• This record comes from PubMed

Autolytic hydrolases affect sexual and asexual development of Aspergillus nidulans

. 2018 Sep ; 63 (5) : 619-626. [epub] 20180330

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
K112181 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (HU)

Links

PubMed 29603054
DOI 10.1007/s12223-018-0601-8
PII: 10.1007/s12223-018-0601-8
Knihovny.cz E-resources

Radial growth, asexual sporulation, and cleistothecia formation as well as extracellular chitinase and proteinase formation of Aspergillus nidulans were monitored in surface cultures in order to study the physiological role of extracellular hydrolase production in carbon-stressed cultures. We set up carbon-stressed and carbon-overfed experimental conditions by varying the starting glucose concentration within the range of 2.5 and 40 g/L. Glucose starvation induced radial growth and hydrolase production and enhanced the maturation of cleistothecia; meanwhile, glucose-rich conditions enhanced mycelial biomass, conidia, and cleistothecia production. Double deletion of chiB and engA (encoding an extracellular endochitinase and a β-1,3-endoglucanase, respectively) decreased conidia production under carbon-stressed conditions, suggesting that these autolytic hydrolases can support conidia formation by releasing nutrients from the cell wall polysaccharides of dead hyphae. Double deletion of prtA and pepJ (both genes encode extracellular proteases) reduced the number of cleistothecia even under carbon-rich conditions except in the presence of casamino acids, which supports the view that sexual development and amino acid metabolism are tightly connected to each other in this fungus.

See more in PubMed

Microbiol Mol Biol Rev. 1998 Mar;62(1):35-54 PubMed

Folia Microbiol (Praha). 2004;49(3):277-84 PubMed

Eukaryot Cell. 2007 Dec;6(12):2311-22 PubMed

Genetics. 2012 Sep;192(1):73-105 PubMed

J Basic Microbiol. 2018 May;58(5):440-447 PubMed

Appl Biochem Biotechnol. 2004 Jul-Sep;118(1-3):349-60 PubMed

EMBO J. 1996 Jan 15;15(2):299-309 PubMed

Fungal Genet Biol. 1997 Aug;22(1):28-38 PubMed

F1000Res. 2013 Mar 04;2:72 PubMed

Microbiology. 2002 Apr;148(Pt 4):893-907 PubMed

Eukaryot Cell. 2007 Dec;6(12):2437-47 PubMed

Mycobiology. 2009 Sep;37(3):171-82 PubMed

Genetics. 1965 Jul;52(1):233-46 PubMed

Fungal Genet Biol. 2010 Dec;47(12):962-72 PubMed

Genetics. 2016 May;203(1):335-52 PubMed

Mycol Res. 2005 Jul;109(Pt 7):757-63 PubMed

Sci Rep. 2017 Jun 27;7(1):4289 PubMed

Mol Microbiol. 2001 Jul;41(2):299-309 PubMed

Clin Chem. 1992 Feb;38(2):298-302 PubMed

J Proteome Res. 2013 Apr 5;12(4):1808-19 PubMed

Stud Mycol. 2013 Mar 15;74(1):1-29 PubMed

Arch Microbiol. 2015 Mar;197(2):285-97 PubMed

Mol Microbiol. 2000 Jul;37(1):28-41 PubMed

Mol Microbiol. 2002 Aug;45(4):1153-63 PubMed

Eukaryot Cell. 2006 Aug;5(8):1328-36 PubMed

Curr Genet. 2007 Feb;51(2):89-98 PubMed

J Appl Microbiol. 2010 Nov;109(5):1498-508 PubMed

Microbiology. 1998 May;144 ( Pt 5):1319-30 PubMed

Appl Biochem Biotechnol. 2008 Dec;151(2-3):211-20 PubMed

Curr Genet. 2008 Jul;54(1):47-55 PubMed

J Appl Microbiol. 2009 Aug;107(2):514-23 PubMed

Genetics. 2012 Jan;190(1):23-49 PubMed

Mycol Res. 2006 Oct;110(Pt 10):1172-8 PubMed

Biotechnol Biofuels. 2013 Jun 25;6(1):91 PubMed

J Basic Microbiol. 2006;46(6):495-503 PubMed

Mol Cell Biol. 1999 Jul;19(7):4874-87 PubMed

Anal Biochem. 1976 May 7;72:248-54 PubMed

Acta Microbiol Immunol Hung. 2014 Jun;61(2):131-43 PubMed

J Basic Microbiol. 2011 Dec;51(6):625-34 PubMed

J Microbiol. 2006 Apr;44(2):145-54 PubMed

Eukaryot Cell. 2005 Jul;4(7):1287-97 PubMed

Folia Microbiol (Praha). 2006;51(6):547-54 PubMed

Appl Microbiol Biotechnol. 2013 Sep;97(18):8205-18 PubMed

Antonie Van Leeuwenhoek. 2015 Jan;107(1):225-40 PubMed

Fungal Genet Biol. 2000 Nov;31(2):69-78 PubMed

Adv Appl Microbiol. 2003;52:245-62 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...