The Impact of the Antimicrobial Compounds Produced by Lactic Acid Bacteria on the Growth Performance of Mycobacterium avium subsp. paratuberculosis

. 2018 ; 9 () : 638. [epub] 20180403

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29666620

Cell-free supernatants (CFSs) extracted from various lactic acid bacteria (LAB) cultures were applied to Mycobacterium avium subsp. paratuberculosis (MAP) cells to determine their effect on MAP viability. In addition, 5% lactic acid (LA; pH 3) and commercially synthetized nisin bacteriocin were also tested. This procedure was chosen in order to mimic the influence of LAB compounds during the production and storage of fermented milk products, which can be contaminated by MAP. Its presence in milk and milk products is of public concern due to the possible ingestion of MAP by consumers and the discussed role of MAP in Crohn's disease. Propidium monoazide real-time PCR (PMA qPCR) was used for viability determination. Although all CFS showed significant effects on MAP viability, two distinct groups of CFS - effective and less effective - could be distinguished. The effective CFSs were extracted from various lactobacilli cultures, their pH values were mostly lower than 4.5, and their application resulted in >2 log10 reductions in MAP viability. The group of less effective CFS were filtered from Lactococcus and enterococci cultures, their pH values were higher than 4.5, and their effect on MAP viability was <2 log10. LA elicited a reduction in MAP viability that was similar to that of the group of less effective CFS. Almost no effect was found when using commercially synthetized nisin at concentrations of 0.1-1000 μg/ml. A combination of the influence of the type of bacteriocin, the length of its action, bacteriocin production strain, and pH are all probably required for a successful reduction in MAP viability. However, certain bacteriocins and their respective LAB strains (Lactobacillus sp.) appear to play a greater role in reducing the viability of MAP than pH.

Zobrazit více v PubMed

Carroll J., Draper L. A., O’connor P. M., Coffey A., Hill C., Ross R. P., et al. (2010). Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria. Int. J. Antimicrob. Agents 36 132–136. 10.1016/j.ijantimicag.2010.03.029 PubMed DOI

Carvalho I. A., Pietralonga P. A., Schwarz D. G., Faria A. C., Moreira M. A. (2012). Short communication: recovery of viable Mycobacterium avium subspecies paratuberculosis from retail pasteurized whole milk in Brazil. J. Dairy Sci. 95 6946–6948. 10.3168/jds.2012-5657 PubMed DOI

Chiodini R. J., Chamberlin W. M., Sarosiek J., Mccallum R. W. (2012). Crohn’s disease and the mycobacterioses: a quarter century later. Causation or simple association. Crit. Rev. Microbiol. 38 52–93. 10.3109/1040841x.2011.638273 PubMed DOI

Chung H. J., Montville T. J., Chikindas M. L. (2000). Nisin depletes ATP and proton motive force in mycobacteria. Lett. Appl. Microbiol. 31 416–420. 10.1046/j.1472-765x.2000.00840.x PubMed DOI

Cook K. L., Flis S. A., Ballard C. S. (2013). Sensitivity of Mycobacterium avium subsp. paratuberculosis, Escherichia coli and Salmonella enterica serotype Typhimurium to low pH, high organic acids and ensiling. J. Appl. Microbiol. 115 334–345. 10.1111/jam.12243 PubMed DOI

Cotter P. D., Hill C. (2003). Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67 429–453. 10.1128/Mmbr.37.3.429-453.2003 PubMed DOI PMC

Donaghy J. A., Totton N. L., Rowe M. T. (2004). Persistence of Mycobacterium paratuberculosis during manufacture and ripening of cheddar cheese. Appl. Environ. Microbiol. 70 4899–4905. 10.1128/aem.70.8.4899-4905.2004 PubMed DOI PMC

Donaghy J. A., Totton N. L., Rowe M. T. (2005). “The in vitro antagonistic activities of lactic acid bacteria against Mycobacterium avium subsp. paratuberculosis,” in Proceedings of the 8th International Colloquium on Paratuberculosis; 2005 Aug 14–17; Copenhagen, Denmark, ed. Nielsen S. S. (Kennett Square, PA: International Association for Paratuberculosis; ), 79.

Gaggia F., Nielsen D. S., Biavati B., Siegumfeldt H. (2010). Intracellular pH of Mycobacterium avium subsp. paratuberculosis following exposure to antimicrobial compounds monitored at the single cell level. Int. J. Food Microbiol. 141 S188–S192. 10.1016/j.ijfoodmicro.2010.05.031 PubMed DOI

Galvez A., Abriouel H., Lopez R. L., Ben Omar N. (2007). Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 120 51–70. 10.1016/j.ijfoodmicro.2007.06.001 PubMed DOI

Glass M. D., Courtney P. D., Lejeune J. T., Ward L. A. (2004). Effects of Lactobacillus acidophilus and Lactobacillus reuteri cell-free supernatants on Cryptosporidium viability and infectivity in vitro. Food Microbiol. 21 423–429. 10.1016/j.fm.2003.11.001 DOI

