Autolytic hydrolases affect sexual and asexual development of Aspergillus nidulans
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
K112181
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (HU)
PubMed
29603054
DOI
10.1007/s12223-018-0601-8
PII: 10.1007/s12223-018-0601-8
Knihovny.cz E-resources
- MeSH
- Aspergillus nidulans enzymology growth & development MeSH
- Cellulase genetics MeSH
- Chitinases genetics MeSH
- Fungal Proteins genetics MeSH
- Glucose chemistry MeSH
- Hydrolases genetics MeSH
- Hyphae growth & development MeSH
- Culture Media MeSH
- Mutation MeSH
- Peptide Hydrolases genetics MeSH
- Gene Expression Regulation, Enzymologic MeSH
- Gene Expression Regulation, Fungal * MeSH
- Spores, Fungal growth & development MeSH
- Gene Expression Regulation, Developmental MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cellulase MeSH
- Chitinases MeSH
- Fungal Proteins MeSH
- Glucose MeSH
- Hydrolases MeSH
- Culture Media MeSH
- Peptide Hydrolases MeSH
Radial growth, asexual sporulation, and cleistothecia formation as well as extracellular chitinase and proteinase formation of Aspergillus nidulans were monitored in surface cultures in order to study the physiological role of extracellular hydrolase production in carbon-stressed cultures. We set up carbon-stressed and carbon-overfed experimental conditions by varying the starting glucose concentration within the range of 2.5 and 40 g/L. Glucose starvation induced radial growth and hydrolase production and enhanced the maturation of cleistothecia; meanwhile, glucose-rich conditions enhanced mycelial biomass, conidia, and cleistothecia production. Double deletion of chiB and engA (encoding an extracellular endochitinase and a β-1,3-endoglucanase, respectively) decreased conidia production under carbon-stressed conditions, suggesting that these autolytic hydrolases can support conidia formation by releasing nutrients from the cell wall polysaccharides of dead hyphae. Double deletion of prtA and pepJ (both genes encode extracellular proteases) reduced the number of cleistothecia even under carbon-rich conditions except in the presence of casamino acids, which supports the view that sexual development and amino acid metabolism are tightly connected to each other in this fungus.
See more in PubMed
Microbiol Mol Biol Rev. 1998 Mar;62(1):35-54 PubMed
Folia Microbiol (Praha). 2004;49(3):277-84 PubMed
Eukaryot Cell. 2007 Dec;6(12):2311-22 PubMed
Genetics. 2012 Sep;192(1):73-105 PubMed
J Basic Microbiol. 2018 May;58(5):440-447 PubMed
Appl Biochem Biotechnol. 2004 Jul-Sep;118(1-3):349-60 PubMed
EMBO J. 1996 Jan 15;15(2):299-309 PubMed
Fungal Genet Biol. 1997 Aug;22(1):28-38 PubMed
F1000Res. 2013 Mar 04;2:72 PubMed
Microbiology. 2002 Apr;148(Pt 4):893-907 PubMed
Eukaryot Cell. 2007 Dec;6(12):2437-47 PubMed
Mycobiology. 2009 Sep;37(3):171-82 PubMed
Genetics. 1965 Jul;52(1):233-46 PubMed
Fungal Genet Biol. 2010 Dec;47(12):962-72 PubMed
Genetics. 2016 May;203(1):335-52 PubMed
Mycol Res. 2005 Jul;109(Pt 7):757-63 PubMed
Sci Rep. 2017 Jun 27;7(1):4289 PubMed
Mol Microbiol. 2001 Jul;41(2):299-309 PubMed
Clin Chem. 1992 Feb;38(2):298-302 PubMed
J Proteome Res. 2013 Apr 5;12(4):1808-19 PubMed
Stud Mycol. 2013 Mar 15;74(1):1-29 PubMed
Arch Microbiol. 2015 Mar;197(2):285-97 PubMed
Mol Microbiol. 2000 Jul;37(1):28-41 PubMed
Mol Microbiol. 2002 Aug;45(4):1153-63 PubMed
Eukaryot Cell. 2006 Aug;5(8):1328-36 PubMed
Curr Genet. 2007 Feb;51(2):89-98 PubMed
J Appl Microbiol. 2010 Nov;109(5):1498-508 PubMed
Microbiology. 1998 May;144 ( Pt 5):1319-30 PubMed
Appl Biochem Biotechnol. 2008 Dec;151(2-3):211-20 PubMed
Curr Genet. 2008 Jul;54(1):47-55 PubMed
J Appl Microbiol. 2009 Aug;107(2):514-23 PubMed
Genetics. 2012 Jan;190(1):23-49 PubMed
Mycol Res. 2006 Oct;110(Pt 10):1172-8 PubMed
Biotechnol Biofuels. 2013 Jun 25;6(1):91 PubMed
J Basic Microbiol. 2006;46(6):495-503 PubMed
Mol Cell Biol. 1999 Jul;19(7):4874-87 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Acta Microbiol Immunol Hung. 2014 Jun;61(2):131-43 PubMed
J Basic Microbiol. 2011 Dec;51(6):625-34 PubMed
J Microbiol. 2006 Apr;44(2):145-54 PubMed
Eukaryot Cell. 2005 Jul;4(7):1287-97 PubMed
Folia Microbiol (Praha). 2006;51(6):547-54 PubMed
Appl Microbiol Biotechnol. 2013 Sep;97(18):8205-18 PubMed
Antonie Van Leeuwenhoek. 2015 Jan;107(1):225-40 PubMed
Fungal Genet Biol. 2000 Nov;31(2):69-78 PubMed
Adv Appl Microbiol. 2003;52:245-62 PubMed