Repeated peripheral administration of lipidized prolactin-releasing peptide analog induces c-fos and FosB expression in neurons of dorsomedial hypothalamic nucleus in male C57 mice
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29601847
DOI
10.1016/j.neuint.2018.03.013
PII: S0197-0186(17)30599-5
Knihovny.cz E-resources
- Keywords
- Dorsomedial hypothalamic nucleus, FosB, Lipidization, Mice, Prolactin-releasing peptide, c-Fos,
- MeSH
- Energy Metabolism MeSH
- Prolactin-Releasing Hormone metabolism pharmacology MeSH
- Hypothalamus drug effects metabolism MeSH
- Lipids pharmacology MeSH
- Mice, Inbred C57BL MeSH
- Neurons metabolism MeSH
- Dorsomedial Hypothalamic Nucleus drug effects metabolism MeSH
- Obesity drug therapy MeSH
- Eating drug effects MeSH
- Proto-Oncogene Proteins c-fos metabolism MeSH
- Body Weight drug effects MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Fosb protein, mouse MeSH Browser
- Prolactin-Releasing Hormone MeSH
- Lipids MeSH
- Proto-Oncogene Proteins c-fos MeSH
Previous studies indicate that hypothalamic prolactin-releasing peptide (PrRP), signaling via GPR10 and neuropeptide FF2 receptor, is involved in energy homeostasis, stress responses, and cardiovascular regulation. Energy homeostasis depends on the balance between food intake regulation and energy expenditure, in which the hypothalamus plays a key role. The lipidization of PrRP31 with palmitoyl acid allows it to produce its anorexigenic effect after repeated peripheral administration and to reduce body weight and improve metabolic parameters in diet-induced obese (DIO) mice. The aim of this study was to reveal the transient and long-lasting changes in neuronal activity via c-Fos and FosB immunohistochemistry in brain nuclei related to food intake regulation and energy homeostasis during the first days of treatment with a newly designed lipidized analog of PrRP31 (palm11-PrRP31) with promising antiobesity effects. The data revealed that the anorexigenic effect of repeated application of palm11-PrRP31 was associated with delayed but gradually significantly reduced cumulative food intake in mice as well as with a significant reduction in their body weight. Moreover, while the repeated application of palm11-PrRP31 was associated with a significant reduction in acute cell activity in the paraventricular hypothalamic nucleus (PVN) and nucleus of the solitary tract (NTS) compare to its acute treatment, both acute and long-lasting cell activity in the dorsomedial hypothalamic nucleus (DMN) were increased. The data indicate that DMN neurons might be tonically activated after repeated administration of lipidized PrRP analogs that may be associated with the process of long-term adaptation to modified energy homeostasis.
References provided by Crossref.org
Prolactin-Releasing Peptide: Physiological and Pharmacological Properties