Azole-Resistance in Aspergillus terreus and Related Species: An Emerging Problem or a Rare Phenomenon?

. 2018 ; 9 () : 516. [epub] 20180328

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29643840

Objectives: Invasive mold infections associated with Aspergillus species are a significant cause of mortality in immunocompromised patients. The most frequently occurring aetiological pathogens are members of the Aspergillus section Fumigati followed by members of the section Terrei. The frequency of Aspergillus terreus and related (cryptic) species in clinical specimens, as well as the percentage of azole-resistant strains remains to be studied. Methods: A global set (n = 498) of A. terreus and phenotypically related isolates was molecularly identified (beta-tubulin), tested for antifungal susceptibility against posaconazole, voriconazole, and itraconazole, and resistant phenotypes were correlated with point mutations in the cyp51A gene. Results: The majority of isolates was identified as A. terreus (86.8%), followed by A. citrinoterreus (8.4%), A. hortai (2.6%), A. alabamensis (1.6%), A. neoafricanus (0.2%), and A. floccosus (0.2%). One isolate failed to match a known Aspergillus sp., but was found most closely related to A. alabamensis. According to EUCAST clinical breakpoints azole resistance was detected in 5.4% of all tested isolates, 6.2% of A. terreus sensu stricto (s.s.) were posaconazole-resistant. Posaconazole resistance differed geographically and ranged from 0% in the Czech Republic, Greece, and Turkey to 13.7% in Germany. In contrast, azole resistance among cryptic species was rare 2 out of 66 isolates and was observed only in one A. citrinoterreus and one A. alabamensis isolate. The most affected amino acid position of the Cyp51A gene correlating with the posaconazole resistant phenotype was M217, which was found in the variation M217T and M217V. Conclusions:Aspergillus terreus was most prevalent, followed by A. citrinoterreus. Posaconazole was the most potent drug against A. terreus, but 5.4% of A. terreus sensu stricto showed resistance against this azole. In Austria, Germany, and the United Kingdom posaconazole-resistance in all A. terreus isolates was higher than 10%, resistance against voriconazole was rare and absent for itraconazole.

A O U Policlinico Vittorio Emanuele Catania Biometec University of Catania Catania Italy

Clinical Microbiology Laboratory National Kapodistrian University of Athens ATTIKON University Hospital Athens Athens Greece

Clinical Microbiology Puerta del Mar University Hospital University of Cádiz Cádiz Spain

Department 1 for Internal Medicine University Hospital of Cologne Cologne Germany

Department 1 of Internal Medicine Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases Clinical Trials Centre Cologne Center for Integrated Oncology German Centre for Infection Research University of Cologne Cologne Germany

Department Applied and Industrial Mycology Westerdijk Fungal Biodiversity Institute Utrecht Netherlands

Department of Biomedical and Biotechnological Sciences University of Catania Catania Italy

Department of Biomedical Sciences for Health Università degli Studi di Milano Milan Italy

Department of Clinical Microbiology and Immunology Sackler School of Medicine Tel Aviv University Tel Aviv Israel

Department of Clinical Mycology Allergy and Immunology North Western State Medical University Saint Petersburg Russia

Department of Dermatology Hospital Ernest Lluch Martin Zaragoza Spain

Department of Hygiene and Medical Microbiology Klinikum Wels Grieskirchen Wels Austria

Department of Infectious Diseases and Clinical Microbiology Hacettepe University Medical School Ankara Turkey

Department of Laboratory Medicine Karolinska Institutet Karolinska University Hospital Stockholm Sweden

Department of Medical Microbiology and Infectious Diseases Canisius Wilhelmina Hospital Nijmegen Netherlands

Department of Medical Microbiology Hacettepe University Medical School Ankara Turkey

Department of Medical Mycology and Parasitology Invasive Fungi Research Center Mazandaran University of Medical Sciences Sari Iran

Department of Medical Mycology and Parasitology School of Medicine Iran University of Medical Science Tehran Iran

Department of Medical Mycology Vallabhbhai Patel Chest Institute University of Delhi New Delhi India

Department of Microbiology and Immunology KU Leuven Leuven Belgium

Department of Microbiology Faculty of Medicine and Dentistry Palacky University Olomouc and University Hospital Olomouc Olomouc Czechia

