• This record comes from PubMed

Large-scale assessment of commensalistic-mutualistic associations between African birds and herbivorous mammals using internet photos

. 2018 ; 6 () : e4520. [epub] 20180319

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Birds sitting or feeding on live large African herbivorous mammals are a visible, yet quite neglected, type of commensalistic-mutualistic association. Here, we investigate general patterns in such relationships at large spatial and taxonomic scales. To obtain large-scale data, an extensive internet-based search for photos was carried out on Google Images. To characterize patterns of the structural organization of commensalistic-mutualistic associations between African birds and herbivorous mammals, we used a network analysis approach. We then employed phylogenetically-informed comparative analysis to explore whether features of bird visitation of mammals, i.e., their mean number, mass and species richness per mammal species, are shaped by a combination of host mammal (body mass and herd size) and environmental (habitat openness) characteristics. We found that the association web structure was only weakly nested for commensalistic as well as for mutualistic birds (oxpeckers Buphagus spp.) and African mammals. Moreover, except for oxpeckers, nestedness did not differ significantly from a null model indicating that birds do not prefer mammal species which are visited by a large number of bird species. In oxpeckers, however, a nested structure suggests a non-random assignment of birds to their mammal hosts. We also identified some new or rare associations between birds and mammals, but we failed to find several previously described associations. Furthermore, we found that mammal body mass positively influenced the number and mass of birds observed sitting on them in the full set of species (i.e., taking oxpeckers together with other bird species). We also found a positive correlation between mammal body mass and mass of non-oxpecker species as well as oxpeckers. Mammal herd size was associated with a higher mass of birds in the full set of species as well as in non-oxpecker species, and mammal species living in larger herds also attracted more bird species in the full set of species. Habitat openness influenced the mass of birds sitting on mammals as well as the number of species recorded sitting on mammals in the full set of species. In non-oxpecker species habitat openness was correlated with the bird number, mass and species richness. Our results provide evidence that patterns of bird-mammal associations can be linked to mammal and environmental characteristics and highlight the potential role of information technologies and new media in further studies of ecology and evolution. However, further study is needed to get a proper insight into the biological and methodological processes underlying the observed patterns.

See more in PubMed

Almeida-Neto M, Guimarães P, Guimarães PR, Loyola RD, Ulrich WA. Consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos. 2008;117:1227–1239. doi: 10.1111/j.0030-1299.2008.16644.x. DOI

Almeida-Neto M, Ulrich W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling & Software. 2011;26:173–178. doi: 10.1016/j.envsoft.2010.08.003. DOI

Anderson TM, White S, Davis B, Erhardt R, Palmer M, Swanson A, Kosmala M, Packer C. The spatial distribution of African savannah herbivores: species associations and habitat occupancy in a landscape context. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016;371:20150314. doi: 10.1098/rstb.2015.0314. PubMed DOI PMC

Bascompte J, Jordano P, Melián CJ, Olesen JM. The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:9383–9387. doi: 10.1073/pnas.1633576100. PubMed DOI PMC

Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature. 2009;458:1018–1020. doi: 10.1038/nature07950. PubMed DOI

Begon M, Townsend CR, Harper JL. Ecology. From individuals to ecosystems. 4th edition Blackwell Publishing; Oxford: 2006.

Bezuidenhout JD, Stutterheim CJ. A critical evaluation of the role played by the red-billed oxpecker Buphagus erythrorhynchus in the biological control of ticks. Onderstepoort Journal of Veterinary Research. 2009;47:51–75. PubMed

Bonney R, Cooper CB, Dickinson J, Kelling S, Phillips T, Rosenberg KV, Shirk J. Citizen science: a developing tool for expanding science knowledge and scientific literacy. BioScience. 2009;59:977–984. doi: 10.1525/bio.2009.59.11.9. DOI

Bräger S. Feeding associations between white-fronted terns and Hector’s dolphins in New Zealand. The Condor. 1998;100:560–562. doi: 10.2307/1369725. DOI

Carroll JE, Schmidtmann ET. Dispersal of blacklegged tick (Acari: Ixodidae) nymphs and adults at the woods–pasture interface. Journal of Medical Entomology. 1996;33:554–558. doi: 10.1093/jmedent/33.4.554. PubMed DOI

Clucas B, McHugh K, Caro T. Flagship species on covers of US conservation and nature magazines. Biodiversity and Conservation. 2008;17:1517–1528. doi: 10.1007/s10531-008-9361-0. DOI

