Azole-Resistance in Aspergillus terreus and Related Species: An Emerging Problem or a Rare Phenomenon?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29643840
PubMed Central
PMC5882871
DOI
10.3389/fmicb.2018.00516
Knihovny.cz E-zdroje
- Klíčová slova
- Aspergillus section Terrei, Cyp51A alterations, azoles, cryptic species, susceptibility profiles,
- Publikační typ
- časopisecké články MeSH
Objectives: Invasive mold infections associated with Aspergillus species are a significant cause of mortality in immunocompromised patients. The most frequently occurring aetiological pathogens are members of the Aspergillus section Fumigati followed by members of the section Terrei. The frequency of Aspergillus terreus and related (cryptic) species in clinical specimens, as well as the percentage of azole-resistant strains remains to be studied. Methods: A global set (n = 498) of A. terreus and phenotypically related isolates was molecularly identified (beta-tubulin), tested for antifungal susceptibility against posaconazole, voriconazole, and itraconazole, and resistant phenotypes were correlated with point mutations in the cyp51A gene. Results: The majority of isolates was identified as A. terreus (86.8%), followed by A. citrinoterreus (8.4%), A. hortai (2.6%), A. alabamensis (1.6%), A. neoafricanus (0.2%), and A. floccosus (0.2%). One isolate failed to match a known Aspergillus sp., but was found most closely related to A. alabamensis. According to EUCAST clinical breakpoints azole resistance was detected in 5.4% of all tested isolates, 6.2% of A. terreus sensu stricto (s.s.) were posaconazole-resistant. Posaconazole resistance differed geographically and ranged from 0% in the Czech Republic, Greece, and Turkey to 13.7% in Germany. In contrast, azole resistance among cryptic species was rare 2 out of 66 isolates and was observed only in one A. citrinoterreus and one A. alabamensis isolate. The most affected amino acid position of the Cyp51A gene correlating with the posaconazole resistant phenotype was M217, which was found in the variation M217T and M217V. Conclusions:Aspergillus terreus was most prevalent, followed by A. citrinoterreus. Posaconazole was the most potent drug against A. terreus, but 5.4% of A. terreus sensu stricto showed resistance against this azole. In Austria, Germany, and the United Kingdom posaconazole-resistance in all A. terreus isolates was higher than 10%, resistance against voriconazole was rare and absent for itraconazole.
A O U Policlinico Vittorio Emanuele Catania Biometec University of Catania Catania Italy
Clinical Microbiology Puerta del Mar University Hospital University of Cádiz Cádiz Spain
Department 1 for Internal Medicine University Hospital of Cologne Cologne Germany
Department of Biomedical and Biotechnological Sciences University of Catania Catania Italy
Department of Biomedical Sciences for Health Università degli Studi di Milano Milan Italy
Department of Dermatology Hospital Ernest Lluch Martin Zaragoza Spain
Department of Hygiene and Medical Microbiology Klinikum Wels Grieskirchen Wels Austria
Department of Medical Microbiology Hacettepe University Medical School Ankara Turkey
Department of Medical Mycology Vallabhbhai Patel Chest Institute University of Delhi New Delhi India
Department of Microbiology and Immunology KU Leuven Leuven Belgium
Department of Public Health and Pediatrics Microbiology Division Turin Italy
Division of Hygiene and Medical Microbiology Medical University of Innsbruck Innsbruck Austria
Escola Paulista de Medicina Federal University of São Paulo São Paulo Brazil
German Centre for Infection Research Partner Site Bonn Cologne Cologne Germany
Institute for Medical Microbiology Immunology and Hygiene University of Cologne Cologne Germany
Institute of Hygiene Microbiology and Environmental Medicine Medical University of Graz Graz Austria
Microbiologia Hospital Universitario Miguel Servet IIS Aragon Universidad de Zaragoza Zaragoza Spain
Microbiology Institute ASST Papa Giovanni XXIII Bergamo Italy
Mycology Reference Laboratory Public Health England Bristol United Kingdom
National Centre for Microbiology Instituto de Salud Carlos 3 Madrid Spain
School of Medicine European University Cyprus Nicosia Cyprus
Servei de Microbiologia Hospital de la Santa Creu 1 Sant Pau Barcelona Spain