Department of Public Health and Pediatrics Microbiology Division Turin Italy

Departmento de Micología Instituto de Medicina Regional Universidad Nacional del Nordeste CONICET Resistencia Argentina

Division of Clinical Microbiology Department of Laboratory Medicine Medical University of Vienna Vienna Austria

Division of Clinical Mycology Department of Microbiology Vall d'Hebron University Hospital Barcelona Spain

Division of Hygiene and Medical Microbiology Medical University of Innsbruck Innsbruck Austria

Division of Mycology Department of Medial Microbiology Postgraduate Institute of Medical Education and Research Chandigarh India

Escola Paulista de Medicina Federal University of São Paulo São Paulo Brazil

German Centre for Infection Research Partner Site Bonn Cologne Cologne Germany

Infectious Diseases Research Laboratory 4th Department of Internal Medicine ATTIKON University Hospital National and Kapodistrian University of Athens Athens Greece

Infectious Diseases Unit 3rd Department of Pediatrics Faculty of Medicine Aristotle University School of Health Sciences Hippokration General Hospital Thessaloniki Greece

Infectious Diseases Unit Department of Medical and Surgical Sciences S Orsola Malpighi University of Bologna Bologna Italy

Institute for Medical Microbiology Immunology and Hygiene University of Cologne Cologne Germany

Institute of Hygiene Microbiology and Environmental Medicine Medical University of Graz Graz Austria

Institute of Medical Microbiology University Hospital Essen University of Duisburg Essen Essen Germany

Laboratorio Centrale di Analisi Chimico Cliniche e Microbiologia IRCCS Foundation Cà Granda Ospedale Maggiore Policlinico Milan Italy

Microbiologia Hospital Universitario Miguel Servet IIS Aragon Universidad de Zaragoza Zaragoza Spain

Microbiology Division Department of Laboratory Medicine and Pathology Hamad Medical Corporation Doha Qatar

Microbiology Institute ASST Papa Giovanni XXIII Bergamo Italy

Mycology Reference Laboratory Public Health England Bristol United Kingdom

National Centre for Microbiology Instituto de Salud Carlos 3 Madrid Spain

National Reference Medical Mycology Laboratory Faculty of Medicine Institute of Microbiology and Immunology University of Belgrade Belgrade Serbia

School of Medicine European University Cyprus Nicosia Cyprus

Servei de Microbiologia Hospital de la Santa Creu 1 Sant Pau Barcelona Spain

Unit of Mycology Department of Clinical Microbiology Statens Serum Institute Copenhagen University Rigshospitalet Copenhagen Denmark

Unità Operativa Complessa di Microbiologia e Virologia Dipartimento di Patologia e Diagnostica Azienda Ospedaliera Universitaria Integrata Verona Italy

University of Texas MD Anderson Cancer Center Houston TX United States

Erratum v

PubMed

Zobrazit více v PubMed

Alastruey-Izquierdo A., Mellado E., Peláez T., Pemán J., Zapico S., Alvarez M., et al. (2013). Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP Study). Antimicrob. Agents Chemother. 57, 3380–3387. 10.1128/AAC.00383-13 PubMed DOI PMC

Arendrup M. C. (2014). Update on antifungal resistance in Aspergillus and Candida. Clin. Microbiol. Infect. 20, 42–48. 10.1111/1469-0691.12513 PubMed DOI

Arendrup M. C., Jensen R. H., Grif K., Skov M., Pressler T., Johansen H. K., et al. . (2012). In vivo emergence of Aspergillus terreus with reduced azole susceptibility and a Cyp51a M217I Alteration. J. Infect. Dis. 206, 981–985. 10.1093/infdis/jis442 PubMed DOI

Arendrup M. C., Mavridou E., Mortensen K. L., Snelders E., Frimodt-Møller N., Khan H. (2010). Development of azole resistance in Aspergillus fumigatus during azole therapy associated with change in virulence. PLoS ONE 5:e10080. 10.1371/journal.pone.0010080 PubMed DOI PMC

Arzanlou M., Samadi R., Frisvad J. C., Houbraken J., Ghosta Y. (2016). Two novel Aspergillus species from hypersaline soils of the national park of lake Urmia, Iran. Mycol. Prog. 15, 1081–1092. 10.1007/s11557-016-1230-8 DOI