Dale J. The effect of the removal of buffalo Syncerus caffer (Sparman 1779) on the host selection of yellow-billed oxpeckers Buphagus africanus Linnaeus 1766 in Zimbabwe. Tropical Zoology. 1992;5:19–23. doi: 10.1080/03946975.1992.10539178. DOI

D’Angelo GB, Sazima I. Commensal association of piscivorous birds with foraging otters in southeastern Brazil, and a comparison with such a relationship of piscivorous birds with cormorants. Journal of Natural History. 2014;48:241–249. doi: 10.1080/00222933.2013.808714. DOI

Dean WRJ, MacDonald IAW. A review of African birds feeding in association with mammals. Ostrich. 1981;52:135–155. doi: 10.1080/00306525.1981.9633599. DOI

Dickinson JL, Zuckerberg B, Bonter DN. Citizen science as an ecological research tool: challenges and benefits. Annual Review of Ecology, Evolution, and Systematics. 2010;41:149–172. doi: 10.1146/annurev-ecolsys-102209-144636. DOI

Dormann CF, Fründ J, Blüthgen N, Gruber B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecology Journal. 2009;2:7–24. doi: 10.2174/1874213000902010007. DOI

Dylewski Ł, Mikula P, Tryjanowski P, Morelli F, Yosef R. Social media and scientific research are complementary—YouTube and shrikes as a case study. Science of Nature. 2017;104:48. doi: 10.1007/s00114-017-1470-8. PubMed DOI PMC

Encyclopedia of Life (EOL) Encyclopedia of life. http://www.eol.org. [10 April 2016]. 2016. http://www.eol.org

Feare C, Craig A. Starlings and mynas. Princeton University Press; Princeton: 2010.

Forstmeier W, Schielzeth H. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behavioral Ecology and Sociobiology. 2011;65:47–55. doi: 10.1007/s00265-010-1038-5. PubMed DOI PMC

Freckleton RP, Harvey PH, Pagel M. Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist. 2002;160:712–726. doi: 10.1086/343873. PubMed DOI

Galetti M, Moleón M, Jordano P, Pires MM, Guimarães PR, Pape T, Nichols E, Hansen D, Olesen JM, Munk M, Mattos JS, Schweiger AH, Owen-Smith N, Johnson CN, Marquis RJ, Svenning J-CJS. Ecological and evolutionary legacy of megafauna extinctions. Biological Reviews. 2017 doi: 10.1111/brv.12374. Epub ahead of print Oct 9 2017. PubMed DOI

Gallivan GJ, Horak IG. Body size and habitat as determinants of tick infestations of wild ungulates in South Africa. South African Journal of Wildlife Research. 1997;27:63–70.

Garamszegi LZ, Møller AP. Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biological Reviews. 2010;85:797–805. doi: 10.1111/j.1469-185X.2010.00126.x. PubMed DOI

Goodale E, Beauchamp G, Ruxton GD. Mixed-species animal groups: behavior, community ecology and conservation. Academic Press; London: 2017.

Gotelli NJ, Colwell RK. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters. 2001;4:379–391. doi: 10.1046/j.1461-0248.2001.00230.x. DOI

Guimarães PR, Rico-Gray V, Dos Reis SF, Thompson JN. Asymmetries in specialization in ant–plant mutualistic networks. Proceedings of the Royal Society B: Biological Sciences. 2006;273:2041–2047. doi: 10.1098/rspb.2006.3548. PubMed DOI PMC

Hart BL, Hart LA, Mooring MS. Differential foraging of oxpeckers on impala in comparison with sympatric antelope species. African Journal of Ecology. 1990;28:240–249. doi: 10.1111/j.1365-2028.1990.tb01157.x. DOI

Hausmann A, Toivonen T, Slotow R, Tenkanen H, Moilanen A, Heikinheimo V, Di Minin E. Social media data can be used to understand tourists’ preferences for nature-based experiences in protected areas. Conservation Letters. 2017;11:e12343. doi: 10.1111/conl.12343. DOI

HBW Alive Handbook of the birds of the world alive. 2016. [9 April 2016]. Barcelona: Lynx Edicions. http://www.hbw.com .