University of Texas MD Anderson Cancer Center Houston TX United States
Zobrazit více v PubMed
Alastruey-Izquierdo A., Mellado E., Peláez T., Pemán J., Zapico S., Alvarez M., et al. (2013). Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP Study). Antimicrob. Agents Chemother. 57, 3380–3387. 10.1128/AAC.00383-13 PubMed DOI PMC
Arendrup M. C. (2014). Update on antifungal resistance in Aspergillus and Candida. Clin. Microbiol. Infect. 20, 42–48. 10.1111/1469-0691.12513 PubMed DOI
Arendrup M. C., Jensen R. H., Grif K., Skov M., Pressler T., Johansen H. K., et al. . (2012). In vivo emergence of Aspergillus terreus with reduced azole susceptibility and a Cyp51a M217I Alteration. J. Infect. Dis. 206, 981–985. 10.1093/infdis/jis442 PubMed DOI
Arendrup M. C., Mavridou E., Mortensen K. L., Snelders E., Frimodt-Møller N., Khan H. (2010). Development of azole resistance in Aspergillus fumigatus during azole therapy associated with change in virulence. PLoS ONE 5:e10080. 10.1371/journal.pone.0010080 PubMed DOI PMC
Arzanlou M., Samadi R., Frisvad J. C., Houbraken J., Ghosta Y. (2016). Two novel Aspergillus species from hypersaline soils of the national park of lake Urmia, Iran. Mycol. Prog. 15, 1081–1092. 10.1007/s11557-016-1230-8 DOI
Astvad K. M. T., Hare R. K., Arendrup M. C. (2017). Evaluation of the in vitro activity of isavuconazole and comparator voriconazole against 2635 contemporary clinical Candida and Aspergillus isolates. Clin. Microbiol. Infect. 23, 882–887. 10.1016/j.cmi.2017.03.023 PubMed DOI
Baddley J. W., Pappas P. G., Smith A. C., Moser S. A. (2003). Epidemiology of Aspergillus terreus at a University Hospital. J. Clin. Microbiol. 41, 5525–5529. 10.1128/JCM.41.12.5525-5529.2003 PubMed DOI PMC
Balajee S. A., Baddley J. W., Peterson S. W., Nickle D., Varga J., Boey A., et al. . (2009a). Aspergillus alabamensis, a new clinically relevant species in the section Terrei. Eukaryot. Cell 8, 713–722. 10.1128/EC.00272-08 PubMed DOI PMC
Balajee S. A., Kano R., Baddley J. W., Moser S. A., Marr K. A., Alexander B. D., et al. . (2009b). Molecular identification of Aspergillus species collected for the Transplant-Associated Infection Surveillance Network. J. Clin. Microbiol. 47, 3138–3141. 10.1128/JCM.01070-09 PubMed DOI PMC
Blum G., Perkhofer S., Grif K., Mayr A., Kropshofer G., Nachbaur D., et al. . (2008). A 1-year Aspergillus terreus surveillance study at the University Hospital of Innsbruck: molecular typing of environmental and clinical isolates. Clin. Microbiol. Infect. 14, 1146–1151. 10.1111/j.1469-0691.2008.02099.x PubMed DOI
Chowdhary A., Sharma S., Kathuria F., Hagen F., Meis J. F. (2015). Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia. Front. Microbiol. 6:428. 10.3389/fmicb.2015.00428 PubMed DOI PMC
Chowdhary A., Sharma C., Meis J. F. (2017). Azole-resistant Aspergillosis: epidemiology, molecular mechanisms, and treatment. J. Infect. Dis. 216, 436–444. 10.1093/infdis/jix210 PubMed DOI
Crous P. W., Wingfield M. J., Burgess T. I., Hardy G. E., Crane C., Barrett S., et al. . (2016). Fungal planet description sheets: 469–557. Persoonia 37, 218–403. 10.3767/003158516X694499 PubMed DOI PMC
Escribano P., Peláez T., Recio S., Bouza E., Guinea J. (2012). Characterization of clinical strains of Aspergillus terreus complex: molecular identification and antifungal susceptibility to azoles and amphotericin B. Clin. Microbiol. Infect. 18, 24–26. 10.1111/j.1469-0691.2011.03714.x PubMed DOI
Gautier M., Ranque S., Normand A. C., Becker P., Packeu A., Cassagne C., et al. . (2014). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: revolutionizing clinical laboratory diagnosis of mould infections. Clin. Microbiol. Infect. 20, 1366–1371. 10.1111/1469-0691.12750 PubMed DOI
Guinea J., Sandoval-Denis M., Escribano P., Peláez T., Guarro J., Bouza E. (2015). Aspergillus citrinoterreus, a new species of section Terrei isolated from samples of patients with nonhematological predisposing conditions. J. Clin. Microbiol. 53, 611–617. 10.1128/JCM.03088-14 PubMed DOI PMC
Hachem R., Gomes M. Z., El Helou G., El Zakhem A., Kassis C., Ramos E., et al. . (2014). Invasive aspergillosis caused by Aspergillus terreus: an emerging opportunistic infection with poor outcome independent of azole therapy. J. Antimicrob. Chemother. 69, 3148–3155. 10.1093/jac/dku241 PubMed DOI
