doi: 10.1152/jn.00274.2003 PubMed DOI PMC
Clayton AHA, Hanley QS, Verveer PJ. Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data. J Microsc. 2004;213: 1–5. doi: 10.1111/j.1365-2818.2004.01265.x PubMed DOI
Redford GI, Clegg RM. Polar Plot Representation for Frequency-Domain Analysis of Fluorescence Lifetimes. J Fluoresc. 2005;15: 805–815. doi: 10.1007/s10895-005-2990-8 PubMed DOI
Digman MA, Caiolfa VR, Zamai M, Gratton E. The phasor approach to fluorescence lifetime imaging analysis. Biophys J. 2008;94: L14–L16. doi: 10.1529/biophysj.107.120154 PubMed DOI PMC
Yaseen MA, Srinivasan VJ, Gorczynska I, Fujimoto JG, Boas DA, Sakadzic S. Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism. Biomed Opt Express. 2015;6: 4994–5007. doi: 10.1364/BOE.6.004994 PubMed DOI PMC
Cao R, Higashikubo BT, Cardin J, Knoblich U, Ramos R, Nelson MT, et al. Pinacidil induces vascular dilation and hyperemia in vivo and does not impact biophysical properties of neurons and astrocytes in vitro. Cleve Clin J Med. 2009;76: S80–S85. doi: 10.3949/ccjm.76.s2.16 PubMed DOI PMC
Nimmerjahn A, Kirchoff F, Kerr JND, Helmchen F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods. 2004;1: 1–7. PubMed
Stringari C, Cinquin A, Cinquin O, Digman M, Donovan PJ, Gratton E. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci U S A. 2011;108: 13582–13587. doi: 10.1073/pnas.1108161108 PubMed DOI PMC
Chen W, Avezov E, Schlachter SC, Gielen F, Laine RF, Harding HP, et al. A Method to Quantify FRET Stoichiometry with Phasor Plot Analysis and Acceptor Lifetime Ingrowth. Biophys J. 2015;108: 999–1002. doi: 10.1016/j.bpj.2015.01.012 PubMed DOI PMC
Eichorst JP, Wen Teng K, Clegg RM. Polar Plot Representation of Time-Resolved Fluorescence In: Engelborghs Y, Visser AJWG, editors. Fluorescence Spectroscopy and Microscopy. Totowa, NJ: Humana Press; 2014. pp. 97–112. doi: 10.1007/978-1-62703-649-8_6 PubMed DOI
Oja H, Randles RH. Multivariate Nonparametric Tests. Stat Sci. 2004;19: 598–605. doi: 10.1214/088342304000000558 DOI
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning [Internet]. New York, NY: Springer; New York; 2009. Available: http://link.springer.com/10.1007/978-0-387-84858-7 DOI
Wright BK, Andrews LM, Jones MR, Stringari C, Digman MA, Gratton E. Phasor-flim analysis of NADH distribution and localization in the nucleus of live progenitor myoblast cells. Microsc Res Tech. 2012;75: 1717–1722. doi: 10.1002/jemt.22121 PubMed DOI PMC
Pouli D, Balu M, Alonzo CA, Liu Z, Quinn KP, Rius-Diaz F, et al. Imaging mitochondrial dynamics in human skin reveals depth-dependent hypoxia and malignant potential for diagnosis. Sci Transl Med. 2016;8: 367ra169-367ra169. doi: 10.1126/scitranslmed.aag2202 PubMed DOI PMC
Stringari C, Nourse JL, Flanagan LA, Gratton E. Phasor Fluorescence Lifetime Microscopy of Free and Protein-Bound NADH Reveals Neural Stem Cell Differentiation Potential. Pant AB, editor. PLoS ONE. 2012;7: e48014 doi: 10.1371/journal.pone.0048014 PubMed DOI PMC
Niesner R, Beker B, Schlüsche P, Gericke K-H. Noniterative Biexponential Fluorescence Lifetime Imaging in the Investigation of Cellular Metabolism by Means of NAD(P)H Autofluorescence. ChemPhysChem Eur J Chem Phys Phys Chem. 2004;5: 1141–1149. PubMed
Wang B, Shi W, Miao Z. Confidence Analysis of Standard Deviational Ellipse and Its Extension into Higher Dimensional Euclidean Space. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0118537 PubMed DOI PMC
Yuill RS. The Standard Deviational Ellipse; An Updated Tool for Spatial Description. Geogr Ann Ser B Hum Geogr. 1971;53: 28 doi: 10.2307/490885 DOI
Yu Q, Heikal AA. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. J Photochem Photobiol B. 2009;95: 46–57. doi: 10.1016/j.jphotobiol.2008.12.010 PubMed DOI PMC
Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW. Neural Activity Triggers Neuronal Oxidative Metabolism Followed by Astrocytic Glycolysis. Science. 2004;305: 99–103. doi: 10.1126/science.1096485 PubMed DOI
Ghukasyan VV, Kao F-J. Monitoring Cellular Metabolism with Fluorescence Lifetime of Reduced Nicotinamide Adenine Dinucleotide. J Phys Chem C. 2009;113: 11532–11540.
Chance B, Thorell B. Localization and Kinetics of Reduced Pyridine Nucleotide in Living Cells by Microfluorimetry. J Biol Chem. 1959;234: 3044–3050. PubMed
Beal MF. Mitochondria Take Center Stage in Aging and Neurodegeneration. Ann Neurol. 2005;58: 495–505. doi: 10.1002/ana.20624 PubMed DOI