Astvad K. M. T., Hare R. K., Arendrup M. C. (2017). Evaluation of the in vitro activity of isavuconazole and comparator voriconazole against 2635 contemporary clinical Candida and Aspergillus isolates. Clin. Microbiol. Infect. 23, 882–887. 10.1016/j.cmi.2017.03.023 PubMed DOI

Baddley J. W., Pappas P. G., Smith A. C., Moser S. A. (2003). Epidemiology of Aspergillus terreus at a University Hospital. J. Clin. Microbiol. 41, 5525–5529. 10.1128/JCM.41.12.5525-5529.2003 PubMed DOI PMC

Balajee S. A., Baddley J. W., Peterson S. W., Nickle D., Varga J., Boey A., et al. . (2009a). Aspergillus alabamensis, a new clinically relevant species in the section Terrei. Eukaryot. Cell 8, 713–722. 10.1128/EC.00272-08 PubMed DOI PMC

Balajee S. A., Kano R., Baddley J. W., Moser S. A., Marr K. A., Alexander B. D., et al. . (2009b). Molecular identification of Aspergillus species collected for the Transplant-Associated Infection Surveillance Network. J. Clin. Microbiol. 47, 3138–3141. 10.1128/JCM.01070-09 PubMed DOI PMC

Blum G., Perkhofer S., Grif K., Mayr A., Kropshofer G., Nachbaur D., et al. . (2008). A 1-year Aspergillus terreus surveillance study at the University Hospital of Innsbruck: molecular typing of environmental and clinical isolates. Clin. Microbiol. Infect. 14, 1146–1151. 10.1111/j.1469-0691.2008.02099.x PubMed DOI

Chowdhary A., Sharma S., Kathuria F., Hagen F., Meis J. F. (2015). Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia. Front. Microbiol. 6:428. 10.3389/fmicb.2015.00428 PubMed DOI PMC

Chowdhary A., Sharma C., Meis J. F. (2017). Azole-resistant Aspergillosis: epidemiology, molecular mechanisms, and treatment. J. Infect. Dis. 216, 436–444. 10.1093/infdis/jix210 PubMed DOI

Crous P. W., Wingfield M. J., Burgess T. I., Hardy G. E., Crane C., Barrett S., et al. . (2016). Fungal planet description sheets: 469–557. Persoonia 37, 218–403. 10.3767/003158516X694499 PubMed DOI PMC

Escribano P., Peláez T., Recio S., Bouza E., Guinea J. (2012). Characterization of clinical strains of Aspergillus terreus complex: molecular identification and antifungal susceptibility to azoles and amphotericin B. Clin. Microbiol. Infect. 18, 24–26. 10.1111/j.1469-0691.2011.03714.x PubMed DOI

Gautier M., Ranque S., Normand A. C., Becker P., Packeu A., Cassagne C., et al. . (2014). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: revolutionizing clinical laboratory diagnosis of mould infections. Clin. Microbiol. Infect. 20, 1366–1371. 10.1111/1469-0691.12750 PubMed DOI

Guinea J., Sandoval-Denis M., Escribano P., Peláez T., Guarro J., Bouza E. (2015). Aspergillus citrinoterreus, a new species of section Terrei isolated from samples of patients with nonhematological predisposing conditions. J. Clin. Microbiol. 53, 611–617. 10.1128/JCM.03088-14 PubMed DOI PMC

Hachem R., Gomes M. Z., El Helou G., El Zakhem A., Kassis C., Ramos E., et al. . (2014). Invasive aspergillosis caused by Aspergillus terreus: an emerging opportunistic infection with poor outcome independent of azole therapy. J. Antimicrob. Chemother. 69, 3148–3155. 10.1093/jac/dku241 PubMed DOI

Kathuria S., Sharma C., Singh P. K., Agarwal P., Agarwal K., Hagen F., et al. . (2015). Molecular epidemiology and in-vitro antifungal susceptibility of Aspergillus terreus species complex isolates in Delhi, India: evidence of genetic diversity by amplified fragment Length polymorphism and microsatellite typing. PLoS ONE 10:e118997. 10.1371/journal.pone.0118997 PubMed DOI PMC

Lackner M., Najafzadeh M. J., Sun J., Lu Q., Hoog G. S. (2012). Rapid identification of Pseudallescheria and Scedosporium strains by using rolling circle amplification. Appl. Environ. Microbial. 78, 126–133. 10.1128/AEM.05280-11 PubMed DOI PMC