Kathuria S., Sharma C., Singh P. K., Agarwal P., Agarwal K., Hagen F., et al. . (2015). Molecular epidemiology and in-vitro antifungal susceptibility of Aspergillus terreus species complex isolates in Delhi, India: evidence of genetic diversity by amplified fragment Length polymorphism and microsatellite typing. PLoS ONE 10:e118997. 10.1371/journal.pone.0118997 PubMed DOI PMC
Lackner M., Najafzadeh M. J., Sun J., Lu Q., Hoog G. S. (2012). Rapid identification of Pseudallescheria and Scedosporium strains by using rolling circle amplification. Appl. Environ. Microbial. 78, 126–133. 10.1128/AEM.05280-11 PubMed DOI PMC
Lass-Flörl C., Alastruey-Izquierdo A., Cuenca-Estrella M., Perkhofer S., Rodriguez-Tudela J. L. (2009). In vitro activities of various antifungal drugs against Aspergillus terreus: global assessment using the methodology of the European committee on antimicrobial susceptibility testing. Antimicrob. Agents Chemother. 53, 794–795. 10.1128/AAC.00335-08 PubMed DOI PMC
Lass-Flörl C., Griff K., Mayr A., Petzer A., Gastl G., Bonatti H., et al. . (2005). Epidemiology and outcome of infections due to Aspergillus terreus: 10-year single centre experience. Br. J. Haematol. 131, 201–207. 10.1111/j.1365-2141.2005.05763.x PubMed DOI
Masih A., Singh P. K., Kathuria S., Agarwal K., Meis J. F., Chowdhary A. (2016). Identification by molecular methods and matrix-assisted laser desorption ionization–time of flight mass spectrometry and antifungal susceptibility profiles of clinically significant rare Aspergillus species in a referral chest hospital in Delhi, India. J. Clin. Microbiol. 54, 2354–2364. 10.1128/JCM.00962-16 PubMed DOI PMC
Neal C. O., Richardson A. O., Hurst S. F., Tortorano A. M., Viviani M. A., Stevens D. A., et al. . (2011). Global population structure of Aspergillus terreus inferred by ISSR typing reveals geographical subclustering. BMC Microbiol. 11:203. 10.1186/1471-2180-11-203 PubMed DOI PMC
Negri C. E., Goncalves S. S., Xafranski H., Bergamasco M. D., Aquino V. R., Castro P. T., et al. . (2014). Cryptic and rare Aspergillus species in Brazil: prevalence in clinical samples and in vitro susceptibility to triazoles. J. Clin. Microb. 52, 3633–3640. 10.1128/JCM.01582-14 PubMed DOI PMC
Risslegger B., Zoran T., Lackner M., Aigner M., Sánchez-Reus F., Rezusta A., et al. . (2017). A prospective international Aspergillus terreus survey: an EFISG, ISHAM and ECMM joint study. Clin. Microbiol. Infect. 23, 776.e1–776.e5. 10.1016/j.cmi.2017.04.012 PubMed DOI
Rivero-Menendez O., Alastruey-Izquierdo A., Mellado E., Cuenca-Estrella M. (2016). Triazole resistance in Aspergillus spp.: a worldwide problem? J. Fungi. 2:21. 10.3390/jof2030021 PubMed DOI PMC
Samson R. A., Peterson S. W., Frisvad J. C., Varga J. (2011). New species in Aspergillus section Terrei. Stud. Mycol. 69, 39–55. 10.3114/sim.2011.69.04 PubMed DOI PMC
Samson R. A., Visagie C. M., Houbraken J., Hong S. B., Hubka V., Klaassen C. H., et al. . (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 78, 141–173. 10.1016/j.simyco.2014.07.004 PubMed DOI PMC
Sutton D. A., Sanchie S. E., Revankar S. G., Fothergill A. W., Rinaldi M. G. (1999). In vitro amphotericin B resistance in clinical isolates of Aspergillus terreus, with a head-to-head comparison to voriconazole. J. Clin. Microbiol. 37, 2343–2345. PubMed PMC
van der Linden J. W., Arendrup M. C., Warris A., Lagrou K., Pelloux H., Hauser P. M., et al. . (2015). Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg. Infect. Dis. 21, 1041–1044. 10.3201/eid2106.140717 PubMed DOI PMC
Walsh T. J., Petraitis V., Petraitiene R., Field-Ridley A., Sutton D., Ghannoum M., et al. . (2003). Experimental pulmonary aspergillosis due to Aspergillus terreus: pathogenesis and treatment of an emerging fungal pathogen resistant to amphotericin B. J. Infect. Dis. 188, 305–319. 10.1086/377210 PubMed DOI
Won E. J., Choi M. J., Shin J. H., Park Y.-J., Byun S. A., Jung J. S., et al. . (2017). Diversity of clinical isolates of Aspergillus terreus in antifungal susceptibilities, genotypes and virulence in Galleria mellonella model: comparison between respiratory and ear isolates. PLoS ONE 12:e0186086. 10.1371/journal.pone.0186086 PubMed DOI PMC