Grant I. R., Hitchings E. I., Mccartney A., Ferguson F., Rowe M. T. (2002). Effect of commercial-scale high-temperature, short-time pasteurization on the viability of Mycobacterium paratuberculosis in naturally infected cows’ milk. Appl. Environ. Microbiol. 68 602–607. 10.1128/aem.68.2.602-607.2002 PubMed DOI PMC

Gumber S., Whittington R. J. (2007). Comparison of BACTEC 460 and MGIT 960 systems for the culture of Mycobacterium avium subsp. paratuberculosis S strain and observations on the effect of inclusion of ampicillin in culture media to reduce contamination. Vet. Microbiol. 119 42–52. 10.1016/j.vetmic.2006.08.009 PubMed DOI

Hanifian S. (2014). Survival of Mycobacterium avium subsp. paratuberculosis in ultra-filtered white cheese. Lett. Appl. Microbiol. 58 466–471. 10.1111/lam.12215 PubMed DOI

Hermon-Taylor J. (2009). Mycobacterium avium subspecies paratuberculosis, Crohn’s disease and the doomsday scenario. Gut Pathog. 1:15. 10.1186/1757-4749-1-15 PubMed DOI PMC

Klanicova B., Slana I., Roubal P., Pavlik I., Kralik P. (2012). Mycobacterium avium subsp. paratuberculosis survival during fermentation of soured milk products detected by culture and quantitative real time PCR methods. Int. J. Food Microbiol. 157 150–155. 10.1016/j.ijfoodmicro.2012.04.021 PubMed DOI

Kralik P., Babak V., Dziedzinska R. (2014). Repeated cycles of chemical and physical disinfection and their influence on Mycobacterium avium subsp. paratuberculosis viability measured by propidium monoazide F57 quantitative real time PCR. Vet. J. 201 359–364. 10.1016/j.tvjl.2014.05.032 PubMed DOI

Kralik P., Nocker A., Pavlik I. (2010). Mycobacterium avium subsp. paratuberculosis viability determination using F57 quantitative PCR in combination with propidium monoazide treatment. Int. J. Food Microbiol. 141 S80–S86. 10.1016/j.ijfoodmicro.2010.03.018 PubMed DOI

Kralik P., Slana I., Kralova A., Babak V., Whitlock R. H., Pavlik I. (2011). Development of a predictive model for detection of Mycobacterium avium subsp. paratuberculosis in faeces by quantitative real time PCR. Vet. Microbiol. 149 133–138. 10.1016/j.vetmic.2010.10.009 PubMed DOI

Makras L., De Vuyst L. (2006). The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. Int. Dairy J. 16 1049–1057. 10.1016/j.idairyj.2005.09.006 DOI

Moreno M. R. F., Callewaert R., Devreese B., Van Beeumen J., De Vuyst L. (2003). Isolation and biochemical characterisation of enterocins produced by enterococci from different sources. J. Appl. Microbiol. 94 214–229. 10.1046/j.1365-2672.2003.01823.x PubMed DOI

Nocker A., Cheung C. Y., Camper A. K. (2006). Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Methods 67 310–320. 10.1016/j.mimet.2006.04.015 PubMed DOI

O’Sullivan L., Ross R. P., Hill C. (2002). Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84 593–604. 10.1016/S0300-9084(02)01457-8 PubMed DOI

Pribylova R., Kubickova L., Babak V., Pavlik I., Kralik P. (2012). Effect of short- and long-term antibiotic exposure on the viability of Mycobacterium avium subsp. paratuberculosis as measured by propidium monoazide F57 real time quantitative PCR and culture. Vet. J. 194 354–360. 10.1016/j.tvjl.2012.05.002 PubMed DOI

Reis J. A., Paula A. T., Casarotti S. N., Penna A. L. B. (2012). Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Eng. Rev. 4 124–140. 10.1007/s12393-012-9051-2 DOI

Serraino A., Bonilauri P., Giacometti F., Ricchi M., Cammi G., Piva S. (2017). Short communication: investigation into Mycobacterium avium ssp paratuberculosis in pasteurized milk in Italy. J. Dairy Sci. 100 118–123. 10.3168/jds.2016-11627 PubMed DOI

Slana I., Kralik P., Kralova A., Pavlik I. (2008). On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. Int. J. Food Microbiol. 128 250–257. 10.1016/j.ijfoodmicro.2008.08.013 PubMed DOI

Spahr U., Schafroth K. (2001). Fate of Mycobacterium avium subsp. paratuberculosis in Swiss hard and semihard cheese manufactured from raw milk. Appl. Environ. Microbiol. 67 4199–4205. 10.1128/Aem.67.9.4199-4205.2001 PubMed DOI PMC

Van Brandt L., Coudijzer K., Herman L., Michiels C., Hendrickx M., Vlaemynck G. (2011). Survival of Mycobacterium avium ssp. paratuberculosis in yoghurt and in commercial fermented milk products containing probiotic cultures. J. Appl. Microbiol. 110 1252–1261. 10.1111/j.1365-2672.2011.04979.x PubMed DOI

Zacharof M. P., Lovitt R. W. (2012). Bacteriocins produced by lactic acid bacteria. A review article. APCBEE Proc. 2 50–56. 10.1016/j.apcbee.2012.06.010 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...