Heatwole H. Some aspects of the association of cattle egrets with cattle. Animal Behaviour. 1965;13:79–83. doi: 10.1016/0003-3472(65)90075-8. DOI

Hedges SB, Marin J, Suleski M, Paymer M, Kumar S. Tree of life reveals clock-like speciation and diversification. Molecular Biology and Evolution. 2015;32:835–845. doi: 10.1093/molbev/msv037. PubMed DOI PMC

Hempson GP, Archibald S, Bond WJ. The consequences of replacing wildlife with livestock in Africa. Scientific Reports. 2017;7:17196. doi: 10.1038/s41598-017-17348-4. PubMed DOI PMC

Heymann EW, Hsia SS. Unlike fellows–a review of primate–non-primate associations. Biological Reviews. 2015;90:142–156. doi: 10.1111/brv.12101. PubMed DOI

Hugo S, Altwegg R. The second Southern African Bird Atlas Project: causes and consequences of geographical sampling bias. Ecology and Ecolution. 2017;7:6839–6849. doi: 10.1002/ece3.3228. PubMed DOI PMC

James FC, Wamer NO. Relationships between temperate forest bird communities and vegetation structure. Ecology. 1982;63:159–171. doi: 10.2307/1937041. DOI

Jankowski JE, Merkord CL, Rios WF, Cabrera KG, Revilla NS, Silman MR. The relationship of tropical bird communities to tree species composition and vegetation structure along an Andean elevational gradient. Journal of Biogeography. 2013;40:950–962. doi: 10.1111/jbi.12041. DOI

Jarić I, Courchamp F, Gessner J, Roberts DL. Data mining in conservation research using Latin and vernacular species names. PeerJ. 2016;4:e2202. doi: 10.7717/peerj.2202. PubMed DOI PMC

Joppa LN, Montoya JM, Solé R, Sanderson J, Pimm SL. On nestedness in ecological networks. Evolutionary Ecology Research. 2010;12:35–46.

Kappeler PM, Barrett L, Blumstein DT, Clutton-Brock TH. Constraints and flexibility in mammalian social behaviour: introduction and synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013;368:20120337. doi: 10.1098/rstb.2012.0337. PubMed DOI PMC

Kingdon J. The Kingdon field guide to African mammals. Bloomsbury Publishing; London: 2015.

Kioko J, Boyd E, Schaeffer E, Tareen S, Kiffner C. Cattle egret Bubulcus ibis interactions with large mammals in the Tarangire-Manyara ecosystem, Northern Tanzania. Scopus. 2016;36:15–20.

Koenig WD. Host preferences and behaviour of oxpeckers: co-existence of similar species in a fragmented landscape. Evolutionary Ecology. 1997;11:91–104. doi: 10.1023/A:1018439614008. DOI

Lefebvre L, Ducatez S, Audet JN. Feeding innovations in a nested phylogeny of Neotropical passerines. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016;371:20150188. doi: 10.1098/rstb.2015.0188. PubMed DOI PMC

Leighton GR, Hugo PS, Roulin A, Amar A. Just Google it: assessing the use of Google Images to describe geographical variation in visible traits of organisms. Methods in Ecology and Evolution. 2016;7:1060–1070. doi: 10.1111/2041-210X.12562. DOI

Lewinsohn TM, Inácio Prado P, Jordano P, Bascompte J, Olesen JM. Structure in plant–animal interaction assemblages. Oikos. 2006;113:174–184. doi: 10.1111/j.0030-1299.2006.14583.x. DOI

Maurer B. The evolution of body size in birds I. Evidence for non-random diversification. Evolutionary Ecology. 1998;12:925–934. doi: 10.1023/A:1006512121434. DOI

Mikula P, Morelli F, Lučan RK, Jones DN, Tryjanowski P. Bats as prey of diurnal birds: a global perspective. Mammal Review. 2016;46:160–174. doi: 10.1111/mam.12060. DOI

Mooring MS, Benjamin JE, Harte CR, Herzog NB. Testing the interspecific body size principle in ungulates: the smaller they come, the harder they groom. Animal Behaviour. 2000;60:35–45. doi: 10.1006/anbe.2000.1461. PubMed DOI

Mooring MS, Mundy PJ. Factors influencing host selection by yellow-billed oxpeckers at Matobo National Park, Zimbabwe. African Journal of Ecology. 1996;34:177–188. doi: 10.1111/j.1365-2028.1996.tb00611.x. DOI

Ndlovu M, Combrink L. Feeding preferences of oxpeckers in Kruger National Park, South Africa. Koedoe. 2015;57:1–6.

Nunn CL, Ezenwa VO, Arnold C, Koenig WD. Mutualism or parasitism? Using a phylogenetic approach to characterize the oxpecker-ungulate relationship. Evolution. 2011;65:1297–1304. doi: 10.1111/j.1558-5646.2010.01212.x. PubMed DOI

Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–884. doi: 10.1038/44766. PubMed DOI

Paradis E. Analysis of phylogenetics and evolution with R. 2nd edition Springer; Berlin: 2011.

Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2015;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team nlme: linear and nonlinear mixed effects models. R package version 3.1-117http://cran.r-project.org/package=nlme 2014

R Development Core Team . R Foundation for Statistical Computing; Vienna: 2017.

Rahbek C. The elevational gradient of species richness: a uniform pattern? Ecography. 1995;18:200–205. doi: 10.1111/j.1600-0587.1995.tb00341.x. DOI

Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M, Hayward MW, Kerley GI, Levi T, Lindsey PA, Macdonald DW, Yadvinder M, Painter LE, Sandom CJ, Terborgh J, Van Valkenburgh B. Collapse of the world’s largest herbivores. Science Advances. 2015;1:e1400103. doi: 10.1126/sciadv.1400103. PubMed DOI PMC

Ruggiero RG, Eves HE. Bird-mammal associations in forest openings of northern Congo (Brazzaville) African Journal of Ecology. 1988;36:183–193. doi: 10.1046/j.1365-2028.1998.00128.x. DOI

Sáyago R, Lopezaraiza-Mikel M, Quesada M, Álvarez Añorve MY, Cascante-Marín A, Bastida JM. Evaluating factors that predict the structure of a commensalistic epiphyte–phorophyte network. Proceedings of the Royal Society B: Biological Sciences. 2013;280:20122821. doi: 10.1098/rspb.2012.2821. PubMed DOI PMC

Sazima C, Jordano P, Guimaraes PR, Dos Reis SF, Sazima I. Cleaning associations between birds and herbivorous mammals in Brazil: structure and complexity. Auk. 2012;129:36–43. doi: 10.1525/auk.2011.11144. DOI

Semtner PJ, Hair JA. The ecology and behavior of the lone star tick (Acarina: Ixodidae). IV. The daily and seasonal activity patterns of adults in different habitat types. Journal of Medical Entomology. 1973;10:337–344. doi: 10.1093/jmedent/10.4.337. PubMed DOI

Silvertown J. A new dawn for citizen science. Trends in Ecology & Evolution. 2009;24:467–471. doi: 10.1016/j.tree.2009.03.017. PubMed DOI

Smith FA, Brown JH, Haskell JP, Lyons SK, Alroy J, Charnov EL, Dayan T, Enquist BJ, Ernest SKM, Hadly EA, Jones KE, Kaufman DM, Marquet PA, Maurer BA, Niklas KJ, Porter WP, Tiffney B, Willig MR. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. American Naturalist. 2004;163:672–691. doi: 10.1086/382898. PubMed DOI

Smith SM. The relationship of grazing cattle to foraging rates in anis. Auk. 1971;88:876–880. doi: 10.2307/4083844. DOI

Terborgh J. Bird species diversity on an Andean elevational gradient. Ecology. 1977;58:1007–1019. doi: 10.2307/1936921. DOI

Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography. 2004;31:79–92. doi: 10.1046/j.0305-0270.2003.00994.x. DOI

Troudet J, Grandcolas P, Blin A, Vignes-Lebbe R, Legendre F. Taxonomic bias in biodiversity data and societal preferences. Scientific Reports. 2017;7:9132. doi: 10.1038/s41598-017-09084-6. PubMed DOI PMC

Ulrich W, Almeida-Neto M, Gotelli NJ. A consumer’s guide to nestedness analysis. Oikos. 2009;118:3–17. doi: 10.1111/j.1600-0706.2008.17053.x. DOI

Van Someren VD. The red-billed oxpecker and its relation to stock in Kenya. East African Agricultural Journal. 1951;17:1–11. doi: 10.1080/03670074.1951.11664775. DOI

Vázquez DP, Melián CJ, Williams NM, Blüthgen N, Krasnov BR, Poulin R. Species abundance and asymmetric interaction strength in ecological networks. Oikos. 2007;116:1120–1127. doi: 10.1111/j.0030-1299.2007.15828.x. DOI

Vizentin-Bugoni J, Maruyama PK, Sazima M. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird–plant network. Proceedings of the Royal Society B: Biological Sciences. 2014;281:20132397. doi: 10.1098/rspb.2013.2397. PubMed DOI PMC

Wahungu GM, Mumia EN, Manoa D. The effects of flock size, habitat type and cattle herd sizes on feeding and vigilance in cattle egrets (Ardeola ibis) African Journal of Ecology. 2003;41:287–288. doi: 10.1046/j.1365-2028.2003.00448.x. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...