Lass-Flörl C., Alastruey-Izquierdo A., Cuenca-Estrella M., Perkhofer S., Rodriguez-Tudela J. L. (2009). In vitro activities of various antifungal drugs against Aspergillus terreus: global assessment using the methodology of the European committee on antimicrobial susceptibility testing. Antimicrob. Agents Chemother. 53, 794–795. 10.1128/AAC.00335-08 PubMed DOI PMC

Lass-Flörl C., Griff K., Mayr A., Petzer A., Gastl G., Bonatti H., et al. . (2005). Epidemiology and outcome of infections due to Aspergillus terreus: 10-year single centre experience. Br. J. Haematol. 131, 201–207. 10.1111/j.1365-2141.2005.05763.x PubMed DOI

Masih A., Singh P. K., Kathuria S., Agarwal K., Meis J. F., Chowdhary A. (2016). Identification by molecular methods and matrix-assisted laser desorption ionization–time of flight mass spectrometry and antifungal susceptibility profiles of clinically significant rare Aspergillus species in a referral chest hospital in Delhi, India. J. Clin. Microbiol. 54, 2354–2364. 10.1128/JCM.00962-16 PubMed DOI PMC

Neal C. O., Richardson A. O., Hurst S. F., Tortorano A. M., Viviani M. A., Stevens D. A., et al. . (2011). Global population structure of Aspergillus terreus inferred by ISSR typing reveals geographical subclustering. BMC Microbiol. 11:203. 10.1186/1471-2180-11-203 PubMed DOI PMC

Negri C. E., Goncalves S. S., Xafranski H., Bergamasco M. D., Aquino V. R., Castro P. T., et al. . (2014). Cryptic and rare Aspergillus species in Brazil: prevalence in clinical samples and in vitro susceptibility to triazoles. J. Clin. Microb. 52, 3633–3640. 10.1128/JCM.01582-14 PubMed DOI PMC

Risslegger B., Zoran T., Lackner M., Aigner M., Sánchez-Reus F., Rezusta A., et al. . (2017). A prospective international Aspergillus terreus survey: an EFISG, ISHAM and ECMM joint study. Clin. Microbiol. Infect. 23, 776.e1–776.e5. 10.1016/j.cmi.2017.04.012 PubMed DOI

Rivero-Menendez O., Alastruey-Izquierdo A., Mellado E., Cuenca-Estrella M. (2016). Triazole resistance in Aspergillus spp.: a worldwide problem? J. Fungi. 2:21. 10.3390/jof2030021 PubMed DOI PMC

Samson R. A., Peterson S. W., Frisvad J. C., Varga J. (2011). New species in Aspergillus section Terrei. Stud. Mycol. 69, 39–55. 10.3114/sim.2011.69.04 PubMed DOI PMC

Samson R. A., Visagie C. M., Houbraken J., Hong S. B., Hubka V., Klaassen C. H., et al. . (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 78, 141–173. 10.1016/j.simyco.2014.07.004 PubMed DOI PMC

Sutton D. A., Sanchie S. E., Revankar S. G., Fothergill A. W., Rinaldi M. G. (1999). In vitro amphotericin B resistance in clinical isolates of Aspergillus terreus, with a head-to-head comparison to voriconazole. J. Clin. Microbiol. 37, 2343–2345. PubMed PMC

van der Linden J. W., Arendrup M. C., Warris A., Lagrou K., Pelloux H., Hauser P. M., et al. . (2015). Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg. Infect. Dis. 21, 1041–1044. 10.3201/eid2106.140717 PubMed DOI PMC

Walsh T. J., Petraitis V., Petraitiene R., Field-Ridley A., Sutton D., Ghannoum M., et al. . (2003). Experimental pulmonary aspergillosis due to Aspergillus terreus: pathogenesis and treatment of an emerging fungal pathogen resistant to amphotericin B. J. Infect. Dis. 188, 305–319. 10.1086/377210 PubMed DOI

Won E. J., Choi M. J., Shin J. H., Park Y.-J., Byun S. A., Jung J. S., et al. . (2017). Diversity of clinical isolates of Aspergillus terreus in antifungal susceptibilities, genotypes and virulence in Galleria mellonella model: comparison between respiratory and ear isolates. PLoS ONE 12:e0186086. 10.1371/journal.pone.0186086 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...